首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

2.
Context

Human appropriation of net primary productivity (HANPP) is employed as a measure of human pressures on biodiversity, though largely at global and national scales rather than landscape to regional scales where many conservation decisions take place. Though gaining in familiarity, HANPP is not widely utilized by conservation professionals.

Objectives

This study, encompassing the US side of the Great Lakes basin, examines how regional distributions of HANPP relate to landscape-based biodiversity proxy metrics used by conservation professionals. Our objectives were (1) to quantify the HANPP of managed lands at the county scale; and (2) to assess spatial patterns of HANPP in comparison to landscape diversity and local habitat connectedness to determine if the metric can provide useful information to conservation professionals.

Methods

We aggregated forest and cropland NPP data between 2005 and 2015 and coupled it with previously published potential vegetation maps to quantify the HANPP of each county in the study region. We mapped the outputs at 500 m resolution to analyze spatial relationships between HANPP and landscape metrics of biodiversity potential.

Results

Area-weighted HANPP across our study region averaged 45% of NPP, down to 4.9% in forest-dominated counties. Greater HANPP correlated with reduced landscape diversity (p?<?0.001, r2?=?0.28) and reduced local habitat connectedness (p?<?0.001, r2?=?0.36).

Conclusion

HANPP could be used as an additional tool for conservation professionals during regional-scale land use planning or conservation decision-making, particularly in mixed-use landscapes that both support important biodiversity and have high levels of primary production harvest.

  相似文献   

3.
Context

Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity.

Objectives

We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results.

Methods

We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity.

Results

A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity.

Conclusions

Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.

  相似文献   

4.
Context

Forest management and disturbances cause habitat fragmentation for saproxylic species living on old-growth attributes. The degree of habitat spatiotemporal continuity required by these species is a key question for designing biodiversity-friendly forestry, and it strongly depends on species’ dispersal. The “stability–dispersal” model predicts that species using stable habitats should have lower dispersal abilities than species associated with ephemeral habitat and thus respond to habitat availability at smaller scales.

Objectives

We aimed at testing the stability–dispersal model by comparing the spatial scales at which saproxylic beetle guilds using substrates with contrasted stability (from stable to ephemeral: cavicolous, fungicolous, saproxylophagous and xylophagous guilds) are affected by landscape structure (i.e. habitat amount and aggregation).

Methods

We sampled saproxylic beetles using a spatially nested design (plots within landscape windows). We quantified habitat availability (tree cavities, polypores and deadwood) in 1-ha plots, 26-ha buffers around plots and 506-ha windows, and analyzed their effect on the abundance and diversity of associated guilds.

Results

The habitat amount within plots and buffers positively affected the abundance of the cavicolous and the fungicolous guilds whereas saproxylophagous and xylophagous did not respond at these scales. The habitat aggregation within windows only positively affected the saproxylophagous species richness within plots and also on the similarity in species composition among plots.

Conclusions

Beetle guilds specialized on more stable habitat were affected by landscape structure at smaller spatial scales, which corroborated the stability–dispersal model. In managed forests, the spatial grain of conservation efforts should therefore be adapted to the target habitat lifetime.

  相似文献   

5.
Koen  Erin L.  Ellington  E. Hance  Bowman  Jeff 《Landscape Ecology》2019,34(10):2421-2433
Context

Mapping landscape connectivity across large spatial extents is an important component of ecological reserve network designs and species recovery plans. It can, however, be limited by computational power. One way to overcome this problem is to split the study area into smaller tiles, map landscape connectivity within each of those tiles, and then merge tiles back together to form composite connectivity maps.

Objectives

We tested the effects of landscape structure on the accuracy of composite landscape connectivity maps created from tiles and tested two methods to increase this accuracy.

Methods

We correlated replicate, composite current density maps with untiled maps. We tested whether our findings depended on the composition of the landscape by testing maps with corridors, barriers, different mixtures of high- and low-cost habitat, and road networks.

Results

We found that composite current density maps underestimated large-scale connectivity and overestimated the contribution of small habitat patches to overall connectivity. These biases became more pronounced as the tiles became relatively smaller. Landscapes with corridors or barriers were particularly sensitive. We increased the accuracy of tiled maps by increasing pixel size or by averaging several maps created using a “moving window” approach.

Conclusions

There is a trade-off between tile size and pixel size when modelling connectivity across large spatial extents. We suggest using the largest tile size possible when tiling is necessary, in conjunction with increased pixel size and a moving window method to increase accuracy of the composite current density maps.

  相似文献   

6.
Bosco  Laura  Wan  Ho Yi  Cushman  Samuel A.  Arlettaz  Raphaël  Jacot  Alain 《Landscape Ecology》2019,34(1):105-117
Context

Herbicide treatments in viticulture can generate highly contrasting mosaics of vegetated and bare vineyards, of which vegetated fields often provide better conditions for biodiversity. In southern Switzerland, where herbicides are applied at large scales, vegetated vineyards are limited in extent and isolated from one another, potentially limiting the distribution and dispersal ability of organisms.

Objectives

We tested the separate and interactive effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework, along with additional environmental factors. We identified which variables at which scales were most important in predicting patterns of invertebrate abundance.

Methods

We used a factorial design to sample across a gradient of habitat amount (area of vegetated vineyards, measured as percentage of landscape PLAND) and fragmentation (number of vegetated patches, measured as patch density PD). Using 10 different spatial scales, we identified the factors and scales that most strongly predicted invertebrate abundance and tested potential interactions between habitat amount and fragmentation.

Results

Habitat amount (PLAND index) was most important in predicting invertebrate numbers at a field scale (50 m radius). In contrast, we found a negative effect of fragmentation (PD) at a broad scale of 450 m radius, but no interactive effect between the two.

Conclusions

The spatial scales at which habitat amount and fragmentation affect invertebrates differ, underpinning the importance of spatially explicit study designs in disentangling the effects between habitat amount and configuration. We showed that the amount of vegetated vineyards has more influence on invertebrate abundance, but that fragmentation also contributed substantially. This suggests that efforts for augmenting the area of vegetated vineyards is more beneficial for invertebrate numbers than attempts to connect them.

  相似文献   

7.
Context

Conservation for the Indiana bat (Myotis sodalis), a federally endangered species in the United States of America, is typically focused on local maternity sites; however, the species is a regional migrant, interacting with the environment at multiple spatial scales. Hierarchical levels of management may be necessary, but we have limited knowledge of landscape-level ecology, distribution, and connectivity of suitable areas in complex landscapes.

Objectives

We sought to (1) identify factors influencing M. sodalis maternity colony distribution in a mosaic landscape, (2) map suitable maternity habitat, and (3) quantify connectivity importance of patches to direct conservation action.

Methods

Using 3 decades of occurrence data, we tested a priori, hypothesis-driven habitat suitability models. We mapped suitable areas and quantified connectivity importance of habitat patches with probabilistic habitat availability metrics.

Results

Factors improving landscape-scale suitability included limited agriculture, more forest cover, forest edge, proximity to medium-sized water bodies, lower elevations, and limited urban development. Areas closer to hibernacula and rivers were suitable. Binary maps showed that 30% of the study area was suitable for M. sodalis and 29% was important for connectivity. Most suitable patches were important for intra-patch connectivity and far fewer contributed to inter-patch connectivity.

Conclusions

While simple models may be effective for small, homogenous landscapes, complex models are needed to explain habitat suitability in large, mixed landscapes. Suitability modeling identified factors that made sites attractive as maternity areas. Connectivity analysis improved our understanding of important areas for bats and prioritized areas to target for restoration.

  相似文献   

8.
The focus of biodiversity conservation is shifting to larger spatial scales in response to habitat fragmentation and the need to integrate multiple landscape objectives. Conservation strategies increasingly incorporate measures to combat fragmentation such as ecological networks. These are often based on assessment of landscape structure but such approaches fail to capitalise on the potential offered by more ecologically robust assessments of landscape function and connectivity. In this paper, we describe a modelling approach to identifying functional habitat networks and demonstrate its application to a fragmented landscape where policy initiatives seek to improve conditions for woodland biodiversity including increasing woodland cover. Functional habitat networks were defined by identifying suitable habitat and by modelling connectivity using least-cost approaches to account for matrix permeability. Generic focal species (GFS) profiles were developed, in consultation with stakeholders, to represent species with high and moderate sensitivity to fragmentation. We demonstrated how this form of analysis can be used to aid the spatial targeting of conservation actions. This ‘targeted’ action scenario was tested for effectiveness against comparable scenarios, which were based on random and clumped actions within the same landscape. We tested effectiveness using structural metrics, network-based metrics and a published functional connectivity indicator. Targeting actions within networks resulted in the highest mean woodland area and highest connectivity indicator value. Our approach provides an assessment of landscape function by recognising the importance of the landscape matrix. It provides a framework for the targeting and evaluation of alternative conservation options, offering a pragmatic, ecologically-robust solution to a current need in applied landscape ecology.  相似文献   

9.
Context

Modifications in natural landcover generally result in a loss of habitat availability for wildlife and it’s persistence will depend largely on their spatial configuration and functional connections. Argenteohyla siemersi is a threatened and endemic amphibian whose habitat is composed of forest patches near rivers and water bodies edges.

Objectives

This study aimed to analyse the accessible habitat for this species and identify key elements to maintain its ecological network in two different types of land uses: an anthropized area with extensive cattle raising and a protected area.

Methods

The structural and functional characteristics of both landscapes were analyzed. The connectivity at landscape level and the contribution of each habitat patch were evaluated through simulation models with different dispersion distances in the context of the graph theory.

Results

In both landscapes, nine types of landcover were identified with different compositions. Remarkable differences were found in habitat connectivity for this amphibian species between both landscapes. As the percentage of dispersion distance increases, reachable habitat increases as well, although with higher percentages in the protected area. Two corridors were identified in the protected landscape and one in the rangeland one; patches and key links constituted all of them.

Conclusions

The present work provides spatially explicit results with a quantitative basis. It could be useful as a tool for the development of management plans aimed at guaranteeing the functionality of the ecological network for this endangered species and, therefore, contribute to its long-term conservation.

  相似文献   

10.
Context

Graph-theoretic evaluations of habitat connectivity often rely upon least-cost path analyses to evaluate connectedness of habitat patches, based on an underlying cost surface. We present two improvements upon these methods.

Objectives

As a case study to test these methods, we evaluated habitat connectivity for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru, to prioritize habitat patches for conservation.

Methods

First, rather than using a single least-cost path between habitat patches, we analyzed multigraphs made up of multiple low-cost paths. This allows us to differentiate between patches connected through a single narrow corridor, and patches connected by a wide swath of traversable land. We evaluate potential movement pathways by iteratively removing paths and recomputing connectivity metrics. Second, instead of performing a sensitivity analysis by varying costs uniformly across the landscape, we generated landscapes with spatially varying costs.

Results

This approach produced a more informative assessment of connectivity than standard graph analyses. Of the 4340 habitat patches considered across the landscape, we identified the most important 100, those frequently ranked highly through repeated network modifications, for multiple metrics and cost surfaces.

Conclusions

These methods represent a novel approach for assessing connectivity, better accounting for spatial configurations of habitat patches and uncertainty in cost surfaces. The ability to identify habitat patches with more possible routes to other patches is of interest for resiliency planning and prioritization in the face of continued habitat loss and climate change. These methods should be broadly applicable to conservation planning for other wildlife species.

  相似文献   

11.

Context

Understanding how landscape patterns affect species diversity is of great importance in the fields of biogeography, landscape ecology and conservation planning, but despite the rapid advance in biodiversity analysis, investigations of spatial effects on biodiversity are still largely focused on species richness.

Objectives

We wanted to know if and how species richness and species composition are differentially driven by the spatial measures dominating studies in landscape ecology and biogeography. As both measures require the same limited presence/absence information, it is important to choose an appropriate diversity measure, as differing results could have important consequences for interpreting ecological processes.

Methods

We recorded plant occurrences on 112 islands in the Baltic archipelago. Species richness and composition were calculated for each island, and the explanatory power of island area and habitat heterogeneity, distance to mainland and structural connectivity at three different landscape sizes were examined.

Results

A total of 354 different plant species were recorded. The influence of landscape variables differed depending on which diversity measure was used. Island area and structural connectivity determined plant species richness, while species composition revealed a more complex pattern, being influenced by island area, habitat heterogeneity and structural connectivity.

Conclusions

Although both measures require the same basic input data, species composition can reveal more about the ecological processes affecting plant communities in fragmented landscapes than species richness alone. Therefore, we recommend that species community composition should be used as an additional standard measure of diversity for biogeography, landscape ecology and conservation planning.
  相似文献   

12.
Context

Black bear connectivity studies are scarce in the southern distribution where the species is endangered. The identification of corridors is a strategy to promote conservation in human-modified landscapes.

Objectives

Assess and validate long-distance corridors in the southern black bear distribution using resistance models, occurrence records, and radio-telemetry of an individual that dispersed between the Sierras Madres of Mexico.

Methods

We acquired black bear occurrence records from several sources and telemetry records from one dispersal individual in northern Mexico. We generated ensemble habitat suitability models and resistance landscape surfaces to generate cumulative resistant kernel and least-cost paths to identify connectivity core areas and corridors of importance through Natural Protected Areas. Finally, we assessed long-distance corridors.

Results

We developed three habitat suitability models for black bears southern range; one matches the current distribution of the species. When including radio-tracking records, the landscape resistance is reduced to arid sites with low habitat suitability. We used least resistance connectivity surfaces to merge subpopulations within each Sierra Madre. The long-distance corridor models indicate narrow routes that require individuals with plastic behavioral dispersal capacity. Almost 20% of the connectivity core areas are within Natural Protected Areas. These are the first large-scale corridors using resistance layers in the southern black bear distribution.

Conclusions

Corridors can be functional for a range of temperate and dry habitat species. Landscape connectivity models should include the monitoring of dispersal individuals to identify the plasticity of organisms and the tangible barriers for them.

  相似文献   

13.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   

14.
Context

Many connectivity metrics have been used to measure the connectivity of a landscape and to evaluate the effects of land-use changes and potential mitigation measures. However, there are still gaps in our understanding of how to accurately quantify landscape connectivity.

Objectives

A number of metrics only measure between-patch connectivity, i.e. the connectivity between different habitat patches, which can produce misleading results. This paper demonstrates that the inclusion of within-patch connectivity is important for accurate results.

Methods

The behavior of two metrics is compared: the Connectance Index (CONNECT), which measures only between-patch connectivity, and the effective mesh size (meff), which includes both within-patch and between-patch connectivity. The connectivity values of both metrics were calculated on a set of simulated landscapes. Twenty cities were then added to these landscapes to calculate the resulting changes in connectivity.

Results

We found that when using CONNECT counter-intuitive results occurred due to not including within-patch connectivity, such as scenarios where connectivity increased with increasing habitat loss and fragmentation. These counter-intuitive results were resolved when using meff. For example, landscapes with low habitat amount may be particularly sensitive to urban development, but this is not reflected by CONNECT.

Conclusions

Applying misleading results from metrics like CONNECT can have detrimental effects on natural ecosystems, because reductions in within-patch connectivity by human activities are neglected. Therefore, this paper provides evidence for the crucial need to consider the balance between within-patch connectivity and between-patch connectivity when calculating the connectivity of landscapes.

  相似文献   

15.
Context

Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.

Objectives

We aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).

Methods

We conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.

Results

We found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.

Conclusions

The landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.

  相似文献   

16.
Although many empirical and theoretical studies have elucidated the effects of habitat fragmentation on the third trophic level, little attention has been paid to the impacts of this driver on more generalist groups of non-hymenopteran parasitoids. Here, we used the highly-diverse group of tachinid flies as an alternative model to test the effects of landscape fragmentation on insect parasitoids. Our aims were: (i) to evaluate the relative importance of habitat area and connectivity losses and their potential interaction on tachinid diversity, (ii) to test whether the effects of habitat fragmentation changes seasonally, and (iii) to further assess the effect of habitat diversity on tachinid diversity and whether different parasitoid-host associations modify the species richness response to fragmentation. In 2012 a pan-trap sampling was conducted in 18 semi-natural grasslands embedded in intensive agricultural landscapes along statistically orthogonal gradients of habitat area, connectivity and habitat diversity. We found an interaction between habitat area and connectivity indicating that tachinid abundance and species richness were more negatively affected by habitat loss in landscapes with low rather than with relatively large habitat connectivity. Although tachinid communities exhibited large within-year species turnover, we found that the effects of landscape fragmentation did not change seasonally. We found that habitat diversity and host association did not affect tachinid species diversity. Our results have important implications for biodiversity conservation as any attempts to mitigate the negative effects of habitat loss need to take the general level of habitat connectivity in the landscape into account.  相似文献   

17.
Understanding how spatial habitat patterns influence abundance and dynamics of animal populations is a primary goal in landscape ecology. We used an information-theoretic approach to investigate the association between habitat patterns at multiple spatial scales and demographic patterns for black-throated blue warblers (Dendroica caerulescens) at 20 study sites in west-central Vermont, USA from 2002 to 2005. Sites were characterized by: (1) territory-scale shrub density, (2) patch-scale shrub density occurring within 25 ha of territories, and (3) landscape-scale habitat patterns occurring within 5 km radius extents of territories. We considered multiple population parameters including abundance, age ratios, and annual fecundity. Territory-scale shrub density was most important for determining abundance and age ratios, but landscape-scale habitat structure strongly influenced reproductive output. Sites with higher territory-scale shrub density had higher abundance, and were more likely to be occupied by older, more experienced individuals compared to sites with lower shrub density. However, annual fecundity was higher on sites located in contiguously forested landscapes where shrub density was lower than the fragmented sites. Further, effects of habitat pattern at one spatial scale depended on habitat conditions at different scales. For example, abundance increased with increasing territory-scale shrub density, but this effect was much stronger in fragmented landscapes than in contiguously forested landscapes. These results suggest that habitat pattern at different spatial scales affect demographic parameters in different ways, and that effects of habitat patterns at one spatial scale depends on habitat conditions at other scales.  相似文献   

18.

Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape.

  相似文献   

19.
Habitat connectivity is an essential component of biodiversity conservation. Simulated landscapes were manipulated to quantify the impact of changes to the amount, fragmentation and dispersion of habitat on a widely applied landscape connectivity metric, the probability of connectivity index. Index results for different landscape scenarios were plotted against the dispersal distances used for their calculation to create connectivity response curves for each scenario. Understanding index response to controlled changes in landscape structure at a range of spatial scales can be used to give context to comparison of alternative landscape management scenarios. Increased amounts of habitat, decreased fragmentation and decreased inter-patch distances resulted in increased connectivity index values. Connectivity response curves demonstrated increases in assessed connectivity for scenarios with continuous corridors or “stepping stone” connectors. The sensitivity of connectivity response curves to controlled changes in landscape structure indicate that this approach is able to detect and distinguish between different types of landscape changes, but that delineation of habitat and method of quantifying dispersal probability incorporate assumptions that must be recognized when interpreting results to guide landscape management. Representing landscape connectivity in this manner allows for the impacts of alternative landscape management strategies to be compared visually through comparative plots, or statistically through the parameters that describe connectivity response curves.  相似文献   

20.

Context

In heterogeneous landscapes, local patterns of community structure are a product of the habitat size and condition within a patch interacting with adjacent habitat patches of varying composition and quantity. While evidence for local versus landscape factors have been found in terrestrial biomes, support for such multi-scale effects shaping marine ecological communities is equivocal.

Objectives

We investigated whether within-patch habitat condition can override seascape context to explain the community structure of macroalgae-associated reef fishes across a tropical seascape.

Methods

We mapped the distribution and abundance of a diverse family of reef fishes (Labridae) occupying macroalgae meadows within a tropical reef ecosystem, and using best-subsets model selection, investigated the potential for habitat structural connectivity and/or local habitat quality for predicting variations in fish community structure across the seascape.

Results

Local habitat quality (canopy structure, hard habitat complexity) and area of coral-dominated habitat within 500 m of a macroalgal meadow provided the best predictors of fish community structure. However, the specific importance of a given predictor varied with fish life history stage and functional trophic group. Interestingly, macroalgae meadow area was among the least important predictors.

Conclusions

Given the complex interplay between local habitat quality and spatial context effects on fish biodiversity, our study reveals the multi-scale predictors that should be used in spatial conservation and management approaches for tropical fish diversity. Moreover, our findings question the ubiquity of habitat area effects in patchy landscapes, and cautions against a sole reliance on habitat quantity in spatial management.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号