首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
两个棉纤维发育突变体分子生物学研究进展   总被引:5,自引:1,他引:5  
王素会  杜雄明 《棉花学报》2003,15(6):376-379
概述了利用徐州142无绒无絮突变体和Ligon lintless-1在棉花细胞学、生物化学、遗传方式和分子生物学方面的研究进展。结果表明:徐州142无绒无絮突变体和Ligon lintless-1与它们的野生型相比,在胚珠细胞分化、纤维发育过程中的生化物质、分子生物学特性及遗传方式等方面有很大的差别。这对揭示纤维和短绒发育的遗传规律、大幅度提高棉纤维产量和品质都具有重要意义。  相似文献   

2.
棉纤维次生壁增厚相关基因的cDNA克隆与分析   总被引:9,自引:0,他引:9  
以陆地棉品种"徐州142"植株开花后14、18、24、30 d的棉纤维和胚珠离体培养12 d、并分别在添加0(对照)和100 μmol·L-1ABA的培养基中继代培养5 h的棉纤维为材料,用mRNA差异显示技术分析其基因表达差异.回收到20条差异条带.利用反向Northern杂交鉴别和分析阳性差异条带,结果表明:PG39-4在次生壁开始增厚以后表达,又被ABA诱导  相似文献   

3.
以14个纤维品质差异的棉花品种(或品系)为材料,研究10个纤维发育相关基因时空表达变化与纤维品质的关系,为阐明棉纤维发育相关基因与纤维品质形成关系提供理论基础。利用实时荧光定量PCR技术检测10个基因在14个供试品种(或品系)不同纤维发育时期的相对表达量,结果表明,虽然遗传背景完全不同,但它们具有某些共同表达特征。GhExp1、GhCIPK1、GhSus1、GhSusA1和GhPL这5个基因都是在纤维伸长期优势表达;GhACT1、GhRacA和GhRacB是在纤维伸长前期和次生壁加厚期高表达;而GhCelA1和GhcelA3是在纤维伸长后期和次生壁加厚期优势表达。这些基因表达谱与纤维品质关联分析显示,GhRacA在23DPA高表达且表达量与纤维品质显著正相关,其余基因在低表达时其表达量与纤维品质呈显著性相关,而在高表达时其表达量与纤维品质无相关性。GhExp1在20DPA的表达量与纤维比强度和整齐度呈显著负相关,与伸长率呈极显著正相关;GhPL在23DPA的表达量与纤维长度呈显著负相关;GhRacA在5DPA和23DPA的表达量均与伸长率呈极显著正相关;GhRacB在10DPA的表达量与长度和整齐度呈显著负相关;GhCelA1基因在5DPA的表达量与纤维长度呈显著正相关,与马克隆值呈显著负相关,在10DPA的表达量与马克隆值呈显著正相关,与伸长率达到极显著正相关,与比强度呈显著负相关,与长度和整齐度呈极显著负相关;GhCIPK1、GhACT1、GhSus1、GhSusA1和GhCelA3 这5个基因在纤维发育各时期的表达量与纤维品质各指标未检测到相关性。  相似文献   

4.
棉纤维发育相关基因时空表达与纤维品质的关联分析   总被引:2,自引:0,他引:2  
以14个纤维品质差异的棉花品种(或品系)为材料,研究10个纤维发育相关基因时空表达变化与纤维品质的关系,为阐明棉纤维发育相关基因与纤维品质形成关系提供理论基础。利用实时荧光定量PCR技术检测10个基因在14个供试品种(或品系)不同纤维发育时期的相对表达量,结果表明,虽然遗传背景完全不同,但它们具有某些共同表达特征。GhExp1、GhCIPK1、GhSus1、GhSusA1和GhPL这5个基因都是在纤维伸长期优势表达;GhACT1、GhRacA和GhRacB是在纤维伸长前期和次生壁加厚期高表达;而GhCelA1和GhcelA3是在纤维伸长后期和次生壁加厚期优势表达。这些基因表达谱与纤维品质关联分析显示,GhRacA在23DPA高表达且表达量与纤维品质显著正相关,其余基因在低表达时其表达量与纤维品质呈显著性相关,而在高表达时其表达量与纤维品质无相关性。GhExp1在20DPA的表达量与纤维比强度和整齐度呈显著负相关,与伸长率呈极显著正相关;GhPL在23DPA的表达量与纤维长度呈显著负相关;GhRacA在5DPA和23DPA的表达量均与伸长率呈极显著正相关;GhRacB在10DPA的表达量与长度和整齐度呈显著负相关;GhCelA1基因在5DPA的表达量与纤维长度呈显著正相关,与马克隆值呈显著负相关,在10DPA的表达量与马克隆值呈显著正相关,与伸长率达到极显著正相关,与比强度呈显著负相关,与长度和整齐度呈极显著负相关;GhCIPK1、GhACT1、GhSus1、GhSusA1和GhCelA3 这5个基因在纤维发育各时期的表达量与纤维品质各指标未检测到相关性。  相似文献   

5.
 从棉花黄萎病缩减杂交库中得到了分属Ⅲ型和Ⅳ型几丁质酶的两个片段,它们都具有完整的3’末端。通过RACE与RT-PCR结合获得了这2个基因完整的读码框序列。其中Ⅳ型几丁质酶的开放读码框为678 bp,编码长为226个氨基酸的蛋白,命名为Ghachi4;Ⅲ型几丁质酶的全长为1390 bp,编码长为298个氨基酸的蛋白,命名为Ghachi3。它们与拟南芥同源基因的相似性分别达到65%和71%。利用网上分析软件发现这2个基因都有信号肽序列,并预测编码的蛋白位于胞质体外。半定量RT PCR发现Ghachi3在花、蕾和韧皮部中的表达量较高,而Ghachi4在韧皮部表达量最高。Ghachi4仅在抗病品种受黄萎病和枯萎病的诱导后表达上调,而Ghachi3还在感病品种中受黄萎病的诱导表达。同时,在常抗棉中2个基因的表达都受到ABA的强烈诱导。推测这2个基因可能参与生物胁迫或非生物胁迫的防御反应。  相似文献   

6.
棉纤维发育相关转录因子的研究进展   总被引:3,自引:3,他引:0  
 转录因子在棉纤维细胞分化发育过程中起重要的调节作用。近年来已经有多个与棉纤维发育相关的转录因子被研究报道,主要包括MYB、HD-ZIP、MADS、TCP等家族成员,其中研究最为广泛的为MYB类转录因子。GL1类的MYB转录因子和MIXTA类的MYB转录因子通过不同的调控方式参与对棉纤维细胞发育的调控。对这些转录因子的深入研究,对于揭示棉纤维细胞分化发育的分子机理具有重要的意义。本文就这方面的研究进展作一简要概述。  相似文献   

7.
棉纤维发育相关糖类物质转化与纤维产量形成的关系   总被引:1,自引:1,他引:0  
以生育期相近的2个棉花品种不同季节成铃的棉纤维为材料,研究棉纤维发育相关糖类物质转化、纤维素合成特征与棉纤维干物质质量形成的关系.结果表明:随着开花结铃时间的推迟,棉纤维中可溶性糖和蔗糖的转化率有下降的趋势;可溶性糖和蔗糖转化率高的棉纤维,其纤维素累积最大速率较高,纤维干物质质量快速增长期历时长,有利于纤维干物质质量的增加.对于不同结铃时期的棉铃,棉纤维中蔗糖和纤维素均是通过调节可溶性总糖含量的变化来影响棉纤维干物质质量的增加.因此,棉纤维发育过程中可溶性糖类物质转化情况和纤维素合成特征的差异,是导致不同结铃时期单铃纤维干物质质量形成差异的直接原因.  相似文献   

8.
棉纤维发育相关基因GhCHS、GhCPI的克隆与鉴定   总被引:1,自引:1,他引:0  
  以陆地棉李氏超短纤维突变体Li1li1自交后代野生型li1li1和超短纤维突变体Li1li1开花后4 d的胚珠纤维的复合体的RNA为探针,通过基因芯片的方法筛选优质材料7235棉纤维伸长、次生壁加厚不同发育时期混合cDNA文库,分离出两个在两种材料中差异表达的cDNA序列,分别命名为GhCHS(GenBank登录号:EF643506)和GhCPI(GenBank登录号:EF643507)。RT-PCR分析表明:开花后4 d,GhCHS,GhCPI在陆地棉李氏野生型li1li1纤维中的表达量低于超短纤维突变体Li1li1。Southern杂交结果表明两个基因在陆地棉基因组中都存在两个拷贝  相似文献   

9.
miRNA (microRNA)是一类21~24个核酸长度的非编码小分子RNA(sRNA),它主要通过抑制或降解靶基因来调控植物生长发育等过程.试验利用在纤维长度上有显著差异的2个回交自交系BILs (Backcross inbred lines)的0DPA (Days post anthesis)、3 DPA的胚珠和10 DPA的纤维构建6个sRNA文库并进行Solexa 测序.以已公布的棉花D5基因组序列和棉属其他序列为参考,经分析共发现561个miRNAs,其中包括254个已知的miRNAs(属于40个miRNA家族),75个候选的miRNAs和232个新的miRNAs,研究结果极大地丰富了棉属miRNAs.通过miRNA靶基因预测分析发现多数miRNAs负调控其对应的靶基因,少数正调控.KEGG(Kyoto encyclopedia of genes and genomes)注释结果表明miRNA的靶基因在植物激素代谢途径中显著富集.  相似文献   

10.
比较研究陆地棉品种徐州142 与其无絮突变体开花前4d 至开花后6d 胚珠内细胞壁结合的离子型蛋白质含量、过氧化物酶和IAA氧化酶活性变化。结果表明, 过氧化物酶和IAA氧化酶阻碍纤维的初始发育。  相似文献   

11.
早衰和正常小麦近等基因系旗叶光合特性与产量比较研究   总被引:3,自引:0,他引:3  
朱一超  张天真  贺亚军  郭旺珍 《作物学报》2006,32(11):1649-1655
本试验以小偃54×8602高代分离品系中的早衰与对照品系近等基因系为试验材料,研究了早衰对小麦旗叶光合速率、籽粒灌浆速率及产量的影响。结果表明,早衰小麦旗叶叶绿素含量较低,而且在生育后期下降较快;在整个灌浆期,旗叶光合速率、PSⅡ最大光化学效率Fv/Fm均低于对照;光饱和点低而光补偿点高,  相似文献   

12.
根据棉花S-腺苷甲硫氨酸脱羧酶(S-adenosylmethionine decarboxylase, SAMDC)基因已知EST序列设计引物,采用RACE和RT-PCR技术克隆获得该基因的全长cDNA序列,命名为GhSAMDC (GenBank登录号为JN020148)。生物信息学分析表明,GhSAMDCcDNA序列全长1 874 bp,涵盖tiny ORF (tORF)、upstream ORF (uORF)和main ORF (mORF) 3个植物SAMDC基因特征ORF。其中mORF长1 064 bp,编码含355个氨基酸残基的SAMDC酶原,预测分子量为38.25 kD,该酶原含有高度保守的酶原剪切位点结构域(LSESSLF)和与SAMDC蛋白快速降解有关的PEST (TIHVTPEDGFSYAS)结构域。GhSAMDC基因组DNA序列全长2 743 bp,包含3个内含子,均位于5'' UTR,其中一个位于uORF内。聚类分析表明,GhSAMDC与葡萄中该蛋白的同源关系最近,并且与其他双子叶植物聚为一类。荧光定量PCR分析结果表明,GhSAMDC表达受低温诱导,在冷敏感品种新陆早1号中基因表达水平明显高于在耐冷品种新陆早33号中。  相似文献   

13.
IAA和GA3对棉花短纤维突变体纤维长度的离体诱导作用   总被引:9,自引:0,他引:9  
以棉花等基因系超短纤维突变体(Ligon Li1)及其野生型(Ligon li1)为材料,用胚珠离体培养方法,研究IAA(生长素)和GA3(赤霉酸)与纤维细胞伸长的关系。研究表明:(1)在含单激素IAA或GA3培养基内,离体诱导突变体胚珠产生的纤维长度分别约为1.86 mm和2.1 mm,比在对照(不含激素)培养基内的纤维长度分别增长86%和110%,说  相似文献   

14.
在农杆菌介导的转基因组织培养再生后代中发现了一个无绒有絮的纤维发育突变体,通过自交选择T3代获得其纯合体,命名为CM突变体。尽管CM突变体从转基因后代中发现,但和转基因插入位点无关,推测是在组织培养过程中产生的点突变所致。通过与陆地棉遗传标准系TM-1,海岛棉军海1号,以及新乡小吉无绒有絮(XinFLM),新乡小吉无绒无絮(XinWX),徐州142无绒无絮(XZ142WX),显性光子N1N1,隐性光子n2n2、SL-7-1、MD17及T586等一系列纤维发育突变体分别配制F2组合进行突变基因的遗传及等位性分析,结果表明CM突变体与纤维发育正常的TM-1和军海1号杂交,F1表型均为无绒有絮,F2表现无绒有絮和有绒有絮3∶1分离,说明该突变体与纤维发育正常材料相比,在短绒发育方面存在一个位点的差异,该突变性状由单显性基因控制。等位性测验及分子定位均表明, 控制该突变体短绒的基因与控制N1N1显性光子的N1基因等位。扫描电镜进一步证明该基因突变会造成纤维起始突起延迟。与N1N1突变体相比,CM突变体的衣分比N1N1显著高,而百粒重比N1N1极显著低。推测CM突变体中的突变基因与显性N1基因为复等位基因。  相似文献   

15.
棉胚珠继代培养纤维体系的建立   总被引:5,自引:0,他引:5  
针对传统的棉胚珠培养方法因纤维在发育中途夭亡而不能用于研究次生壁增厚和强度形成的机理,本文建立了棉胚珠继代培养纤维体系,即根据花铃的形态特征选取Ⅱ类发育状态的胚珠作外植体,以14d为周期连续3次继代,在继代培养基中添加5g*L-1活性碳,并根据纤维发育不同阶段的特点调整植物生长物质的种类和浓度.结果使纤维重现了植株  相似文献   

16.
从陆地棉SSH-cDNA文库的测序结果中得到一条具有完整ORF的陆地棉水孔蛋白基因序列,将其命名为GhAQP2。以该基因编码的氨基酸序列为探针,在棉花EST数据库经同源搜索得到2个相似性较高的EST,利用RACE技术获得其全长cDNA序列,将其基因命名为GhAQP3和GhAQP4。基因结构分析发现GhAQP2和GhAQP3各有4个外显子,3个内含子;GhAQP4有3个外显子,2个内含子。生物信息分析表明3个基因编码蛋白均含有6个跨膜区,2个NPA结构域,其氨基酸序列具备MIP超家族典型的蛋白保守区序列特征。多序列比对发现3个基因的氨基酸序列与其他物种PIP2类水孔蛋白氨基酸序列具有很高的同源性。qRT-PCR分析表明,GhAQP2在纤维伸长后期优势表达,GhAQP3在下胚轴和子叶中高表达,GhAQP4在纤维伸长前期优势表达,推测3个基因在不同的组织中发挥作用。GhAQP2在20DPA优势表达,为研究该基因在纤维伸长向次生壁加厚期转化过程中的表达调控提供了重要信息。  相似文献   

17.
钾肥用量对棉花生物量和产量的影响   总被引:1,自引:0,他引:1  
近年来我国棉花生产,要么产量受制于缺钾引起的早衰,要么过量施钾导致生产成本增加和养分流失。然而,最适宜棉花生物质积累和增加产量的钾肥用量并不明了,因而也无适宜的施钾量推荐给农民。因此,采用大田试验(随机区组设计)和盆栽试验研究了钾肥用量对棉花(华杂棉H318)生物量和产量的影响。结果表明,K2处理(225 kg hm–2)产量(1341 kg hm–2)最高,单位面积成铃数(74个 m–2)最多,盆栽试验结果具有相同趋势。同样,K2的棉株生物量,在各个取样时期都最大,尤其是生殖器官生物量。在5个钾肥用量(0~450 kg hm–2)处理中,棉株生物质快速累积期几乎同时启动,但终止期存在一定差异。棉株生物质快速累积期间,K2处理无论是营养器官还是生殖器官生物质的平均累积速度、最大累积速度均最高。可见,在长江中游棉区中等肥力棉田,同时施用N 300 kg hm–2和P2O5 90 kg hm–2的条件下,钾肥用量225 kg hm–2更有利于棉花提高产量,因为在这一用量条件下棉株生物质累积速度最快、累积量最大。  相似文献   

18.
陆地棉棕色纤维色泽的遗传效应   总被引:4,自引:0,他引:4  
以2个棕色和3个白色纤维陆地棉做完全双列杂交,分析陆地棉棕色纤维的遗传效应、长绒与短绒的遗传相关及F1的色泽差异。用扫描仪获取长绒和短绒图像,利用Photoshop 9.0获取图像RGB信息、量化纤维色泽。按照QGAStation软件中的ADM和AD模型,采用MINQUE法分析,调整无偏预测法(AUP)预测各遗传效应值。结果表明,棕色棉的长绒和短绒的遗传规律一致,其加性和显性遗传方差均极显著,其中,长绒的加性遗传方差比率为0.8501,约为显性遗传方差比率的6倍,短绒的加性遗传方差比率为0.8726,约为显性遗传方差比率的8倍;相关分析显示长绒和短绒的基因型和表现型均达显著相关,基因型相关系数达0.9935;5个亲本加性效应均不相同,但均达极显著水平,其中,棕色棉为正效应,白色棉为负效应。说明棕色纤维陆地棉的长绒和短绒色泽的遗传变异主要来自加性和显性效应,其中加性效应起主导作用;长绒和短绒的色泽遗传存在连锁和互作;因不同品种(系)的加性效应大小不同,造成不同F1纤维色泽的表现差异。  相似文献   

19.
棉株果枝部位、温光复合因子及施氮量对纤维伸长的影响   总被引:2,自引:0,他引:2  
以杂交棉(科棉1号)和常规棉(美棉33B)品种为材料,设置异地分期播种和施氮量试验,使棉株不同果枝部位棉铃处于相同环境条件下或相同果枝部位棉铃处于不同环境条件下,研究棉株果枝部位、温光复合因子及施氮量对纤维伸长的影响。结果表明, 在相同环境条件下,棉株中部果枝铃的纤维长度虽稍高于其他部位,但纤维伸长动态变化及最终纤维长度在不同果枝部位间的差异均未达显著水平。棉纤维伸长发育期的累积辐热积PTP可综合温光复合因子的效应,其与棉纤维最大伸长速率Vmax呈极显著线性正相关,与纤维快速伸长持续期T呈极显著线性负相关,与棉纤维长度理论最大值Lenm呈二次曲线函数关系,可以作为表征棉纤维伸长发育温光复合因子的指标。当棉纤维伸长发育期内PTP在335 MJm2左右时,Lenm最大(科棉1号、美棉33B分别为30.94、30.31 mm),Vmax在1.3 mm d–1左右,T在16 d左右。氮素水平与温光复合因子对纤维长度的影响存在补偿效应,随施氮量的增加,棉纤维长度达到最大值时对应的PTP减小。当棉纤维伸长发育期内PTP达到240 MJm2时(科棉1号、美棉33B分别为237.6、241.6 MJm2),240 kg N hm2施氮量下的棉铃对位叶叶氮浓度(NA)更适宜棉纤维伸长;PTP低于此值时,增加施氮量(480 kg N hm2)可减小因累积辐热积降低而造成的棉纤维长度缩短的幅度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号