首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoemission spectra of vacuum deposited layers of C(60), before and after exposure to K vapor, show that the K donates its conduction electron into the band derived from the lowest unoccupied molecular orbital. A compound with composition of K(3)C(60), corresponding to the maximum conductivity, has been prepared. In it the potassium atoms presumably occupy both the octahedral and the two tetrahedral interstitial sites of the face-centered-cubic (fcc) C(60) structure.  相似文献   

2.
The properties of a molecule are determined by the distribution of its electrons. This distribution can be described by the charge density, which is readily obtained from the wave functions derived by ab initio molecular orbital calculations. The charge density may be analyzed in a number of different fashions to give information about the effects of substituents, structural changes, and electronic excitation on the properties of molecules; one common procedure makes use of projection density or charge difference plots. Charge density also may be partitioned among atoms, and by numerical integration over appropriate volume elements one may obtain atomic charges, dipoles, kinetic energies, and other properties of the atoms in a molecule. Many chemical phenomena have been analyzed in terms of charge densities.  相似文献   

3.
Evidence for photoinduced electron transfer from the excited state of a conducting polymer onto buckminsterfullerene, C(60), is reported. After photo-excitation of the conjugated polymer with light of energy greater than the pi-pi* gap, an electron transfer to the C(60) molecule is initiated. Photoinduced optical absorption studies demonstrate a different excitation spectrum for the composite as compared to the separate components, consistent with photo-excited charge transfer. A photoinduced electron spin resonance signal exhibits signatures of both the conducting polymer cation and the C(60) anion. Because the photoluminescence in the conducting polymer is quenched by interaction with C(60), the data imply that charge transfer from the excited state occurs on a picosecond time scale. The charge-separated state in composite films is metastable at low temperatures.  相似文献   

4.
The room temperature Raman spectra of the intramolecular modes between 100 cm(-1) and 2000 cm(-1) are reported for alkali-metal doped AxC(60) films. For A = K, Rb, and Cs, phase separation is observed with the spectra of C(60), K(3)C(60), K(6)C(60), Rb(3)C(60), Rb(6)C(60), and Cs(6)C(60) phases reported. The x = 3 phases show only three Raman active modes: two of Ag symmetry and only the lowest frequency Hg mode. The other Hg modes regain intensity in the x = 6 films, with several mode splittings observed. For A = Na, such phase separation is not clearly observed, and reduced mode shifts are interpreted as due to incomplete charge transfer in these films.  相似文献   

5.
Feng M  Zhao J  Petek H 《Science (New York, N.Y.)》2008,320(5874):359-362
The atomic electron orbitals that underlie molecular bonding originate from the central Coulomb potential of the atomic core. We used scanning tunneling microscopy and density functional theory to explore the relation between the nearly spherical shape and unoccupied electronic structure of buckminsterfullerene (C60) molecules adsorbed on copper surfaces. Besides the known pi* antibonding molecular orbitals of the carbon-atom framework, above 3.5 electron volts we found atomlike orbitals bound to the core of the hollow C60 cage. These "superatom" states hybridize like the s and p orbitals of hydrogen and alkali atoms into diatomic molecule-like dimers and free-electron bands of one-dimensional wires and two-dimensional quantum wells in C60 aggregates. We attribute the superatom states to the central potential binding an electron to its screening charge, a property expected for hollow-shell molecules derived from layered materials.  相似文献   

6.
Haddon RC 《Science (New York, N.Y.)》1993,261(5128):1545-1550
Within the wr-orbital axis vector theory, the total rehybridization required for closure of the fullerenes is approximately conserved. This result allows the development of a structure-based index of strain in the fullerenes, and it is estimated that about 80 percent of the heat of formation of the carbon atoms in C60 may be attributed to a combination of v strain and steric inhibition of resonance. Application of this analysis to the geometries of structurally characterized organometallic derivatives of C60 and C70 shows that the reactivity exhibited by the fullerenes may be attributed to the relief of a combination of local and global strain energy. C60 is of ambiguous aromatic character with anomalous magnetic properties but with the reactivity of a continuous aromatic molecule, moderated only by the tremendous strain inherent in the spheroidal structure.  相似文献   

7.
The bistability in the position of the two hydrogen atoms in the inner cavity of single free-base naphthalocyanine molecules constitutes a two-level system that was manipulated and probed by low-temperature scanning tunneling microscopy. When adsorbed on an ultrathin insulating film, the molecules can be switched in a controlled fashion between the two states by excitation induced by the inelastic tunneling current. The tautomerization reaction can be probed by resonant tunneling through the molecule and is expressed as considerable changes in the conductivity of the molecule. We also demonstrated a coupling of the switching process so that the charge injection in one molecule induced tautomerization in an adjacent molecule.  相似文献   

8.
The x-ray diffraction of the nonsuperconducting ternary fulleride Li(2)CsC(60) reveals at room temperature a face-centered-cubic (Fm3m) disordered structure that persists to a temperature of 13 Kelvin. The crystal structure is best modeled as containing quasispherical [radius of 3.556(4) angstroms] C(60)(3-) ions, in sharp contrast to their orientational state in superconducting face-centered-cubic K(3)C(60) (merohedral disorder) and primitive cubic Na(2)CsC(60) (orientational order). The orientational disorder of the carbon atoms on the C(60)(3-) sphere was analyzed with symmetry-adapted spherical-harmonic functions. Excess atomic density is evident in the <111> directions, indicating strong bonding Li(+)-C interactions, not encountered before in any of the superconducting alkali fullerides. The intercalate-carbon interactions and the orientational state of the fullerenes have evidently affected the superconducting pair-binding mechanism in this material.  相似文献   

9.
The superconducting compound K(3)C(60) (with transition temperature T(c) = 19.3 kelvin at ambient pressure), formed as a single phase by reaction of alkali vapor with solids of the icosahedral C(60) molecule (buckminsterfullerene), shows a very large decrease of T(c) with increasing pressure. Susceptibility measurements on sintered pellets showing bulk superconductivity are reported up to 21 kilobars of pressure, where T(c) is already less than 8 kelvin. The results are consistent with a piling up of the density of states at the Fermi level.  相似文献   

10.
The crystal structure of superconducting Na(2)CsC(60) was studied by high-resolution powder neutron diffraction between 1.6 and 425 K. Contrary to the literature, the structure at low temperatures is primitive cubic [See equation in the PDF file], isostructural with pristine C(60). Anticlockwise rotation of the C(60) units by 98 degrees about [111] allows simultaneous optimization of C(60)-C(60) and alkali-fulleride interactions. Optimal Na(+)-C(60)(3-) coordination is achieved with each sodium ion located above one hexagon face and three hexagon-hexagon fusions of neighboring fulleride ions (coordination number 12). Reduction of the C(60) molecule lengthens the hexagon-hexagon fusions and shortens the pentagon-hexagon fusions (to approximately 1.43 angstroms). On heating, Na(2)CsC(60) undergoes a phase transition to a face-centered-cubic [See equation in the PDF file] phase, best modeled as containing quasi-spherical C(60)(3-) ions. The modified structure and intermolecular potential provide an additional dimension to the behavior of superconducting fullerides and should sensitively affect their electronic and conducting properties.  相似文献   

11.
石墨烯基碱金属原子有效电荷变化规律   总被引:1,自引:0,他引:1       下载免费PDF全文
应用S.Yu.Davydov提出的石墨烯态密度模型,求出吸附在石墨烯上的碱金属原子的有效电荷数,研究了吸附原子的电子能级、能级移动量、有效电荷数随金属原子元素的变化以及有效电荷数随电子能量的变化规律.结果表明:(1)被吸附的碱金属原子的电子能级和能级移动量随原子序数的变化为非线性,在Li,Na,K,Rb,Se,Fr这6种碱金属原子中,以Na原子的值为最小,其原因在于碱金属原子的电离能以及石墨烯与吸附原子的相互作用能均随原子序数的增大而减小;(2)石墨烯能带电子和吸附原子的局域态电子对有效电荷的贡献以及总有效电荷数,均随原子序数的增加而非线性地减小.其中,能带电子对有效电荷的贡献与电子能量无关,而吸附原子局域态电子的贡献与总有效电荷数和电子能量都有关,且随电子能量的变化有明显的局域特点,最可几电子能量随原子序数的增大而增大.  相似文献   

12.
Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C(60) fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C(60) fullerite. (i) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (ii) High-resolution magnetic susceptibility data on C(60) fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C(60). This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.  相似文献   

13.
The electronic connection of single molecules to nanoelectrodes on a surface is a basic, unsolved problem in the emerging field of molecular nanoelectronics. By means of variable temperature scanning tunneling microscopy, we show that an organic molecule (C90H98), known as the Lander, can cause the rearrangement of atoms on a Cu(110) surface. These molecules act as templates accommodating metal atoms at the step edges of the copper substrate, forming metallic nanostructures (0.75 nanometers wide and 1.85 nanometers long) that are adapted to the dimensions of the molecule.  相似文献   

14.
J Pletcher  M Sax 《Science (New York, N.Y.)》1966,154(754):1331-1333
The crystal structure of thiamine pyrophosphate has been determined by a three-dimensional x-ray analysis. The conformation of the molecule in the crystalline state is determined by the formal charge distribution within the molecule which exists as a zwitterion with the negative pyrophosphate chain folded back over the positive, ring portion of the molecule. The oxygen atoms in the pyrophosphate group are in the staggered conformation when viewed along the phosphorus-phosphorus axis. Even though the pyrophosphate is present in this compound as the monoionized monoester, the configuration is the same as that present in the inorganic pyrophosphate ion. From a comparison of three different crystal structures containing the thiamine moiety and from studies with atomic models, it seems plausible that the basic molecular conformation observed in this crystal is maintained in the catalytically active molecule. Knowledge of the detailed crystal structure provides new insight into the biochemical mechanism of reactions catalyzed by thiamine pyrophosphate.  相似文献   

15.
A general approach is presented for creating polymer gels that can recognize and capture a target molecule by multiple-point interaction and that can reversibly change their affinity to the target by more than one order of magnitude. The polymers consist of majority monomers that make the gel reversibly swell and shrink and minority monomers that constitute multiple-point adsorption centers for the target molecule. Multiple-point interaction is experimentally proven by power laws found between the affinity and the concentration of the adsorbing monomers within the gels.  相似文献   

16.
Water normally exists in hydrogen-bonded environments, but a single molecule of H(2)O without any hydrogen bonds can be completely isolated within the confined subnano space inside fullerene C(60). We isolated bulk quantities of such a molecule by first synthesizing an open-cage C(60) derivative whose opening can be enlarged in situ at 120°C that quantitatively encapsulated one water molecule under the high-pressure conditions. The relatively simple method was developed to close the cage and encapsulate water. The structure of H(2)O@C(60) was determined by single-crystal x-ray analysis, along with its physical and spectroscopic properties.  相似文献   

17.
Two potassium fulleride phases, metallic K(3)C(60) and nonmetallic K(6)C(60), are formed when potassium is incorporated into thin C(60) films under ultrahigh vacuum conditions. Phase separation is observed for intermediate stoichiometries. Results obtained for the C(60)-K(3)C(60) heterostructure demonstrate that it is stable against potassium migration from the K(3)C(60) phase. In contrast, the C(60)-K(6)C(60) interface is not stable and K(3)C(60) is formed.  相似文献   

18.
Site-directed mutagenic replacement of M subunit Leu214 by His in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides results in incorporation of a bacteriochlorophyll molecule (BChl) in place of the native bacteriopheophytin (BPh) electron acceptor. Evidence supporting this conclusion includes the ground-state absorption spectrum of the (M)L214H mutant, pigment and metal analyses, and time-resolved optical experiments. The genetically modified RC supports transmembrane charge separation from the photoexcited BChl dimer to the primary quinone through the new BChl molecule, but with a reduced quantum yield of 60 percent (compared to 100 percent in wild-type RCs). These results have important implications for the mechanism of charge separation in the RC, and rationalize the choice of (bacterio)pheophytins as electron acceptors in a variety of photosynthetic systems.  相似文献   

19.
Treatment of highly purified preparations of the third component of complement (C3) with 0.5M hydroxylamine at 20 degrees C for 15 to 30 minutes, followed by acidification, resulted in dissociation of a peptide from the C3 molecule. The isolated fragment (molecular weight, 7600) resembled enzymatically liberated anaphylatoxin (C3a) with respect to size, charge, amino acid composition, and biological activity. Its capacity to contract smooth muscle was inhibitable by antihistamines; it also produced tachyphylaxis and desensitization of the guinea pig ileum to C3a. Thus native C3 probably contains an esterlike bond and hydroxylamine-liberated anaphylatoxin may represent one of the polypeptide chains of the C3 molecule.  相似文献   

20.
Tunneling spectroscopy has been used to characterize the magnitude and temperature dependence of the superconducting energy gap (triangle up) for K(3)C(60) and Rb(3)C(60). At low temperature the reduced energy gap, 2triangle upkappaT(c) (where T(c) is the transition temperature) has a value of 5.3 +/- 0.2 and 5.2 +/- 0.3 for K(3)C(60) and Rb(3)C(60), respectively. The magnitude of the reduced gap for these materials is significantly larger than the value of 3.53 predicted by Bardeen-Cooper-Schrieffer theory. Hence, these results show that the pair-coupling interaction is strong in the M(3)C(60) superconductors. In addition, measurements of triangle up(T) for both K(3)C(60) and Rb(3)C(60) exhibit a similar mean-field temperature dependence. The characterization of triangle up and triangle up(T) for K(3)C(60) and Rb(3)C(60) provides essential constraints for theories evolving to describe superconductivity in the M(3)C(60) materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号