首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Influence of Soil Moisture on Growth, Water Use and Yield of Mustard   总被引:1,自引:0,他引:1  
A field experiment was conducted to study the influence of soil moisture on growth, water use and yield of mustard ( Brassica juncea L. cv. Rai 5 ). Two soil moisture regimes were rainfed and irrigated at 10 days interval throughout the growing season. The total amount of water received as irrigation was 110 mm and as rainfall was 15 mm. Total dry matter per unit ground area, leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR) were increased and leaf area ratio (LAR) and specific leaf area (SLA) were decreased by irrigation. Chlorophyll content and relative leaf water content (RLWC) were increased by irrigation, but proline content was greater in the rainfed crop at both the flowering and pod-filling stages. Time taken to first flowering, duration of flowering, number of seeds/pod and harvest index were unaffected by irrigation. Plant height at harvest, number of pods/plant, seed yield and oil content of seeds were increased and 1000-seed weight was decreased by irrigation. The consumptive use of water increased with an increase in water supply, but the water use efficiency (WUE) was decreased.  相似文献   

2.
Studies were carried out at the Indian Institute of Horticultural Research, Bangalore during winter seasons of 1982—83 and 1983—84 to analyse the growth rhythm of onion in relation to irrigation and N fertilization. It was observed that irrigation at 0.45 to 0.65 bar soil water potential recorded higher dry matter accumulation and distribution, leaf area index (LAI), leaf area duration (LAD), leaf area ratio (LAR) and crop growth rate (CGR) during most of the stages, while net assimilation rate (NAR) and relative growth rate (RGR) were not markedly affected. Highest harvest index was noticed with irrigation at 0.65 bar.
Nitrogen fertilization significantly increased dry matter accumulation and distribution into different parts, LAI, LAD, LAR, CGR and harvest index. Although NAR and RGR showed an increasing trend with N fertilization, the effect was not significant during most of the stages. There was no significant interaction between soil water potential and N fertilization on any of the growth parameters.  相似文献   

3.
Analysis of growth and yield of watermelon in relation to irrigation and N fertilization carried out at the Indian Institute of Horticultural Research, Bangalore, during 1983–84 and 1984–85 indicated that frequent irrigations when the soil matric potential at 15 cm depth reached -25 kPa resulted in maximum dry matter accumulation and distribution, leaf area index (LAI), leaf area duration (LAD), net assimilation rate (NAR) and crop growth rate (CGR) leading to higher fruit yield as compared to irrigations at -50 and -75 kPa. Imposing a stress of -75 kPa either during pre-flowering or flowering or fruit development phase adversely affected various growth parameters resulting in reduced yield as compared to that irrigated uniformly at -25 kPa. Increasing levels of N fertilization increased the dry matter accumulation and distribution through higher LAI, LAD and CGR and contributed larger proportion of the dry matter to fruits resulting in higher fruit yield.  相似文献   

4.
Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants. An irrigation experiment was carried out in 2009 and 2010 in the Volturno river plain. Three treatments irrigated with fresh water (Q100, Q50 and Q25) and three irrigated with saline water (Q100S, Q50S and Q25S) were tested. For saline irrigation, water with an electrical conductivity of 22 dS m?1 was used. Actual evapotranspiration (ETa), water productivity (WP), biomass allocation, relative growth rate (RGR), net assimilation rate (NAR), specific leaf area, leaf area ratio and ions accumulation of quinoa plants were evaluated. WP and plant growth were not influenced by saline irrigation, as quinoa plants incorporated salt ions in the tissues (stems, roots, leaves) preserving seed quality. Treatment with a reduction in the irrigation water to 25 % of full irrigated treatment (Q25) caused an increase in WP and a reduced dry matter accumulation in the leaves. Quinoa plants (Q25) were initially negatively affected by severe drought with RGR and NAR reduction, and then, they adapted to it. Quinoa could be considered a drought tolerant crop that adapt photosynthetic rate to compensate for a reduced growth.  相似文献   

5.
A Reid experiment was conducted to study the effect of soil moisture on growth of two mustard cultivars using classical and functional techniques of growth analysis. Two soil moisture levels were irrigated at 10-day intervals and a rainfed control was included. Total dry matter (TDM), leaf area index (LAI) and leaf area duration (LAD) were significantly increased by irrigation at most of stages of growth. Starting from a lower value, LAI and LAD reached a peak and then gradually declined. Among the growth attributes, crop growth rate (CGR), leaf area ratio (LAR) and leaf weight ratio (LWR) increased significantly under irrigation. Net assimilation rate (NAR) decreased more in the irrigated plants than the rainfed plants at the later stages of growth. LAR and LWR declined throughout with increasing time and plant weight. Seed yield of the irrigated plants was positively correlated with the pre-flowering LAI and the post-flowering CGR and NAR. In the rainfed plants, seed yield was positively correlated with LAI and CGR at the post-flowering stage and negatively with the post-flowering NAR and pre-flowering LAR.  相似文献   

6.
为了探讨水稻在覆膜直播和常规手栽2种不同种植方式下干物质以及光合生产特征,以早熟型杂交籼稻安优136、香早优2017,迟熟型杂交籼稻金优785、Ⅱ优838这2种类型4个水稻品种为试验材料,对覆膜直播湿润栽培和常规手栽水作栽培2种种植模式下水稻的干物质积累、转运、分配及叶面积、群体生长率、光合势、净同化率等方面进行了比较试验。结果显示:在2种不同种植方式下主要生育期(孕穗期、抽穗期、蜡熟期、成熟期)单株茎干物质量、群体干物质量,以及各主要生育阶段群体干物质积累量,单株叶、茎、鞘干物质的表观输出量、输出率、转化率均表现为覆膜直播高于常规手栽。迟熟型品种的干物质量和群体干物质积累量占成熟期总干物质积累量的比例都略高于早熟型品种。叶、鞘干物质比例在孕穗期达到最大值,成熟期降为最低;茎干物质比例在抽穗期达到最高,蜡熟期降为最低,之后又会出现一个短暂的回升,所以茎干物质表观输出量、输出率以及转化率都表现为负值。2种不同种植方式下,在光合生产上,叶面积指数、光合势、净同化率都表现为覆膜直播比常规手栽高,由于覆膜直播后期灌浆速度较快,造成衰减率也同样表现为覆膜直播略高于常规手栽。说明不同种植方式下水稻干物质和光合生产均有各自的特征。  相似文献   

7.
A field experiment was conducted during khariff 1984 in sandy clay loam soil under irrigated condition at the Tamil Nadu Agricultural University, Coimbatore, with a view (i) to find out the possibility of introducing short duration dwarf variety of sorghum CO 22 as an intercrop with pigeonpea genotypes, (ii) to study the effect of different plant population levels and intercropping of sorghum CO 22 on pigeonpea genotypes, and (iii) to find out compatible pigeonpea genotypes and plant population level for pigeonpea based intercropping system with sorghum CO 22.
It was observed that increased plant density significantly increased the dry matter production, leaf area index (LAI) and crop growth rate (CGR) during early stages and reduced the net assimilation rate (NAR), relative growth rate (RGR) and CCR during later part of the growth. Intercropping of sorghum CO 22 significantly reduced the dry matter production LAI, CGR, NAR and RGR. Plants in the intercropped stands recorded higher CGR, NAR and RGR during later part of the growth. Among pigeonpea genotypes CO 5 was much affected due to intercropping with sorghum CO 22.  相似文献   

8.
Experiment conducted with six pigeonpea cultivars over three seasons revealed that the critical leaf area index was 5.3 which coincided with the maximum crop growth rate and optimum net assimilation rate. It was also evident that the crop growth rate was influenced more by NAR rather than LAI. This study also suggests that by maintaining higher photosynthesis upto harvest, there is ample possibility to increase the crop growth rate till harvest.  相似文献   

9.
Physiological analysis of yielding ability in moth bean varieties under rainfed condition revealed that in spite of sufficient amount of dry matter production, the crop is a poor seed yielder. Late varieties produced higher amounts of dry matter and seed. The low yield in this crop is owing to low net assimilation rate (NAR) during the reproductive phase and poor migration coefficient of assimilates towards seeds. Leaf area expansion was maximum during reproductive phase. Stomatal components were not evident to limit the NAR under rainfed condition. Varietal differences were observed with respect to transpiration. Temporal variations in leaf water potential, osmotic potential and pressure potential were recorded. It is concluded that in moth bean the improvement in seed yield is possible by increasing current photosynthetic rate during the reproductive phase and can be achieved by changing the crop canopy structure for better utilization of light. Effort should also be made to improve harvest index in this crop.  相似文献   

10.
An irrigated field study was conducted to determine the relative importance and inter‐relationships of growth parameters of three dormant alfalfa (Medicago sativa L.) cultivars grown in the highlands of Eastern Anatolia, Turkey, in 2000–2003. The fast‐growing cultivar Savas had the greatest dry matter (DM) yield at the final sampling date with the greatest mean crop growth rate. In addition to a greater relative growth rate (RGR), this cultivar had more stem branching and greater leaf area in the canopy, which resulted in greater leaf area index (LAI) and greater leaf area duration. Despite the considerable increase in leaf area ratio (LAR: leaf area per unit shoot DM), the reduction in RGR of all cultivars over time was the result of a large decline in net assimilation rate (NAR) due to increasing specific leaf area (SLA). Intracultivar variation in the RGR of alfalfa is mainly determined by NAR and SLA, and both were significantly higher for Savas than the other two cultivars. The relative importance of NAR and SLA to RGR changed due to increasing self‐shading as the LAI of the canopy increased, creating a trade‐off between NAR and SLA.  相似文献   

11.
The objective was to study the behaviour of 20 dwarf wheats in a field trial under irrigated situation and also to suggest parameters or group of parameters conducive to high yield. Considerable variability existed in respect of tillering and earing, LAI, net photosynthetic rate, total dry matter production rate (TDMPR), harvest index, number of grains per main and subsidiary ears and grain size (1000 grain weight). Number of grains per main and subsidiary ears, total grains per plant, rate of net photosynthesis, leaf area and harvest index as well as total dry matter production rates were found to be positively correlated with grain yield and as such contributed maximum towards grain yield.
Thus, in general, it may be concluded that there should be minimum reduction in grain numbers between the main ear and the subsidiary ears, for this seems to be the one of causes of reduction in grain yield. Besides, there ought to be high ratio between net photosynthetic rate and dark respiration because large amount of dry matter is otherwise lost through respiration and many not be available for grains. High harvest index and high biological yield are also desirable characters which may be combined to obtain higher yields in wheats.  相似文献   

12.
双季晚稻不同类型品种产量及其群体动态特征差异研究   总被引:2,自引:0,他引:2  
在长江中游双季稻地区(江西上高),以籼粳杂交稻、杂交粳稻、常规粳稻和杂交籼稻4种类型20个具有代表性的品种为材料,采用湿润育秧大苗移栽种植方式,设置各类型品种最适的高产栽培处理,系统比较分析了不同类型水稻品种产量及其构成、茎蘖动态、叶面积动态与组成、光合势、干物质积累、群体生长率和净同化率等方面的差异,以期为双季稻区适宜品种的选用以及高产栽培提供理论依据与技术支撑。结果表明,双季晚稻不同类型品种产量表现为籼粳杂交稻杂交粳稻常规粳稻杂交籼稻,差异极显著。籼粳杂交稻群体产量最高的原因是在保持一定穗数的基础上,极显著增加每穗粒数,进而提高群体颖花量,同时保持稳定的结实率和千粒重。与杂交粳稻、常规粳稻和杂交籼稻群体相比,籼粳杂交稻群体茎蘖数于生育前期稳步增长,在有效分蘖临界叶龄期及时够苗,够苗后增长平缓,高峰苗数量较少、下降平缓,成穗率中等(73.19%左右);群体叶面积指数前期增长较缓,最大值出现在孕穗期,为7.93左右,此后平稳减少,抽穗期叶面积指数、有效叶面积率、高效叶面积率及粒叶比均极显著增高,成熟期仍保持3.85以上;群体干物质积累量有效分蘖临界叶龄期和拔节期少,拔节后干物质积累速度较快,孕穗期、抽穗期、乳熟期和成熟期显著或极显著增高,且生育中后期干物质积累比例高;群体光合势、群体生长率和净同化率表现为"前小,中高,后强"。  相似文献   

13.
干旱条件下氮营养对小麦不同抗旱品种生长的影响   总被引:19,自引:0,他引:19  
陈建军  陈培元 《作物学报》1996,22(4):483-489
在土壤干旱条件下,3米小麦品种叶片水势、饱和渗透势、相对含水量、净光合速率、叶片导度、干物质积累量和籽粒产量均明显降低,且施氮小麦的下降幅度大于不施氮小麦,干旱削弱了氮素营养对小麦生长和产量的促进作用。土壤愈旱,渗透调节作用愈强,适当的氮素营养可增强渗透调节强度,水地型品种对水分和氮素营养均最敏感,其水分状况、游离脯氮酸含量,光合物质生产的产量的变化均较旱地型品种大;旱地型品种受旱时水分状况较稳定  相似文献   

14.
ORYZA1 is an explanatory model to simulate rice growth, development and leaf area index (LAI) under potential production. The present study aims at testing the performance of ORYZA1 for Mediterranean conditions (farming practices, cultivars, weather) for fully irrigated direct-seeded rice. ORYZA1 was calibrated and validated with field data of two cultivars, a short-grain (Tebre) and a long-grain cultivar ( -202), grown in various years in the Ebro Delta of Spain. Phenological development of the rice crop, daily dry matter production and leaf area development were calibrated. Tebre and L-202 had no significant differences in the total length of the development period. The pre-heading period, however, was longer and the post-heading period shorter in L-202 than in Tebre. This induced differences in translocation characteristics, spikelet number per unit area, weight of the grains and harvest index. The following crop characteristics were similar between cultivars: extinction coefficient (increased with development stage), dynamics of nitrogen distribution, partitioning of assimilates, relative death rate of leaves, relative growth rate of leaf area during exponential growth, specific leaf area and a strongly decreasing specific stem green area. The simulated curve fitted much better the observations, which was clear from a strongly reduced value of RMSE, when considering that LAI comprises the leaf blade area only, without a photosynthetic contribution by stem green area. The model simulated rice growth very accurately until flowering. After flowering, however, divergences appeared and increased especially at the yellow ripe stage. From then on the crop did not grow much more, whereas it continued in the simulation. This reduction of growth rate was usually accompanied by an increase in the relative death rate of leaves and the drying of the grains. The main source of error may be a limited understanding of the ripening and sink limitation processes. A considerable yield gap between potential and observed yield remained. A climatic variability assessment over 10 years, from 1987 to 1996, showed a small but correlated variation (r=0.7) in both simulated and measured rice yields.  相似文献   

15.
为研究土壤湿度变化对冬小麦光合参数和产量变化的影响机制,在防雨棚人工控制灌水,设置土壤高湿、中度干旱、重旱、对照4个处理的田间冬小麦试验,研究土壤水分变化对灌浆期冬小麦光合参数及产量的影响。结果表明:冬小麦灌浆期叶片净光合速率、蒸腾速率、气孔导度随土壤水分降低而降低。重旱处理冬小麦叶片胞间CO2浓度与对照相近,引起光合作用下降的主要原因是非气孔因素限制。土壤高湿冬小麦叶片有效利用光强区间拉大,而土壤干旱胁迫叶片有效利用光强的区间缩小,土壤高湿和干旱胁迫叶片夜间呼吸作用都提高,干旱逆境胁迫白天光合作用受限减弱,夜间呼吸作用增强,消耗营养增多,“一减一增”是其籽粒瘪秕,产量低的生理原因。土壤高湿和干旱影响冬小麦灌浆期籽粒干物质输送、积累的源库匹配。高湿处理叶片的绿色器官光合产物输送籽粒占主导,开花前营养器官干物质转运、贡献率变小;干旱逆境胁迫下,叶片等绿色器官光合产物少,输送籽粒干物质减少,但花前营养器官干物质转运、贡献率相对增大;收获指数土壤高湿和对照基本相近,干旱处理较对照明显偏小。  相似文献   

16.
Mid‐season drought is a factor frequently limiting crop production in the moist to dry savannah zones of the tropical and subtropical regions of the world. Ten cowpea genotypes were subjected to a cycle of drought at flowering followed by re‐watering to study variation in drought performance and recovery. Drought caused a reduction in leaf assimilation rate, transpiration rate and stomatal conductance with genotypic variances of 75.4, 57.9, and 83.3 %, respectively. Only genotypic variance in stomatal conductance increased appreciably under drought. Reductions in leaf water potential as a consequence of drought positively correlated with a decline in assimilation rate, which was associated with stomatal closure. One week after re‐watering, the three gas exchange parameters of stressed plants recovered fully and attained values 10–30 % higher than the well‐watered plants with increased genotypic variability. Reductions in the total dry matter during the drought interval varied from 11 to 50 % among genotypes, but were of minor importance for the total dry matter at maturity. After stress, the gain in dry matter varied considerably among the stressed genotypes, with stressed plants showing higher gain than the unstressed plants during this interval. This was associated with increased availability of assimilates due to enhanced green leaf area duration after stress release. Variability in drought recovery among genotypes was found, and appears to be more important for final yield than responses during drought.  相似文献   

17.
Field experiments were conducted at Coimbatore, India to study the effect of three levels of drought (severe, moderate and no drought) during the formative phase (60–150 days after planting; DAP) of sugarcane on the tillering, the conversion of shoots to millable canes, cane attributes and the quality of different classes of shoots in four sugarcane cultivars (Co 8021, Co 419, Co 8208 and Co 6304)_the different classes of shoots studied were: mother shoots (which emerged 0–30 DAP), early tillers (30–60 DAP), mid‐season tillers (60–150 DAP) and late tillers (150 DAP). The results indicated that drought during the formative phase reduced the total number of shoots and their conversion to millable canes at harvest. Drought also reduced the cane length, number of inter‐nodes and single cane weight of different classes of shootsand the subsequent total cane yield. Irrespective of drought treatments, Co 8021, a high‐tillering, thick‐stalked cultivar, gave the highest cane yield despiteits higher shoot mortality, while Co 8208, a low‐tillering, thin‐stalked cultivar, gave the lowest cane yield despite its lower shoot mortality. Thus a moderate level of shoot mortality is clearly necessary to obtain higher millable canes and subsequently higher cane yield. Mother shoots and early tillers together contributed most of the total number of millable canes (84.5 %) and of the total cane yield at harvest (86.2 %). The contribution of late tillers to the number of millable canes and cane yield was, however, negligible, especially in cultivars Co 6304 and Co 8208. There was a gradual reduction in stalk attributes such as cane length, number of internodes, single cane weight and commercial cane sugar percentage as the physiological age of shoots decreased. This study emphasizes the need for a cultivar with the optimal characteristics of early tillering (like Co 8021 and Co 6304) and maximum conversion to millable canes (like Co 8208) and provides information relevant to breeders making decisions on crossing programmes to produce improved cultivars for drought conditions.  相似文献   

18.
籼、粳超级稻光合物质生产与转运特征的差异研究   总被引:2,自引:0,他引:2  
为阐明籼、粳超级稻干物质积累及光合生产特征的差异,以江苏地区大面积推广种植的5个超级杂交籼稻组合和5个常规粳型超级稻品种为试验材料,对稻麦两熟制条件下籼、粳超级稻干物质积累、分配、运转及叶面积、光合势、群体生长率、净同化率、秧苗素质、叶型等方面进行了系统的比较研究。结果表明,粳稻生育前期(移栽至拔节期)干物质积累量、光合势、群体生长率、净同化率及上三叶叶长、叶基角、叶开角、披垂度和叶面积衰减率、收获指数均小于籼稻,而生育中后期(拔节至成熟期)干物质积累量、光合势、群体生长率、净同化率及有效叶面积率、高效叶面积率、粒叶比(颖花/叶、实粒/叶、粒重/叶)、最大叶面积指数、总充实量、实收产量、生物产量、茎鞘最大输出量和表观输出量及比率均大于籼稻,差异显著或极显著。虽然粳稻主要生育期单茎干物重均不及籼稻,但群体数量优势保证粳稻具有较高的群体干物质积累量和叶面积,且随着生长发育的持续,群体光合物质生产优势不断加大,群体干物质积累量于抽穗后25 d前后超过籼稻。粳稻灌浆后期(乳熟至成熟期)仍保持强劲生长优势,而灌浆初期(抽穗至乳熟期)茎鞘贮存物质合理输出,有效保障了高效光合层的安全支撑及高积累产量库的流畅充实。高生物学产量的稳定形成和叶面积“稳升缓降”态势以及拔节至成熟期较强的高效光合物质生产,是粳稻光合系统高效持续产出、灌浆充实多及高产形成的重要特征和原因。  相似文献   

19.
Cassava is predominantly an upland crop that is also cultivated in inland valley swamps (IVS). Identifying physiological traits that can withstand excess moisture stress can aid in the selection and use of stable cassava cultivars in IVS. Three cassava cultivars were evaluated for growth and yield in the upland and IVS ecologies in the 1993–94 crop seasons using a randomized complete block design. In the upland, 80/40 outyielded 87/29 and 'coco', while in the IVS, 87/29 had the highest yield. Highest yielding cultivars in each ecology also had the highest tuberous root bulking rate (TBR), dry matter (DM) production, crop growth rate (CGR), relative growth rate, net assimilation rate (NAR), leaf area index, leaf production rate and leaf life. Positive correlations between these parameters and tuberous root yield were noted. High yield of 87/29 in IVS was partly due to its low tuberous root rotting. High root rotting in 80/40 was partly as a result of the greater depth of tuberous roots in the soil (0.3–0.6 m) as compared to the other cultivars (0.15–0.3 m) where roots were in contact with stressful water levels earlier than others. The yield and yield components, growth and leaf characters were all drastically reduced when the cultivars were grown in IVS as compared to upland. For example, root yields of 'coco', 87/29 and 80/40 were reduced by 53 %, 60 % and 92 %, respectively, in IVS. Selection of cassava cultivars with longer leaf life and leaf area maintenance leading to high CGR, TBR, NAR and harvest index (in IVS and upland), coupled with a shallow tuberous root formation zone (in IVS) can give higher root and leaf yields in the two ecologies.  相似文献   

20.
南方粳型超级稻物质生产积累及超高产特征的研究   总被引:17,自引:1,他引:16  
以超级粳稻品种武粳15、淮稻9号、徐稻3号和常优1号为材料,对高产(8.25~9.75 t hm-2)、更高产(9.75~11.25 t hm-2)和超高产(>11.25 t hm-2) 3个产量等级群体的物质生产与产量的关系、干物质积累、输出与转运等方面进行了系统的比较研究。结果表明,4个超级稻品种成熟期、抽穗至成熟期的干物质重与产量呈极显著正相关,抽穗期干物质重均与产量呈抛物线关系,拔节至抽穗期的干物质重与产量呈极显著正相关(高产—更高产、更高产—超高产以及将3个产量等级综合起来);从高产到更高产再到超高产,4个超级稻品种的生物学产量不断提高(差异显著),而超高产群体的经济系数则与更高产水平相当(0.5000以上),显著高于高产水平;较之更高产、高产群体,超高产群体在生育中期(拔节至抽穗期)干物质积累量大,抽穗期叶面积指数高、株型挺拔、群体质量优[有效叶面积率、高效叶面积率、总颖花量与颖花/叶(cm2)、基部节间粗、单茎茎鞘重均高],在生育后期(抽穗至成熟期),光合能力强(叶面积衰减率小,光合势、群体生长率、净同化率高)、干物质积累量高(占生物学产量的40.0%以上)、茎鞘物质的输出与转运协调[实粒/叶(cm2)、粒重(mg)/叶(cm2)均高]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号