首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to establish whether a particulate form of ascorbic acid (AA), ascorbyl‐2‐phosphate (A2P), could be used to enrich Artemia. In the first experiment, we examined the efficiency of A2P conversion to and maintenance of AA by juvenile Artemia (1.5 mm, 5‐day‐old) held at 9000 L?1 and 28 °C for 24 h. Maximal uptake and assimilation was >10 000 μg AA g?1 dry weight (dw) (representing >1%Artemia dw) at enrichment rates of ≥1.2 g A2P L?1. In the second experiment, a similar biomass of instar II/III nauplii (1 mm, 2‐day‐old) and juvenile (2.5 mm, 8‐day‐old) Artemia were enriched for 6 or 24 h at 28 °C before starvation for 6 or 24 h at 18 or 28 °C. At 0 h and after 6 and 24 h enrichment, AA levels were 485, 3468 and 11 080 μg g?1 dw in nauplii and 122, 4286 and 12 470 μg g?1 dw in juveniles. When Artemia nauplii or juveniles were enriched for 6 h and starved for 6 h at 18 or 28 °C, there was no significant reduction in AA. Continuation of starvation to 24 h at 18 and 28 °C reduced the level of AA to 3367 and 2482 μg g?1 dw in nauplii and 3068 and 2286 μg g?1 dw in juveniles. After 24 h enrichment, 6 h of starvation at 18 and 28 °C reduced AA to 8847 and 7899 μg g?1 dw in nauplii and to 9053 and 8199 μg g?1 dw in juveniles. Continuation of starvation to 24 h at 18 and 28 °C further reduced AA levels in nauplii to 6977 and 4078 μg g?1 dw and to 7583 and 5114 μg g?1 dw in juveniles. This study demonstrated that A2P could be assimilated as AA in the body tissue of different‐sized Artemia in a dose‐dependant manner and AA was depleted during starvation depending on time and temperature.  相似文献   

2.
Copepods are candidates with great potential as live prey for rearing fish larvae and juveniles in aquaculture; however, the techniques for a large‐scale culture of copepods are yet to be developed. In this study, we examined the effects of water temperature, salinity, prey concentration and algal species on the grazing and egg production rates of a calanoid copepod Schmackeria poplesia (Copepoda: Calanoida). The results showed that the grazing rate of S. poplesia was the highest when the copepods were cultured in seawater with temperature of 25 °C, salinity of 20 g L?1, prey concentration at 105 cells mL?1 and supplied with Platymonas helgolandica as the prey. The egg production rates, however, was the highest when copepods were fed with a mixed prey of Isochrysis galbana and Phaeodactylum tricornutum (cell ratio 1:1, prey concentration 105 cells mL?1) at 25 °C, 20 g L?1 of salinity. A 100 L cultural system was established to culture S. poplesia under the condition optimized for egg production. The total number of copepods increased 40–43‐fold with the production rates of 87–290 copepods L?1 day?1 in 14 days. This research was the first attempt for a large‐scale culture of S. poplesia and the technique established can be further applied in aquaculture.  相似文献   

3.
The freshwater mussel Elliptio complanata was provided green algal‐dominated water from a Partitioned Aquaculture System (PAS) over a range of water temperatures (6.1–32.4 °C) and suspended particulate organic carbon (POC) concentrations (<1–32.2 mg C L?1) to determine filtration rates as mg POC kg?1 wet tissue weight h?1. The lowest filtration rates were observed at lowest temperatures and POC concentrations while the highest rates were at intermediate temperatures and the highest POC levels. The predicted filtration rate (PFR) in response to water temperature and POC concentrations was as follows: ln PFR=1.4352+0.1192 POC+0.1399 T?0.0001 T3. Within the experimental conditions, PFRs at any POC concentration increased with increased water temperature to a peak at 22 °C and then decreased. The maximum PFR occurred at 22 °C and 32 mg C L?1 and the minimum PFR at 7 °C and 1 mg C L?1. A model to describe the mussel filtration rate responses to PAS water conditions involves both water temperature and POC concentration.  相似文献   

4.
This study was conducted to examine the effects of different forms and concentrations of ascorbic acid (vitamin C), and different enrichment times (24 and 48 h post ovulation) on egg, embryo and alevin ascorbate concentrations and survival of rainbow trout (enrichment was at the ova stage). In experiments 1 and 2, fertilized eggs were immersed in water containing ascorbate at 0 (control), 100, 1000 mg L?1 l ‐ascorbic acid (AA) and 2000 mg L?1 l ‐ascorbyl monophosphate (AP). In experiment 3, 0 (control), 500 and 1000 mg L?1 AA neutralized (N) with NaOH, 1000 mg L?1 AA non‐neutralized (NN), 1000 and 2000 mg L?1 AP immersions were used. The mean total ascorbic acid (TAA) and dehydroascorbic acid (DHA) concentrations were measured before fertilization, at 3 and 24 h after fertilization, at the eyed stage, and in hatched alevins. We observed significant differences in TAA concentration at different immersion levels at 3 and 24 h after fertilization. Survival decreased significantly depending on the level of vitamin C, pH of the solutions and immersion time. We suggest that when broodstock rainbow trout do not have enough vitamin C in their ovaries, immersion of eggs in 1000 mg L?1 of neutralized AA may be useful.  相似文献   

5.
Ammonium toxicity of short‐duration alkaline events and their variability, as related to 1–30 day‐old postlarvae whiteleg shrimp Litopenaeus vannamei (Boone), was assessed by determining medium lethal concentration (LC50) of total ammonium‐nitroen (TAN) and NH3‐N to 4‐h exposures. Exploratory concentrations of TAN were tested at 30°C and pH 9, until mortality from 5% to 95% occurred between 0.9 and 18 mg N L?1. To determine the daily variation of ammonium toxicity, 64 lots of 20 postlarvae were exposed to eight different ammonium concentrations (0, 0.9, 3, 6, 9, 12, 15 and 18 mg N L?1), in two different environmental scenarios: α (pH 8, 26°C) and β (pH 9, 30°C). In environmental scenario α, ammonium concentrations up to 18 mg L?1 pose no short‐term mortality risks for ages 1–30 days. In scenario β, mortality was recorded at all ages. The values of LC50 (4 h) for different postlarvae ages have daily variability, ranging from a minimum of 2.54 to a maximum of 6.02 mg L?1 of TAN (0.76 and 1.81 mg N L?1 of NH3‐N), for PL3 and PL19, respectively, with a logarithmic linear tendency to increase with age. Postlarvae mortality at 4 h and 3.0 mg N L?1 TAN exposure was lower and less variable in ages greater than 19 days old.  相似文献   

6.
Newly hatched Jasus edwardsii phyllosoma were fed unenriched Artemia [endogenous ascorbic acid (AA) concentration of 166 μg g?1 dry weight (dw)], Artemia supplemented with algae (AA concentration 594 μg g?1 dw) or with ascorbyl‐2‐polyphosphate (A2P) (AA concentration 11 737 μg g?1 dw) to examine possible benefits of AA enhancement on culture. Plain or algal‐enriched Artemia were fed continuously for 28 days in two treatments during the study. Four other treatments received A2P‐enriched Artemia on a progressive basis starting from the commencement of the trial (D‐0), the third (D‐3), sixth (D‐6) or ninth day (D‐9) of Stage I (14 days) and similarly during Stage II (14 days). Prior to the commencement of A2P supplementation, plain Artemia were supplied to these animals. By Stage III (28 days feeding), algal, D‐0 and D‐3 phyllosoma had attained the largest size. The uptake and retention of AA by Stage III phyllosoma appeared to be dose‐dependent with the highest concentration of AA incorporation evident in D‐0 phyllosoma (1816 μg g?1 dw), while algal and plain phyllosoma contained the lowest concentrations (600 and 300 μg g?1 dw, respectively). Survival at Stage III was highest in D‐0 phyllosoma (89%) and lowest in plain phyllosoma (51%). There was a positive relationship between phyllosoma AA concentration and larval survival (R2 = 0.8328, P < 0.0001). D‐0 phyllosoma had the lowest stress index when subjected to an osmotic/temperature activity test, indicative of better survival in culture compared to plain, algal and D‐9 phyllosoma, which had consistently higher indices. A negative relationship existed between phyllosoma AA concentration and stress indices at Stage III (R2 = 0.9263, P < 0.0001), suggesting that AA from the Artemia diet conferred stress resistance.  相似文献   

7.
The aim of this study was to investigate changes in the ribonucleic acid (RNA)/deoxyribonucleic acid (DNA) ratio and the fatty acid composition of cultured Octopus vulgaris (50–750 g) in relation to recent (last 30 days) specific growth rate (SGR). Wild animals (80–500 g), collected in the field throughout the year (Aegean Sea, Mediterranean), were also examined for the aforementioned biochemical parameters. Octopuses were reared in a closed seawater system at three different temperatures (15, 20 and 25 °C). The octopuses were fed on squid (Loligo vulgaris). The cultured animals showed a high n‐3 (33–52.9%) and n‐6 (3.3–13.7%) polyunsaturated fatty acid content, but with a high variation for 22:6n‐3 [docosahexaenoic acid (DHA)], 20:5n‐3 [eicosapentaenoic acid (EPA)] and 20:4n‐6 [arachidonic acid (AA)]. The proportion of these fatty acids (% total fatty acids) and the RNA/DNA ratio were linearly (P<0.0001) related to SGR. Specifically, RNA/DNA (0.5–1.9) and AA (2.7–10.7%) increased, while EPA (10.4–19.7%) and DHA (20.8–31.9%) decreased, with increasing SGR (0.4–1.7% day−1). The highest levels of SGR, RNA/DNA and AA were detected in small (50–150 g) octopuses reared at 20 and 25 °C and in large (500–750 g) animals reared at 15 °C. Similar RNA/DNA levels and fatty acid percentages were found in wild octopuses. It is concluded that RNA/DNA, DHA, EPA and AA could be used as biochemical indices for predicting the growth rate of O. vulgaris.  相似文献   

8.
Knowledge on the biochemistry of proteins and amino acids (AA) of eggs and larvae of echinoids is scarce and the possibility to modify their profiles by diet manipulations is unknown. The protein content of eggs, prisms and pre‐plutei and the amino acid composition of eggs of Paracentrotus lividus from captive broodstock fed prepared diets were analysed and compared with the ones obtained from wild broodstock. Diets differed on protein source (fish or soy meals) and on protein content (10–40% dry weight – DW). Total and soluble protein content of both eggs and larvae was higher than 400 g kg?1 DW and 200 g kg?1 DW respectively. Glycine was the most abundant free AA. Very few differences were found among P. lividus eggs and larvae biochemical parameters, suggesting that their AA composition can hardly be changed by broodstock diet manipulations.  相似文献   

9.
This study describes the effects of feeding taurine‐supplemented Artemia on the growth, survival, whole body taurine content and jaw malformation rate of larval yellowtail kingfish Seriola lalandi. Larvae were fed rotifers containing no supplemental taurine from 3 to 15 day post hatch (dph) and Artemia co‐enriched with taurine from 12 to 22 dph. Artemia were supplemented at concentrations of either 0, 0.8, 1.6, 2.4, 3.2 or 4.0 g of taurine L?1 during the 18 h HUFA enrichment process. Taurine content in the Artemia increased from 0.76 ± 0.04% DW in those without supplementation to 3.95 ± 0.17% DW in those supplemented at 4.0 g L?1. Survival rates of larval yellowtail kingfish were significantly lower in all taurine‐supplemented treatments compared to the unsupplemented control. Growth was significantly improved in those larvae fed taurine‐supplemented Artemia; however, we cannot attribute this improvement solely to taurine, as improved growth may have been a function of the reduced survival, and therefore increased prey availability, in these treatments. The whole body taurine content of larvae fed unsupplemented Artemia was significantly lower (1.85 ± 0.03% DW) than those fed supplemented Artemia, which did not differ from each other (pooled average 2.48 ± 0.03% DW), suggesting either a functional excretion mechanism is in place or that this represents the saturation value for larvae of this age. Jaw malformation rates were not affected by Artemia taurine content. The results of this research suggest yellowtail kingfish larvae may have a lower requirement and/or a reduced tolerance to excess dietary taurine than juveniles.  相似文献   

10.
Transport of post‐larvae shrimp used in aquaculture is an important element of successful cultivation because of the potential for stress during stocking procedures. To find optimum transport conditions, several bioassays were performed in the laboratory to evaluate survival of whiteleg shrimp Litopenaeus vannamei 5–30‐day‐old postlarvae under conditions similar to those encountered during transport from the hatchery to nursery and shrimp ponds. Postlarvae were exposed for 4 h to different temperatures and pH levels ammonia concentrations. Survival was significantly reduced after a 4 h exposure to pH 9 and was inversely related to temperature with or without 7 mg L?1 of ammonia. The 15‐ and 20‐day‐old postlarvae had higher survival rates than other ages. The lowest survival occurred in alkali conditions (pH 9), with 7 mg L?1ammonia at 30 and 32°C. To assure optimal survival of postlarvae during transfer from the hatchery to the nursery and shrimp ponds, we recommend temperatures below 28°C, pH no higher than 8, no ammonia and post‐larval age at least 15 days.  相似文献   

11.
First‐feeding halibut larvae (245‐day degrees; 40 days post hatch), reared at 34 g L?1 salinity and 7°C, were subjected to handling and allowed to recover in a range of salinities (0–34 g L?1) and at 10°C. Survival of the unfed larvae was determined daily for 18 days. Mortality rates approached 0 after 4 days in all treatments and presumed starvation‐induced mortality started at about 11 days post handling. By 20 days post treatments, all larvae had died. Salinities in the range of 10–20 g L?1 produced significantly (anova , P<0.01) higher initial survival (71–95%) than salinities above 20 g L?1 (24–48%) or below 10 g L?1 (0–19%) and this survival pattern changed little in unfed larvae for the first 10 days following the stressor. For example, 24 hour post handling, survival of halibut was improved from 28.7±16.5% (mean±standard error, n=3) at 34.0 g L?1 to 95.2±4.8% at 13 g L?1. A second‐order polynomial regression of 4‐day post‐handling survival data (y=?0.002x 2+0.0603x+0.0699, r2=0.3936) predicted a maximum survival at 15.1 g L?1 salinity. These results have important implications for halibut aquaculture and research when handling of larvae is unavoidable. For practical applications, we recommend reducing salinity of receiving waters to 15–20 g L?1 with a slow (3–4 days) reacclimation to ambient conditions.  相似文献   

12.
Western rock lobster, Panulirus cygnus, phyllosoma were grown from hatching to stage IV. Larvae were fed with Artemia enriched with a (i) base enrichment (Base) containing 520 g kg?1 squid oil or tailor made enrichments in which oils high in polyunsaturated fatty acid (PUFA) have been added at the expense of squid oil. These treatments were (ii) base enrichment supplemented with docosahexaenoic acid (DHA) rich oil, (iii) base enrichment supplemented with arachidonic acid (AA) rich oil, or (iv) base enrichment supplemented with DHA and AA (D + A) rich oils. Total survival of phyllosoma to stage IV was high, with no significant difference between treatments (range 12.3–17.5%). By stage IV, the larvae fed the DHA or AA enriched Artemia were significantly larger (3.33 mm length) than larvae fed the Base or D + A enriched Artemia (3.18–3.24 mm length). Phyllosoma were sampled at stages II and III for biochemical analysis. The major lipid class (LC) in all phyllosoma was polar lipid (PL) (88.9–92.4%), followed by sterol (ST) (6.2–9.7%). Triacylglycerol (TAG), free fatty acid (FFA) and hydrocarbon/wax ester were minor components (≤1%) in all phyllosoma samples. In contrast, the major LC in all enrichments and enriched Artemia was TAG (76.3–85.1% and 53.4–60.2%, respectively), followed by PL (11.4–14.8% and 30.6–38.1% respectively). The main fatty acids (FA) in phyllosoma were 16:0, 18:1n‐9, 18:1n‐7, 18:0, AA, eicosapentaenoic acid (EPA) and DHA. Addition of AA, and to a lesser extent DHA, to enrichments resulted in increased levels of those FA in Artemia and phyllosoma compared with the Base enrichment. This was particularly evident for stage III larvae. Comparatively, elevated growth for phyllosoma to stage IV was achieved with DHA and AA enriched diets. Our findings highlight the importance of lipids and in particular essential long‐chain PUFA, as nutritional components for phyllosoma diets.  相似文献   

13.
Survival, growth (length and weight), development, proximate composition, and energy content of Artemia franciscana fed for 7 days with Isochrysis sp. (TISO) or with Chaetoceros muelleri (CHGRA) were compared to evaluate the food value of these microalgae. Mean daily survival was not significantly different, and ranged from 86% to 93%. Diet‐related differences in growth were noted from the third day, and mean final dry weights (DWs) were 171 and 327 μg ind?1 for Artemia fed TISO and CHGRA respectively. Rates of development were different between diets, with a higher developmental index for Artemia fed TISO before day 3, and a higher index for Artemia fed CHGRA for the rest of the experiment. Chemical analysis showed that carbohydrates decreased to approximately 35% of the initial value in Artemia during the first 24 h, after which they remained approximately stable and similar with both diets. In percentage of total DW, lipids and proteins remained close to their respective initial values, but A. franciscana fed TISO had a higher ash content. A major difference between the two microalgae was the higher protein content of TISO, but this did not result in better growth. Of the two, TISO was richer in docosahexaenoic acid, which might explain the initial faster development, but CHGRA was a better source of eicosapentaenoic acid, which is the most probable explanation of the higher food conversion index, specific growth rate, and energy gain of A. franciscana fed this algae.  相似文献   

14.
The effect of docosahexaenoic acid (DHA) on the growth performance, survival and swim bladder inflation of larval Seriola dumerili during the rotifer feeding period was investigated in two feeding experiments. Amberjack larvae at 3 day post hatching were fed rotifers enriched with (1) freshwater C hlorella (Chlo), (2) a mixture (2:1, v/v) of Chlo and DHA‐enriched C hlorella (DHA‐Chlo), (3) DHA‐Chlo and (4) DHA‐Chlo and commercial DHA emulsion, in triplicate for 7 days. The average DHA contents of the rotifers were 0.0, 0.4, 1.0 and 1.9 mg g?1 DM respectively. The survival rate was improved by the enrichment of rotifers with DHA‐Chlo alone, and DHA‐Chlo and emulsion. Growth and swim bladder inflation of fish fed rotifers enriched with DHA‐Chlo were significantly (< 0.05) improved, however, with increased levels of DHA further improvement was not found. DHA content in the larval whole body proportionally increased with the DHA level in the rotifers. These results suggest that DHA enrichment of rotifers is effective to improve the growth, survival rate and swim bladder inflation of amberjack larvae. The DHA requirement of amberjack larvae is estimated to be 1.5 mg g?1 on a dry matter basis of rotifers.  相似文献   

15.
Infestations of the protozoan parasite, Ichthyophthirius multifiliis, cause the serious disease ichthyophthiriosis in freshwater fish throughout the world. Formalin is a recommended treatment for ichthyophthiriosis in the Australian fish silver perch (Bidyanus bidyanus Mitchell), but the disease is difficult to control in ponds, particularly at low water temperatures. Experiments were carried out to develop an improved treatment regime for formalin and to evaluate copper as a therapeutant. Silver perch fingerlings infested with I. multifiliis were stocked into 55 L aquaria at temperatures of 14.8–17.6 °C and alkalinities of 70–110 mg L?1. Formalin (34–38% formaldehyde) or copper (24.5% copper sulphate) were added to the aquaria and then monitored and readjusted to nominal concentrations daily. A concentration of 30 mg L?1 formalin controlled ichthyophthiriosis, but fish treated with 20 mg L?1 remained infested with theronts and trophonts on day 17; survival at both concentrations was 100%. A concentration of 10 mg L?1 formalin did not control ichthyophthiriosis and all fish were dead from the infestation by day 17. Fish treated with 0.1 or 0.2 mg L?1 copper were free of theronts and trophonts by days 17 and 14, respectively, and survival was 100%. Survival at 0.05 mg L?1 copper was 100%, but fish remained infested. At 0.25 mg L?1 copper, survival was 82.5% and there were no theronts or trophonts on gill and skin tissues of fingerlings by day 14. There was total mortality of fish treated with 0.5 or 1.0 mg L?1 copper suggesting these concentrations are toxic to silver perch. All fish in infested‐control treatments died. In earthen ponds containing silver perch, 0.2 mg L?1 copper was depleted to below 0.1 mg L?1 within 24 h, and concentrations of 25–38 mg L?1 formalin were depleted to below 15 mg L?1 within 48 h. Treatment regimes involving daily applications of formalin or copper controlled ichthyophthiriosis in silver perch in earthen ponds at costs of $US466.37 and $US65.58 hectare?1 day?1 respectively. This study has developed a new formalin‐treatment regime for the control of ichthyophthiriosis, and demonstrated that copper sulphate is a potential therapeutant for this serious disease of silver perch.  相似文献   

16.
Pigfish (Orthopristis chrysoptera Linnaeus) are a commonly used baitfish in the southeastern United States. Aquaculture methods for broodfish spawning and juvenile grow‐out have been developed but there is still a paucity of information regarding larval culture methods. Five, short duration (10 days) experiments were conducted to determine effective strategies to yield high larval survival and growth during early development. Experiment one examined the rotifer enrichments Ori‐Green, DHA Protein Selco, and AlgaMac 3050 as well as a non‐enriched control along with corresponding fatty acid levels in the enriched rotifers and pigfish larvae. Experiment two evaluated three, once daily feeding frequencies of either 5, 10 or 20 rotifers mL?1. Experiment three compared feeding 20 rotifers mL?1 once daily to feeding 5 rotifers mL?1 twice daily. Experiment four examined four different larval stocking densities: 50, 75, 100, or 125 larvae L?1. Experiment five examined green water strategies using either live Tahitian strain Isochrysis galbana (Parke) or Nannochloropsis oculata (Hibberd) paste at either 250 000 or 500 000 cells mL?1 as well as a clear water control. Results indicated rotifer enrichment with DHA Protein Selco and green water application using live T‐ISO at 500 000 cells mL?1 had the highest survival of pigfish during early stages of larval culture. A once daily rotifer feeding regime of 20 rotifers mL?1 and stocking density of 50 larvae L?1 also improved survival. These results provide producers with methods to improve efficiency for pigfish larval culture and provide researchers with new foundational data, such as potential fatty acid requirements.  相似文献   

17.
This experiment was designed to investigate the effect of dietary supplemental ascorbic acid (AA) on the feed intake, growth, serum lysozyme, hepatic superoxide dismutase (SOD) and handling stress response in Chinese longsnout catfish (Leiocassis longirostris Günther) exposed to three levels of unionized ammonia nitrogen (UIA‐N). Juvenile Chinese longsnout catfish were reared in 54 fibreglass tanks with a 3 × 3 factorial design treatment consisting of three supplemental AA levels in ascorbyl 2‐monophosphate (38, 364 and 630 mg AA equivalent kg?1 diet) and three UIA‐N concentrations [0.004 (the control), 0.037 and 0.292 mg L?1]. The fish were sampled on the 11th, 32nd and 60th day. On the 62nd day, the remaining fish were subjected to an acute stress by being held in a dipnet out of water for 60 s, and sampled at 30 min post handling. The results showed that the specific growth rate (SGR) in 32 days significantly decreased with increased water UIA‐N (P=0.0476) but was not affected by dietary supplemental AA (P>0.05). After 60 days, SGR, feeding rate (FR) and feed conversion efficiency (FCE) significantly increased with increased dietary supplemental AA (P<0.001) while remaining unaffected by water UIA‐N (P>0.05). There was no significant interaction between dietary AA and UIA‐N for growth responses (P>0.05). The serum lysozyme activity on the 11th day and the hepatic SOD activity on the 32nd day were significantly affected at high (0.292 mg L?1) water UIA‐N. On the 62nd day, the increase in cortisol resulting from acute stress significantly decreased by higher UIA‐N (P=0.038). It is suggested that Chinese longsnout catfish displayed an adaptive response after long‐term UIA‐N exposure, and AA had beneficial effects on the growth and feed intake of catfish and alleviated the negative effects of chronic ammonia stress. A chronically higher ammonia level shows a tendency to inhibit the cortisol response to another acute stressor.  相似文献   

18.
A 15‐day lab‐scale experiment was performed to determine the possible use of bioflocs as a feed for Macrobrachium rosenbergii postlarvae. The bioflocs were grown on acetate, glycerol and glucose. A glycerol‐fed reactor was initially inoculated with a Bacillus spores mixture. The highest protein content was obtained in the (glycerol+Bacillus) bioflocs, i.e. 58±9% dry weight (DW). The glycerol and acetate bioflocs showed a lower, but similar content (42–43% DW) and glucose bioflocs contained 28±3% DW. Higher total n‐6 fatty acid contents were observed in the glycerol and (glycerol+Bacillus) bioflocs. The vitamin C content was variable, up to 54 μg ascorbic acid g?1 DW in the glycerol bioflocs. Bioflocs were fed to M. rosenbergii postlarvae as the sole feed. High survival levels were obtained in the (glycerol+Bacillus) and glucose groups, i.e. 75±7% and 70±0% respectively. This was significantly higher than the starvation control (0% survival after 15 days). This indicated that the prawns were able to feed on the bioflocs. These results are in accordance with the biofloc's nutritional parameters and suggest that the choice of the carbon source used for growing bioflocs is of prime importance.  相似文献   

19.
Infestations of parasitic monogenean trematodes (Lepidotrema bidyana and Gyrodactylus sp.) on freshwater silver perch (Bidyanus bidyanus Mitchell) in earthen ponds were treated with formalin (37% formaldehyde). Concentrations of 30 and 40 mg L?1 formalin were effective, but fish in ponds treated with 20 or 25 mg L?1 remained infested. At temperatures of 24.1–26.9°C, concentrations of 30 or 40 mg L?1 formalin caused dissolved oxygen (DO) to decline from 10.1–11.9 to 3.0–3.3 and 1.2–1.7 mg L?1, respectively, within 36–42 h of treatment. In addition, pH declined from 7.2–8.4 to 6.3–6.7, within 36 h and turbidity decreased over 48 h. In the ponds where DO was 1.2–1.7 mg L?1, silver perch showed signs of severe stress, but continuous aeration (10 hp ha?1) for 3 days and inflow of well‐oxygenated water for 6–8 h prevented mortalities. At temperatures of 13.2–15.7°C, concentrations of 30 or 40 mg L?1 formalin caused DO to decline from 9.0–10.0 to 6.0–8.1 mg L?1 and pH from 7.0–7.3 to 5.9–6.6 within 72 h. Total ammonia‐nitrogen increased over 72 h in ponds treated with 30 or 40 mg L?1 formalin. Fish became re‐infested with L. bidyana in all ponds within 30 days of treatment. A concentration of 30 mg L?1 formalin is recommended as a treatment for monogeneans on silver perch in ponds, but aeration is necessary to maintain adequate water quality at higher temperatures.  相似文献   

20.
A high rate algal pond (HRAP) system was used to treat effluent from a recirculating sea water aquaculture system in southern France. Dicentrarchus labrax L. were farmed at a high density, with effluents containing an average of 10 mg L?1 dissolved inorganic nitrogen (DIN) and 1.3 mg L?1 reactive phosphorus (RP). On a yearly basis, the algal pond removed 59% of the dissolved nitrogen and 56% of the phosphorus input, which was converted into 3.3 kg DW m?2 algae. Green macroalgae were dominant throughout the year and the algal biomass mirrored the seasonal changes in daily irradiance and temperature. This first year study supports the possibility of treating marine aquaculture wastes using HPAPs, although conditions will have to be found to mitigate the strong influence of climate on the algal community during winter. During the more temperate season, only 150 m2 of treatment ponds would be necessary to remove the nutrients produced by 1 ton of fish. Treated water was characterized by a high pH, elevated levels of dissolved oxygen (midday value) and low concentrations of nutrients and suspended solids. The absence of toxic phytoplankton meant that the water could be recycled through the farm tanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号