首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Context

In the Andalusia region (Spain), olive grove agro-systems cover a wide area, forming social-ecological landscapes. Recent socioeconomic changes have increased the vulnerability of these landscapes, resulting in the abandonment and intensification of farms. The provision of the main ecosystem services of these landscapes have thus been degraded.

Objectives

To analyse the sustainability of an olive grove social-ecological landscape in Andalusia. Specifically, to develop a quantitative model proposing land planning and management scenarios, considering abandonment, production and economic benefits of olive crops in different conditions of erosion and management.

Methods

We applied a dynamic model using agronomic and economic data, to evaluate different types of olive management. We considered different levels of erosion, the loss of production related to this erosion, and useful life spans for each type of management. We simulated scenarios for the long-term assessment of dynamics of crops, abandonment rate, production and benefits.

Results

(a) There was a loss of productive lands and benefits in the medium term in the more intensive crops. (b) Scenarios that partially incorporated ecological management proved to be more sustainable without economic subsidies. (c) The spatial combination of integrated, intensive and ecological plots was sustainable, and was well balanced from an economic, productive and ecological point of view.

Conclusions

Scenarios that partially incorporate ecological management allowed the best economic and environmental balance. However, to ensure the sustainability of olive landscapes, farmers should be financially rewarded for their role in the conservation of ecosystem services through landscape stewardship and direct environmental payments.

  相似文献   

2.

Context

Ecological research, from organismal to global scales and spanning terrestrial, hydrologic, and atmospheric domains, can contribute more to reducing health vulnerabilities. At the same, ecological research directed to health vulnerabilities provides a problem-based unifying framework for urban ecologists.

Objective

Provide a framework for expanding ecological research to address human health vulnerabilities in cities.

Methods

I pose an urban ecology of human health framework that considers how the ecological contributions to health risks and benefits are driven by interacting influences of the environment, active management, and historical legacies in the context of ecological self-organization. The ecology of health framework is explored for contrasting examples including heat, vector borne diseases, pollution, and accessible greenspace both individually and in a multifunctional landscape perspective.

Results

Urban ecological processes affect human health vulnerability through contributions to multiple hazard and well-being pathways. The resulting multifunctional landscape of health vulnerability features prominent hotspots and regional injustices. A path forward to increase knowledge of the ecological contributions to health vulnerabilities includes increased participation in in interdisciplinary teams and applications of high resolution environmental sensing and modeling.

Conclusions

Research and management from a systems and landscape perspective of ecological processes is poised to help reduce urban health vulnerability and provide a better understanding of ecological dynamics in the Anthropocene.
  相似文献   

3.
While the ecological mechanisms involved in biodiversity loss within urban environments are widely studied, the literature often overlooks its social-ecological drivers. One of these drivers is the relationship between perceptions and representations of ecosystems and species within specific residential contexts. This study therefore aims to address the following questions: how do residents perceive biodiversity in relation to their social representation of nature within specific residential environments? Are there differences in the social representation and perception of greenspace types and species based on residents' demographic attributes (gender and age) and characteristics of their place of residence (district and housing types)? Through a quantitative survey and the analysis of 148 responses from Lausanne residents using textometry, cartography, and inferential statistics, this research demonstrates two main findings. Firstly, it confirms that the perception of species remains limited, which aligns with previous scholarly work. Secondly, it reveals that the social representations of nature and biodiversity can either correlate with or be disconnected from the perceptual process at the ecosystem level, depending on the residents' living environments. The impact of residential environments on biodiversity perception and representations is discussed, along with the implications of iconic biodiversity traps for raising public awareness about biodiversity preservation in cities.  相似文献   

4.
Context

Humans continually transform landscapes, affecting the ecosystem services (ES) they provide. Thus, the spatial relationships among services vary across landscapes. Managers and decision makers have access to a variety of tools for mapping landscapes and analyzing their capacity to provide multiple ES.

Objectives

This paper characterizes and maps ES bundles across transformed landscapes in southeast Spain incorporating both the ecological and social perspectives. Our specific goals were to: (1) quantify ES biophysical supply, (2) identify public awareness, (3) map ES bundles, and (4) characterize types of ES bundles based on their social-ecological dimensions.

Methods

Biophysical models and face-to-face social surveys were used to quantify and map ES bundles and explore the public awareness in a highly transformed Mediterranean region. Then, we classified ES bundles into four types using a matrix crossing the degree of biophysical ES supply and the degree of social awareness.

Results

Results mapped seven ES bundles types representing diverse social-ecological dynamics. ES bundles mapped at the municipality level showed mismatches between their biophysical provision and the public awareness, which has important implications for operationalizing the bundles concept for landscape planning and management. ES bundles characterization identified four types of bundles scenarios.

Conclusions

We propose an ES bundles classification that incorporates both their social and ecological dimensions. Our findings can be used by land managers to identify areas in which ES are declining as well as priority areas for maximizing ES provision and can help to identify conflicts associated with new management and planning practices.

  相似文献   

5.
The concept of urban wilderness feels like a paradox since natural and urban environments have long been viewed as antithetical. Today, however, wilderness is high on the urban agenda as a response to different challenges: biodiversity and human experiences of nature are being lost in increasingly dense cities, while at the same time a plethora of wild areas are developing in cities that are undergoing post-industrial transformation. Yet there is confusion around the definitions and the anticipated functions of urban wilderness and how humans can be incorporated therein. A unifying framework is proposed here that envisions urban wilderness as a social-ecological system; three major components are identified and linked: (i) the supply of wilderness areas along gradients of naturalness and ecological novelty, leading to a differentiation of ancient vs. novel wilderness, and the identification of wilderness components within cultural ecosystems; (ii) the demand for wilderness in urban societies, which differs among sociocultural groups as a function of underlying values and experiences; (iii) the access to urban wilderness, which can be improved both in terms of providing opportunities for encountering urban wilderness (e.g., by conserving, rewilding wilderness areas) and enhancing the orientation of urban people towards wilderness (e.g., through information, environmental education, citizen science). Evidence from urban wilderness projects in Europe demonstrates that multi-targeted approaches to conserving and managing existing novel urban ecosystems offer manifold opportunities to combine biodiversity conservation and wilderness experience in cities.  相似文献   

6.

Context

Conflict over land use is endemic to natural resource management given the limited availability of resources and multiple stakeholders’ interests, but there has been limited research to examine conflict from an integrative social-ecological perspective.

Objectives

We sought to determine how the potential for land use conflict—a social construct—was related (or not) to ecological systems of landscapes.

Methods

Using participatory mapping data from a regional case study in Australia, we identified the potential for land use conflict using a model that combines spatially-explicit place values with preferences for specific land uses related to development and conservation. Multiple proxies of biodiversity were used to evaluate the landscape’s ecological systems at ecosystems and species levels. Range maps were used to identify areas of high species diversity value using the conservation planning software Zonation.

Results

We spatially intersected conflict areas with landscape attributes and found the potential for conflict over conservation to be higher in coastal areas than inland areas, more likely to be located in areas with moderate vegetation cover, more concentrated in ecosystems classified as ‘No Concern’ with moderate to high native vegetation. Potential conflict over conservation was disproportionately higher in areas with higher species diversity derived from conservation modelling.

Conclusions

The social-ecological associations in conflict analysis can inform impact assessment of land use plans on biodiversity, assist development of effective approaches to reconcile conservation and other land uses, support conservation planning by identifying priorities for conflict negotiation and understanding underlying factors for conflict.
  相似文献   

7.

Context

Environmental processes and dispersal are primary determinants of metacommunity dynamics. The relative importance of these effects may vary between species of different abundance classes, given variation in life history traits. Under high disturbance conditions, rare species may be more easily eliminated from their optimal habitats and their distribution may therefore be more heavily dependent upon dispersal from nearby habitat patches than common species.

Objectives

We tested if metacommunity dynamics vary between abundance classes in a high disturbance environment.

Methods

Standardized butterfly sampling was conducted in the urban parks of Hong Kong. To estimate the strength of environmental processes, we measured an array of environmental variables for all sampled parks. Spatial predictors were generated to estimate the effect of dispersal.

Results

For shaping common species compositions, we found environmental processes (and specifically environmental variables including floral density and surrounding woody plant cover) slightly more important than spatial processes. For rare species, only spatial processes were significant while environmental processes were insignificant. Our result contrasts previous studies in natural metacommunities, which have shown that both common and rare species compositions are shaped by environmental processes and similar variables.

Conclusions

Our results demonstrate that high disturbance conditions may inhibit rare species establishment and persistence in urban landscapes. Local habitat management may not be sufficient in conserving rare species in urban environments—spatial context and configuration should be considered in planning for biodiversity. We also highlight the utility of community deconstruction analysis in providing insights into rare species metacommunity dynamics.
  相似文献   

8.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   

9.
The metacommunity concept provides a spatial perspective on community dynamics, and the landscape provides the physical template for a metacommunity. Several aspects of landscape heterogeneity, such as landscape diversity and composition, and characteristics of the matrix between habitat patches such as habitat connectivity, and geometry of habitat patches, may moderate metacommunity processes. These aspects of landscape heterogeneity are rarely considered explicitly in the metacommunity discussion, however. We propose landscape contrast (i.e., the average dissimilarity in habitat quality between neighboring patches) as a key dimension of landscape heterogeneity. The concept of landscape contrast unifies discrete and continuous landscape representations (homogeneous, gradient, mosaic and binary) and offers a means to integrate landscape heterogeneity in the metacommunity concept. Landscape contrast as perceived by the organisms affects several fundamental metacommunity processes and may thus constrain which metacommunity models may be observed. In a review of empirical metacommunity studies (n = 123), only 22 % of studies were explicit about their underlying landscape model assumptions, with striking differences among taxonomic groups. The assumed landscape model constrained, but did not determine, metacommunity models. Integration and explicit investigation of landscape contrast effects in metacommunity studies are likely to advance ecological theory and facilitate its application to real-world conservation problems.  相似文献   

10.
11.
Walters  G.  Sayer  J.  Boedhihartono  A. K.  Endamana  D.  Angu Angu  K. 《Landscape Ecology》2021,36(8):2427-2441
Context

We describe how large landscape-scale conservation initiatives involving local communities, NGOs and resource managers have engaged with landscape scientists with the goal of achieving landscape sustainability. We focus on two landscapes where local people, practitioners and landscape ecologists have co-produced knowledge to design conservation interventions.

Objective

We seek to understand how landscape ecology can engage with practical landscape management to contribute to managing landscapes sustainably.

Methods

We focus on two large tropical landscapes: the Sangha Tri-National landscape (Cameroon, Republic of Congo and the Central African Republic) and the Batéké-Léfini Landscape (Gabon and Republic of Congo). We evaluate (1) a participatory method used in the Sangha Tri-National landscape that embeds interdisciplinary researchers and practitioners within a landscape to apply transdisciplinary learning to landscape conservation and (2) a participatory landscape zoning method where interdisciplinary teams of conservation practitioners analyse local land and resource use in the Batéké-Léfini landscape.

Results

We find that landscape ecology’s tradition of understanding the historical context of resource use can inform landscape conservation practice and natural resource mapping. We also find that the Sangha Group provides an example for landscape ecology on how to integrate local people and their knowledge to better understand and influence landscape processes.

Conclusions

Place-based engagement as well as the uptake of co-produced knowledge by policy makers are key in enabling sustainable landscapes. Success occurs when researchers, local communities and resource managers engage directly with landscape processes.

  相似文献   

12.

Context

The metacommunity concept helps to understand how local and regional processes regulate species distributions in landscapes. Metacommunity structure is often assumed as static, but may be rather dynamic, following temporal changes along environmental gradients.

Objectives

We present an empirical test of the temporal dynamics of metacommunity structure, using small mammals in an Atlantic Forest landscape as a model system.

Methods

We analyzed incidence matrices using the Elements of Metacommunity Structure framework and evaluated whether local, landscape, and spatial factors structured the metacommunity during different climatic seasons (HS?=?humid; SHS?=?super-humid) and time periods (1?=?1999–2001; 2?=?2005–2009). We compared HS-1 and SHS-1 to evaluate if metacommunity structure varies between seasons, and HS-1 and HS-2 to evaluate if it varies between time periods.

Results

Metacommunity structure changed from Clementsian (HS-1) to random (SHS-1), but during HS-2 it was Clementsian again. This suggests that groups of species are responding similarly to the major gradient of variation during the HS only. Patch size structured the metacommunity during both humid periods, and local habitat structure only during HS-1. We suggest that during the SHS these gradients are lost due to increased matrix permeability to movement, which homogenizes local communities resulting in a random structure.

Conclusions

Species habitat requirements and specializations determined metacommunity structure, but only during the HS. The Clementsian structure indicates that forest disturbances may result in the loss of whole groups of species during the HS. Alternating patterns of metacommunity structure may be associated to changes on matrix suitability between seasons.
  相似文献   

13.
Management of ecosystems often focuses on specific species chosen for their habitat demand, public appeal, or levels of threat. We propose a complementary framework for choosing focal species, the mobile link concept, which allows managers to focus on spatial processes and deal with multi-scale ecological dynamics. Spatial processes are important for three reasons: maintenance, re-organization, and restoration of ecological values. We illustrate the framework with a case study of the Eurasian Jay, a mobile link species of importance for the oak forest regeneration in the Stockholm National Urban Park, Sweden, and its surroundings. The case study concludes with a conceptual model for how the framework can be applied in management. The model is based on a review of published data complemented with a seed predation experiment and mapping of Jay territories to reduce the risk of applying non-urban site-specific information in an urban setting. Our case study shows that the mobile link approach has several advantages: (1) Reducing the vulnerability of ecological functions to disturbances and fluctuations in resources allocated to management, (2) Reducing management costs by maintaining natural processes, and (3) Maintaining gene flow and genetic diversity at a landscape level. We argue that management that includes mobile link organisms is an important step towards the prevention of ecosystem degradation and biodiversity loss in increasingly fragmented landscapes. Identifying and managing mobile links is a way to align management with the ecologically relevant scales in any landscape.  相似文献   

14.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

15.
16.
Gao  Boyu  Gong  Peng  Zhang  Wenyuan  Yang  Jun  Si  Yali 《Landscape Ecology》2021,36(1):179-190
Context

With the expansion in urbanization, understanding how biodiversity responds to the altered landscape becomes a major concern. Most studies focus on habitat effects on biodiversity, yet much less attention has been paid to surrounding landscape matrices and their joint effects.

Objective

We investigated how habitat and landscape matrices affect waterbird diversity across scales in the Yangtze River Floodplain, a typical area with high biodiversity and severe human-wildlife conflict.

Methods

The compositional and structural features of the landscape were calculated at fine and coarse scales. The ordinary least squares regression model was adopted, following a test showing no significant spatial autocorrelation in the spatial lag and spatial error models, to estimate the relationship between landscape metrics and waterbird diversity.

Results

Well-connected grassland and shrub surrounded by isolated and regular-shaped developed area maintained higher waterbird diversity at fine scales. Regular-shaped developed area and cropland, irregular-shaped forest, and aggregated distribution of wetland and shrub positively affected waterbird diversity at coarse scales.

Conclusions

Habitat and landscape matrices jointly affected waterbird diversity. Regular-shaped developed area facilitated higher waterbird diversity and showed the most pronounced effect at coarse scales. The conservation efforts should not only focus on habitat quality and capacity, but also habitat connectivity and complexity when formulating development plans. We suggest planners minimize the expansion of the developed area into critical habitats and leave buffers to maintain habitat connectivity and shape complexity to reduce the disturbance to birds. Our findings provide important insights and practical measures to protect biodiversity in human-dominated landscapes.

  相似文献   

17.
18.
The integration of social and ecological knowledge has been identified as one of the key issues and research priorities in landscape ecology. However, research into the tools and processes that support knowledge integration for planning sustainable land- and sea-scapes is largely lacking. To fill this gap, Bohnet and Smith (Landsc Urban Plan 80:137–152, 2007) developed a social-ecological planning framework based on a holistic landscape concept which I applied in the Tully–Murray basin to test the framework’s transferability and effectiveness for knowledge integration in a water quality improvement planning context in the Great Barrier Reef (GBR) region, Australia. In this paper I present the context in which the Tully Water Quality Improvement Plan (WQIP) was developed, the tools and processes applied during the three planning stages to achieve knowledge integration, and the results from this exercise. I then discuss the transferability and effectiveness of the framework using criteria identified to assess collaborative planning processes, outputs and outcomes, such as collaborative science and social and political capital. While many social outcomes such as the creation of partnerships between multiple-stakeholders, including Traditional Owners, local farmers, industry, government, community groups, schools, and the wider public, have been achieved, the research also highlights some of the challenges related to multiple-stakeholder relations. Further research into the roles and responsibilities of multiple-stakeholders for knowledge integration in developing and managing sustainable land- and sea-scapes is recommended.  相似文献   

19.

Purpose

Urbanisation is a leading cause of biotic homogenisation in urban ecosystems. However, there has been little research examining the effect of urbanisation and biotic homogenisation on aquatic communities, and few studies have compared findings across different urban landscapes. We assessed the processes that structure aquatic macroinvertebrate diversity within five UK cities and characterise the heterogeneity of pond macroinvertebrate communities within and among urban areas.

Methods

A total of 132 ponds were sampled for invertebrates to characterise biological communities of ponds across five UK cities. Variation among sites within cities, and variation among urban settlements, was partitioned into components of beta diversity relating to turnover and nestedness.

Results

We recorded 337 macroinvertebrate taxa, and species turnover almost entirely accounted for the high beta-diversity recorded within each urban area and when all ponds were considered. A total of 40% of all macroinvertebrates recorded were unique to a particular urban settlement. In contrast to the homogenisation of terrestrial and lotic communities in urban landscapes reported in the literature, ponds support highly heterogeneous communities within and among urban settlements.

Conclusions

The high species turnover (species replacement) recorded in this study demonstrates that urban pond biodiversity conservation would be most efficient at a landscape-scale, rather than at the individual ponds scale. Pond conservation practices need to consider the spatial organization of ecological communities (landscape-scale) to ensure that the maximum possible biodiversity can be protected.
  相似文献   

20.
Global biodiversity scenarios and landscape ecology   总被引:1,自引:0,他引:1  
The composition of ecological communities is both cause and consequence of landscape pattern. Predicting biodiversity change involves understanding not only ecology and evolution, but also complex changes in human societies and economies. Scenarios offer a less rigid approach to thinking about biodiversity change in a policy and management context. They shift the focus of research and management from making singular predictions and developing single ‘best’ strategies to exploring uncertainties and assessing the outcomes of alternative policies. The four Millennium Ecosystem Assessment (MA) biodiversity scenarios illustrate current approaches to biodiversity estimation in global scenarios. The MA biodiversity scenarios are built around the species–area relationship and the magnitudes of a few area-dependent processes such as nitrogen deposition and climate change. Some of the most obvious landscape-related omissions from the MA scenarios are pattern-process feedbacks, scale dependencies, and the role of landscape configuration. While the MA has set a new standard for biodiversity scenarios, future exercises would benefit from a more multi-scale and more mechanistic framework. I use examples from research on the landscape ecology and biogeography of African ticks to illustrate how a hypothesis-based approach can be used to analyse the multi-scale, multi-level drivers of change in patterns of species occurrences. Two of the most important challenges for the future development of both landscape ecology and biodiversity scenarios are to become more mechanistic (less pattern-based) and more general (applicable across different landscapes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号