首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.  相似文献   

2.
我国土壤重金属污染现状十分严峻,多金属复合污染,尤其是砷-重金属复合污染普遍存在,治理难度大。土壤中累积的多金属污染物严重威胁土壤健康、农产品安全与人居环境安全。因此,多金属复合污染土壤修复是土壤污染治理和风险防控的重要命题。固化/稳定化技术是我国最为广泛使用的污染土壤修复技术,通过投加稳定化材料,降低多金属污染物在土壤中的可迁移性与生物有效性,从而实现多金属污染物暴露途径的有效阻断。对砷-重金属型复合污染土壤的稳定化作用机理进行了详细阐述并梳理了应对砷-重金属复合污染土壤的新型修复材料。砷与其它重金属的协同稳定化主要通过表面络合与沉淀作用实现。富含铁、钙元素的材料对这种类型土壤的稳定化具有优异的作用效果。砷-重金属协同稳定化材料的修复效果取决于稳定化材料的类型、复合污染物的种类、材料施用量、土壤条件(如pH,氧化还原电位、阳离子交换量等),其中pH和土壤可溶性有机质含量对稳定化效果有显著的影响。本文发现,功能化生物质复合材料、工业固废基材料、改性复配天然矿物等绿色修复材料是近年来研究的热点。未来的研究亟须考虑砷与重金属污染物协同稳定剂的长效性,以及通过大田试验验证新型材料的应用潜能。  相似文献   

3.
The relationships between the concentrations of zinc (Zn), lead (Pb), copper (Cu), nickel (Ni) and chromium (Cr) as measured by X-ray fluorescence analysis (XRF), aqua regia, and HNO3 pressure digestion were studied in soil samples covering a wide range of heavy metal concentrations. The soils were contaminated by sewage sludge, exhaust depositions, river sediments of mining residues, and dump material. The question was addressed whether the source of heavy metals or other soil properties affect the relationship between these three methods. The aqua regia-digestible fraction of the five heavy metals reached on average 64% of the XRF-detectable content. The pressure accelerated HNO3-digestible fraction of the five heavy metals was on average 71% of the XRF-detectable content; the respective phosphorus (P) fraction reached a median of 75%. This suggests that HNO3 pressure digestion can also be used for characterizing the total P content of soils. Aqua regia extraction and HNO3 pressure digestion gave similar values for Zn, Pb, and Cu, which dominate the heavy metal load of most contamination sources. Significantly higher Cr values were obtained by HNO3 pressure digestion than by aqua regia extraction. Additionally, the Cr contents were affected by the source, e.g. sewage sludge had relatively high contents of aqua regia and HNO3 pressure extractable contents in comparison to the XRF values. The element-specific relationships between the three methods were all highly significant. However, the respective multiple linear regression models were in most cases affected by soil organic carbon (C), in some cases by clay or soil pH.  相似文献   

4.
孙瑞波  盛下放  李娅  何琳燕 《土壤学报》2011,48(5):1013-1020
以南京栖霞重金属污染区5种植物及其根际土壤为研究对象,对植物富集重金属特征以及重金属含量与根际土壤细菌数量、土壤酶活性等的相关性进行了调查分析。结果发现,植物根际重金属污染物以Zn和Cd为主;重金属污染地区的植物有较强的吸收重金属能力,龙葵和茼草具备了超积累植物的基本特征;植物根际细菌和Pb抗性细菌的数量达到了107CFU g-1土;根际土壤酶活性未受到重金属的毒害或受到的毒害很小;植物体中重金属含量与土壤重金属含量及其存在状态、土壤酶、土壤重金属抗性细菌有显著的正相关性。根际土壤细菌尤其是具有重金属抗性的活性细菌可能会促进土壤重金属的活化,由此促进植物体对重金属的吸收和转运。  相似文献   

5.
The biogeochemical behavior of heavy metals in contaminated excessively moistened soils depends on the development of reducing conditions (either moderate or strong). Upon the moderate biogenic reduction, Cr as the metal with variable valence forms low-soluble compounds, which decreases its availability to plants and prevents its penetration into surface- and groundwater. Creation of artificial barriers for Cr fixation on contaminated sites is based on the stimulation of natural metal-reducing bacteria. Arsenic, being a metalloid with a variable valence, is mobilized upon the moderate biogenic reduction. The mobility of siderophilic heavy metals with a constant valence grows under the moderate reducing conditions at the expense of dissolution of iron (hydr)oxides as carriers of these metals. Zinc, which can enter the newly formed goethite lattice, is an exception. Strong reduction processes in organic excessively moist and flooded soils (usually enriched in S) lead to the formation of low-soluble sulfides of heavy elements with both variable (As) and constant (Cu, Ni, Zn, and Pb) valence. On changing aquatic regime in overmoistened soils and their drying, sulfides of heavy metals are oxidized, and previously fixed metals are mobilized.  相似文献   

6.
《Applied soil ecology》2006,32(3):239-250
The species frequency of collembolan communities along a gradient of heavy metal pollution in soil of pine forest soils was studied. Sampling plots were established in forests 1, 3, 5, 8, 11, 68 and 148 km from the Miasteczko Śląskie zinc smelter. At each plot the plant associations, physicochemical characteristics of soil, and collembolan species composition and abundance were examined. The structure of collembolan communities was analyzed with regard to species distribution, testing geometric series, broken-stick, logarithmic series, log-normal and negative binomial distribution models. Most of the collembolan communities occurring both in contaminated and in uncontaminated soils had structure similar to a negative binomial distribution. In the samples from the oldest forest, the species frequencies could also be fitted to a log-normal distribution. The species frequency model was independent of the degree of soil pollution. Under the assumption of a negative binomial distribution of Collembola from soil samples, it is possible to estimate the theoretical number of collembolan species in the habitats studied. The difference between estimated and empirical numbers of species (the number of species not revealed in samples) was linearly correlated with metal concentrations in soil, indicating the elimination of a number of rare species from severely polluted forests.  相似文献   

7.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

8.
Abstract

Distribution and availability of heavy metals to plants is important when assessing the environmental quality of an area. The objectives of this study, conducted in 1992–1993, were: a) to determine the levels of the heavy metals, cadmium (Cd), chromium (Cr), copper(Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn), in the soils of the Axios Delta (a Ramsar wetland site in Northern Greece) so that the degree of pollution could be ascertained, b) to identify the various heavy metal forms present in soils using a fractionation scheme based on sequential extraction, and c) to find possible dependence on soil physicochemical properties. Total heavy metal content of the soils studied was generally higher than the levels reported in the literature for similar soils, suggesting some degree of pollution with heavy metals. The exchangeable forms of the heavy metals, however, were very low indicating that under present conditions, the availability of the heavy metals to plants is at a minimum. Most of the heavy metals occurred in forms that are considered immobile constituents of inorganic minerals or carbonate compounds. Only Cu and Zn were present in appreciable quantities as organically‐based forms that can become potentially available under certain conditions. Spatial distribution of Zn and Cu was related to the organic matter distribution, and there were indications suggesting that the immobile fraction of the heavy metals was adsorbed on to Mn‐oxides.  相似文献   

9.
The aim of this study was to determine the effects of heavy metal pollution on the structure and functioning of detritivore soil communities that consist of isopods, millipedes and earthworms, in 15 heavily polluted flood plain soils, located in the delta area of the rivers Rhine and Meuse, in the Netherlands. The 15 study sites represent a gradient in Zn, Cu and Cd concentrations. The structural attributes of the detritivore community, which were assessed, were the species richness and densities in the field sites. The functioning of the detritivore community was studied by determining organic matter decomposition using litter bags and feeding activity with the bait-lamina method. Concentrations of Cd, Cu and Zn were measured in soil, pore water and 0.01 M CaCl2 extracts of the soil, in adult earthworms and plant leaves. Results show that metal pollution is not a dominating factor determining the species richness and densities of the selected detritivore groups, although the biomass of the earthworm Lumbricus rubellus was positively and significantly correlated to Zn concentrations in pore water and 0.01 M CaCl2 extracts. Litter decomposition was significantly and positively correlated to detritivore biomass and 0.01 M CaCl2 extractable Cd concentrations in soil and negatively to pH-CaCl2, although the range of pH values was very small. It can be concluded that in spite of high metal levels in the soil, bioavailable concentrations are too low to result in clear negative effects on the structure and functioning of detritivores in the Biesbosch, the Netherlands.  相似文献   

10.
11.
Copper (Cu) mine tailings, because of their high content of heavy metals, are usually hostile to plant colonization. A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China. All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture. However, on pure mine tailings, the growth was minimal, whereas the growth was maximum for the control without mine tailings. The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum 〉 Festuea arundinaeea 〉 Lolium perenne 〉 Cynodon daetylon. The planting of forage grasses enhanced the soil microbial biomass. The Biolog data indicated that the soil microbial metabolic profile values (average well color development, community richness, and Shannon index) of the four forage grasses also followed the sequence: P. notatum 〉 F. arundinaeea 〉 L. perenne 〉 C. daetylon. Thus, P. notatum, under the experimental conditions of this study, may be considered as the preferred plant species for revegetation of Cu mine tailing areas.  相似文献   

12.
Journal of Soils and Sediments - Contamination of sediments with heavy metals (HMs) is a worldwide environmental issue, due to the negative ecological effects of HMs. Sediments are an important...  相似文献   

13.
Abstract

Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively.  相似文献   

14.
Effective remediation and sanitation technologies for soils contaminated with heavy metals are limited. We investigated the feasibility of a counter-current metal extraction procedure for the removal of selected heavy metals (Cd, Cu, Ph, and Zn) from two contaminated soils. The process involved a decarbonation (removal of carbonates), acid solubilisation, washing, and liming step. Results from batch equilibration experiments simulating the counter-current process showed more than 85% of the Cd present to be removed. Removal efficiencies for Cu and Pb were limited to approximately 15%, this mainly due to resorption of these elements during the decarbonation step. As most Zn was found to be present in a more difficult acid-extractable solid phase, its extractability accounted for only 25%. While reaction (pH) conditions of both decarbonation and solubilisation determined removal efficiencies, washing the extracted soil with deionized water only slightly increased the amount of metals removed. Metal distribution among solid phases — exchangeable, carbonate, reducible, organically bound, and residual — was affected by the different treatments. The amount of metals contained in the exchangeable and residual fractions determined their extractability. Except for Cu, the reducible and organically bound fractions were less important. After solubilisation 13 to 70% of the metals were present in an exchangeable solid phase. This implicates that washing the solubilized soil with a salt may increase the extractability of metals, especially for Zn and Pb. Based on our results the process is critically evaluated and possibilities for optimization formulated.  相似文献   

15.
The competitive desorption/dissolution of kaolin-adsorbed heavy metal mixtures and mixtures of adsorbed Cd with Mg and/or Ca by four chelators (NTA, EDTA, EGTA, and DCyTA) was investigated. Metals were adsorbed on kaolin at pH 7 and the effects of chelator type and concentration on the extent of metal dissolution was studied at a solution pH of 10. EGTA addition. EGTA was the most effective chelator in selectively removing Cd from kaolin in the presence of adsorbed alkaline-earth metals. Approximately 90% of the adsorbed Ca and Mg were retained on the kaolin until almost all (> 80%) of the cadmium was dissolved by EGTA chelator. NTA was the least effective chelator in selectively dissolving Cd from kaolin contaminated with both Cd and Ca (≈ 45% of the adsorbed Cd could not be removed). All four chelators exhibited some desorption/dissolution selectivity for Cd, Cu, and Pb adsorbed on kaolin. When the concentration of chelator in solution was insufficient to dissolve all adsorbed metals, the observed metal ordering for chelation and dissolution was Cd > Cu > Pb (for EGTA), Cd > Pb > Cu (for EDTA and DCyTA), and Cu > Cd > Pb (for NTA).  相似文献   

16.
Abstract

The analysis of soils, using 0.1 N HC1 as an extractant for the heavy metals, Cd, Cr, Ni and Pb on “fine”; textured North Shore and “coarse”; textured Annapolis Valley soils was completed. Results show ranges of 0.012 to 0.469 parts per million Cd; 0.102 to 2.90 parts per million Cr; 0.16 to 29.25 parts per million Ni and 0.12 to 244.8 parts per million Pb. Correlation studies indicate that the heavy metal content of fine textured soils is less influenced by changes in clay content and organic matter than are coarse textured soils. Generally the surface layers (0–15 cms) are higher in extractable heavy metal content than the lower layers (15–30 cms).  相似文献   

17.
The validity of the chloroform fumigation-incubation procedure for measuring soil microbial biomass in field soils contaminated with metals (e.g. Cu, Ni, Zn, Cd) was assessed. The metal contamination was the result of past sewage sludge additions and the contaminated field soils now contain metals at about current maximum U.K. recommended levels. The decomposition of native soil biomass or microbial material added after fumigation was little affected by the presence of metals and it was concluded that fumigation-incubation is a reliable procedure for measuring biomass in soils contaminated with moderate amounts of metals. This conclusion was confirmed by direct microscopy: similar soil biomass estimates were obtained by both methods.  相似文献   

18.
改良剂原位修复重金属污染土壤研究进展   总被引:6,自引:0,他引:6  
改良剂原位修复重金属污染土壤因其成本低廉、易于实施,已经得到广泛应用。然而,改良剂对土壤重金属的修复仍然存在着一定的局限性和潜在风险。无机和有机改良剂的修复效果不仅与重金属离子的种类有关,而且还受作物、土壤类型及环境因子的制约。本文就目前常用改良剂的修复效果,存在的问题,改良剂原位修复重金属污染土壤的作用机制以及国内外研究进展作简要综述,并对此方面研究的未来趋势提出展望。  相似文献   

19.
The labile fraction of heavy metals (HM) in soils is the most important for toxicity for plants and microorganisms. Thus, it is crucial to reduce this fraction in contaminated soils to decrease the negative effect of HM. In a greenhouse experiment, the effects of several additives on the labile fractions of Zn, Cd, Cu, Ni, and Pb were investigated in a soil contaminated during long‐term sewage‐sludge application. The accumulation of HM was studied in the aboveground biomass of wheat (Triticum aestivum L.). The additives used were the clay minerals Na‐bentonite, Ca‐bentonite, and zeolite; the Fe oxides hematite and goethite; the phosphate fertilizers superphosphate and Novaphos. Wheat was planted three times during 5 months, allowed to grow for 7 w, and harvested. Dry matter and HM content of shoots were determined after each harvest. Soil samples were taken after the first and third harvest, and the NH4NO3‐extractable HM contents were determined. After the addition of 2% Na‐bentonite as well as 2% Ca‐bentonite, a strong reduction of the labile HM soil fraction and shoot HM concentration was observed. At the end of the experiment, the labile fraction was reduced due to the addition of Na‐bentonite and Ca‐bentonite by 24% and 31% for Zn, by 37% and 36% for Cd, by 41% and 43% for Cu, by 54% and 61% for Ni, and by 48% and 41% for Pb, respectively. Furthermore, the shoot HM concentrations with the exception of Zn were reduced below the phytotoxicity range. Accordingly, the shoot dry‐matter production was significantly increased. The addition of phosphate fertilizers (notably Novaphos) strongly reduced the bioavailability of Pb for wheat plants. By addition of 0.05% Novaphos, the labile fraction and the shoot concentration of Pb were lowered by 39% and 64%, respectively. However, the addition of Fe oxides and zeolite resulted only in a small reduction in HM bioavailability to wheat plants. Among the studied additives, Na‐bentonite and Ca‐bentonite have the most promising potential to reduce the bioavailability for the studied HM.  相似文献   

20.
The risk assessment of heavy‐metal contamination in soils requires knowledge of the controls of metal concentrations and speciation. We tested the relationship between soil properties (pH, CEC, Corg, oxide concentrations, texture) and land use (forest, grassland, arable) and the partitioning of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn among the seven fractions of a sequential extraction procedure in 146 A horizons from Slovakia. Using a cluster analysis, we identified 92 soils as representing background metal concentrations while the remaining 54 soils showed anthropogenic contamination. Among the background soils, forest soils had the lowest heavy‐metal concentrations except for Pb (highest), because of the shielding effect of the organic layer. Arable soils had the highest Cr, Cu, and Ni concentrations suggesting metal input with agrochemicals. Grassland soils had the highest Cd and Zn concentrations probably for geogenic reasons. Besides the parent material (highest metal concentrations in soils from carbonatic rock, lowest in quartz‐rich soils with sandy texture), pedogenic eluviation processes controlled metal concentrations with podzols showing depletion of most metals in E horizons. Partitioning among the seven fractions of the sequential extraction procedure was element‐specific. The pH was the overwhelming control of the contributions of the bioavailable fractions (fractions 1–4) of all metals and even influenced the contributions of Fe oxide‐associated metals (fractions 5 and 6) to total metal concentrations. For fractions 5 and 6, Fe concentrations in oxides were the most important control of contributions to total metal concentrations. After statistically separating the pH from land use, we found that the contributions of Cu in fractions 1–4 and of NH4NO3‐extractable Al, Cd, Pb, and Zn to total metal concentrations were significantly higher under forest than under grassland and in some cases arable use. Our results confirm that metal speciation in soils is mainly controlled by the pH. Furthermore, land use has a significant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号