首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary An investigation was conducted during the summer months of 1986–1987 and 1987–1988 in Western Australia to evaluate the effect of soil solarization on the control of root rot of gerbera an also on the microbial and nutrient status of the soil. Infested soil cores were sampled from a site where root-rot was a severe problem and were removed to a non-infested site where they were subjected to soil solarization or fumigation. Soil solarization resulted in reduced root rot (root disease index 28.6%) in comparison to the untreated control (52.0%) 8 months after planting. Plants in the fumigated plots had 15.8% less disease than those in solarized plots. Solarization increased the total numbers of bacteria and actinomycetes, and the proportion of bacteria and fungi antogonistic to Fusarium oxysporum, F. solani and Rhizoctonia solani. The proportion of actinomycetes antagonistic to these fungi, however, did not differ between solarized and control soil treatments. There was a significant reduction in disease in plants grown in infested fumigated soil to which a 10% concentration of solarized soil had been added, suggesting the development of microbial suppression in solarized soil. Phytophthora cryptogea was eradicated to 30 cm by solarization as well as by fumigation. Solarization eliminated R. solani but not F. oxysporum to a soil depth of 10 cm. Solarization increased the levels of NO n3 -N and NH4 +-N in soil, but did not affect the concentrations of PO4 3–, K+, Fe2+, organic C and pH. Yield (as number of flowers per plant) was increased by soil solarization and by fumigation.Increased yields and decreased disease severity in the solarized plots could have been caused by (1) a reduction in the infectivity of the infested soils, (2) an increase in the suppressiveness of the soil, and (3) an increased available of plant nutrients.  相似文献   

2.
Summer solarization of six wet field soils of four different textures raised soil temperatures by 10–12°C at 15cm depth. Soil solarization increased concentrations of NO?3N and NH+4N up to six times those in nontreated soils. Concentrations of P, Ca2+, Mg2+ and electrical conductivity (EC) increased in some of the solarized soils. Solarization did not consistently affect available K+, Fe3+, Mn2+, Zn2+, Cu2+, Cl? concentrations, soil pH or total organic matter. Concentrations of mineral nutrients in wet soil covered by transparent polyethylene film, but insulated against solar heating, were the same as those in nontreated soil. Increases in NO?3N plus NH+4N were no longer detected in fallowed soils 9 months after solarization. No significant correlation between mineral-nutrient concentration in plant tissue and plant growth was found. Fresh and dry weights of radish, pepper and Chinese cabbage plants usually were greater when grown in solarized soils than in nontreated soils. Fertilization of solarized soils sometimes resulted in greater plant growth responses than observed in solarized but nonfertilized soils.  相似文献   

3.
Soil suppressiveness against Fusarium was tested using solarized and non-solarized soils combined with composts of three maturation levels, and a non-amended control. The soils were sampled on three dates: after previous year solarization but before current year solarization (0 weeks), at the end of the solarization period of the current year (4 weeks), and 4 weeks later (recovery time). Melon seedlings were inoculated with Fusarium spores and disease severity was assessed. The study showed a reduction of soil suppressiveness capacity against Fusarium oxysporum f. sp. melonis after 1 year of solarization (0 weeks). Fusarium disease severity in artificially inoculated melon plants, expressed by area under the disease progress curve, was higher in solarized soil than in non-solarized soil. Compost addition lowered the disease severity, both in the solarized and in the non-solarized soils. However, suppression was not obtained at the end of the solarization period, whereas compost beneficial effect was found at this time.  相似文献   

4.
Soil solarization is a widespread, nonchemical agricultural practice for disinfesting soils, which is often used in combination with organic amendment, and whose action represents an important factor impacting on soil bacterial communities structure and population dynamics. The present study was conducted to investigate whether and to which extent a 72-day plot-scale soil solarization treatment, either combined or not with organic amendment, could stimulate compositional changes in the genetic structure of indigenous soil bacterial communities. Soil solarization with transparent polyethylene film, in combination or not with farmyard manure addition, was carried out during a summer period on a clay loam agricultural soil located in Southern Italy. Soils from a four-treatment (NS, nonsolarized control soil; S, solarized soil; MA, manure-amended nonsolarized soil; MS, manure-amended and solarized soil) plot block were sampled after 0, 8, 16, 36 and 72 days. Compositional shifts in the genetic structure of indigenous soil bacterial communities were monitored by denaturing gradient gel electrophoresis (DGGE) fingerprinting of 16S rRNA gene fragments amplified from soil-extracted community DNA using primers specific for Bacteria, Actinomycetales, α- and β-Proteobacteria. Changes in soil temperature, pH, and electrical conductivity (EC1:1) were also monitored from 0 to 72 days. Beneath the polyethylene film the average soil temperature at 8-cm depth reached 55 °C compared to 35 °C in nonsolarized soil. In general, without amendment both soil pH and EC1:1 were not significantly affected by solarization, whereas in manured plots either variables were greatly increased (from 7.0 to 8.0 pH and from 271 to 3021 μS cm−1 EC1:1), and both showed long-lasting effects due to soil solar heating. The eubacterial DGGE profiles revealed that soil solarization was the main factor inducing strong time-dependent population shifts in the community structure either in unamended or amended soils. Conversely, the addition of organic amendment resulted in an altered bacterial community, which remained rather stable over time. A similar behaviour was also observed in the DGGE patterns of β-proteobacterial and actinomycete populations, and also, albeit to a lesser extent, in the DGGE profiles of α-Proteobacteria. An increased bacterial richness was evidenced by DGGE fingerprints in 16- and 36-day samplings, followed by a decrease appearing in 72-day samplings. This could be explained, other than by a direct thermal effect on soil microflora, by solarization-induced changes in the physico-chemical properties of soil microbial habitats or by other ecological factors (e.g. decreased competitiveness of dominating bacterial species, reduced grazing pressure of microfaunal predators, increased nutrient availability).  相似文献   

5.
The Indo-Gangetic Plains of South Asia support 13.5 million hectares of rice-wheat cropping systems, which currently feed over one billion people. Intensified agriculture has resulted in a more than two-fold increase in rice and wheat yields since the 1970s; however, this continuous cropping has also exacerbated weed, pest and disease problems. Soil solarization is an accessible, low-risk management practice for small-holder farmers that has ameliorated these problems in some settings and has the potential to dramatically improve yields. Field trials were conducted at two sites in Nepal to test whether soil solarization: (i) had a lasting effect on soil bacterial, fungal and nematode communities; (ii) altered the rhizosphere communities of rice nursery seedlings and (iii) improved crop growth and yield in the rice-wheat cropping system. Rice seedlings were grown in nursery plots that were solarized for 28 days or left untreated and were transplanted to field plots that were also either solarized for 28 days or not in a randomized complete block design with four replications. Rice was grown to maturity and harvested, followed by a complete wheat cropping cycle. Solarization of main field plots increased counts of fungal propagules and decreased root galling and nematode counts and decreased weed biomass. Terminal restriction fragment length polymorphism (T-RFLP) analyses of extracted soil DNA revealed significant shifts in fungal community composition following soil solarization, which was sustained throughout the entire rice cropping cycle at both field sites. The bacterial community composition was similarly affected, but at only one of the two sites. Despite the observed changes in soil microbial community composition over more than one cropping period, solarization had no impact on crop productivity at either site. Nevertheless, such changes in soil microbial communities in response to solarization may be responsible for increased yields observed at other sites with greater pathogen pressure. This practice has shown promising results in many farmers’ fields in South Asia, but further elucidation of the mechanisms by which solarization increases productivity is needed.  相似文献   

6.
Quantifying microbial biomass phosphorus in acid soils   总被引:10,自引:0,他引:10  
 This study aimed to validate the fumigation-extraction method for measuring microbial biomass P in acid soils. Extractions with the Olsen (0.5 M NaHCO3, pH 8.5) and Bray-1 (0.03 M NH4F–0.025 M HCl) extractants at two soil:solution ratios (1 : 20 and 1 : 4, w/v) were compared using eight acid soils (pH 3.6–5.9). The data indicated that the flushes (increases following CHCl3-fumigation) of total P (Pt) and inorganic P (Pi) determined by Olsen extraction provided little useful information for estimating the amount of microbial biomass P in the soils. Using the Bray-1 extractant at a soil:solution ratio of 1 : 4, and analysing Pi instead of Pt, improves the reproducibility (statistical significance and CV) of the P flush in these soils. In all the approaches studied, the Pi flush determined using the Bray-1 extractant at 1 : 4 provided the best estimate of soil microbial biomass P. Furthermore, the recovery of cultured bacterial and fungal biomass P added to the soils and extracted using the Bray-1 extractant at 1 : 4 was relatively constant (24.1–36.7% and 15.7–25.7%, respectively) with only one exception, and showed no relationship with soil pH, indicating that it behaved differently from added Pi (recovery decreased from 86% at pH 4.6 to 13% at pH 3.6). Thus, correcting for the incomplete recovery of biomass P using added Pi is inappropriate for acid soils. Although microbial biomass P in soil is generally estimated using the Pi flush and a conversion factor (k P) of 0.4, more reliable estimates require that k P values are best determined independently for each soil. Received: 3 February 2000  相似文献   

7.
Dissolved organic matter(DOM) in soil plays an important role in the fate and transport of contaminants.It is typically composed of many compounds,but the effect of different extraction factors on the abundance of different DOM components is unknown.In this study,DOM was extracted from three soils(paddy field,vegetable field and forest soils) with various extraction time,liquid to solid ratios(LSRs),extractant types,and extractant concentrations.The LSR had a significant effect on DOM content,which increased by 0.5–4.0 times among the three soils when LSR increased from 2:1 to 10:1(P 0.05).Dissolved organic matter content increased by 4%–53% when extraction time increased from 10 to 300 min(P 0.05).Extractant concentration had different effects on DOM content depending on the extractant.Higher concentrations of KCl promoted DOM extraction,while higher concentrations of KH_2PO_4 inhibited DOM extraction.Therefore,grey relational analysis was used to further quantitatively evaluate the effect of extraction time,LSR,and extractant concentration on DOM,using KCl as an extractant.For the paddy field and forest soils,the impact of these three factors on DOM extraction efficiency was in the following order:KCl concentration LSR extraction time.However,the effect was different for the vegetable field soil:LSR extraction time KCl concentration.Taking all these factors into account,1.50 mol L~(-1) KCl and an LSR of 10:1 with a shaking time of 300 min was recommended as the most appropriate method for soil DOM extraction.  相似文献   

8.
Abstract

Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g?1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces.  相似文献   

9.
 The effects of a composted organic amendment and solarization on the organic matter (OM) of a sandy soil were determined by means of particle-size fractionation and analysis of carbon and nitrogen contents. After 2 years, total soil carbon increased under organic fertilization but did not significantly change with solarization. As a consequence of the climatic conditions in the greenhouse, the carbon concentrations (g kg–1 fraction) of the particle-size fractions were lower than those found for temperate soils and closer to those for tropical soils. The carbon amounts (g kg–1 soil) and carbon:nitrogen ratios, which were highest in fractions >200 μm, reflected the short-term influence of the industrially processed organic amendment, rich in composted coarse plant debris. In contrast, the characteristics of the OM associated with each fraction were not significantly affected by solarization. In comparison with other coarse-textured temperate or tropical soils, carbon concentrations in fine silt (2–20 μm) and clay (0–2 μm) fractions were very low. This suggests a "greenhouse effect", together with a high rate of carbon mineralization affecting fine silt and clay fractions. Received: 19 November 1999  相似文献   

10.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

11.
Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g−1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces.  相似文献   

12.
Field experiments were carried out at two different forest nurseries during the summer of 1994 to examine the efficacy of soil solarization for the control of damping-off. Both soils hosted Pythium spp., Fusarium spp. and Rhizoctonia solani as damping-off agents. Soil samples from solarized, steamed, fumigated and untreated plots were periodically collected and assayed for soil infectivity. Solarization with a double layer of polyethylene film was as effective as steaming or fumigation in reducing soil infectivity in the uppermost layer. During July the temperature of covered beds rose as high as 50°C at a soil depth of 5cm. The method achieved good control of Pythium spp., the main cause of damping-off at both nurseries, whereas Fusarium spp. were more tolerant. The association of Trichoderma spp. with a reduction of soil infectivity at the last sampling date strongly suggested that biocontrol processes were induced after solarization. Soil solarization provides a suitable method for control of damping-off. Received: 29 October 1996  相似文献   

13.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

14.
 Soils from the former Lake Texcoco are alkaline saline and were artificially drained and irrigated with sewage effluents since the late 1980s. Undrained soil and soil drained for 1, 5 and 8 years were sampled, characterized and incubated aerobically for 90 days at 22±1  °C while production of CO2, available P and concentrations of NH4 +, NO2 and NO3 were monitored. Artificial drainage decreased pHH2O, water holding capacity, organic C, total N, and Na+, K+, Mg2+, B, Cl and SO4 2– concentrations, increased inorganic C and Ca2+ concentrations more than 5-fold while total P was not affected. Microbial biomass C decreased with increased length of drainage but bacteria, actinomycetes, denitrifiers and cellulose-utilizing bacteria tended to show opposite trends. CO2 production was less in soils drained ≥5 years compared to undrained soil but more than in soils drained for 1 year. Emission of NH3 was negligible and concentrations of NH4 + remained constant over time in each soil. Nitrification, as witnessed by increases in NO3 concentrations, occurred in soil drained for 8 years. NO2 concentrations decreased in soils drained ≤1 year in the first 7 days of the incubation and remained constant thereafter. It was found that artificial drainage of soils from the former Lake Texcoco profoundly affected soil characteristics. Decreases in pH and Na+, K+, Cl and SO4 2– concentrations made conditions more favourable for plant growth, although low concentrations of inorganic N and available P might be limiting factors. Received: 1 December 1999  相似文献   

15.
 Degradation of land in vulnerable areas can be significantly reduced by the maintenance or establishment of plant cover and diversity. Animals can facilitate plant diversity by grazing, by dispersing seeds or by contributing, through excreta, to the heterogeneous distribution of nutrients in soil. We investigated the latter property by examining the effects of rabbit (Oryctolagus cuniculus L.) dung deposition on soil properties in three adjacent plant communities at a semi-arid site in south-east Spain. Rabbit faecal pellets had concentrations of total N and P comparable to dung of stock animals, with K and Mg somewhat lower, although decomposition rates at this site are evidently very low. There was no significant difference in pH, but conductivity and concentrations of organic C, N (as NH4 + and NO3 ), K, P and Mg in soils from rabbit latrines were significantly greater relative to controls in each community. Barley plants grown as a bioassay of soil fertility had significantly greater total biomass, and lower root : shoot ratios in latrine compared to control soils. There were differences among communities in conductivity and concentrations of N, P and organic C under latrines which were reflected in the bioassay. Although latrines only comprised approximately 0.1% of the ground surface area in each community, they make significant localised contributions to soil fertility and may therefore be important in establishing and maintaining plant cover. Received: 11 May 1999  相似文献   

16.
 Most model predictions concerning the response of boreal forest ecosystems to climate change are inferred from small-scale experiments on artificial, simplified systems. Whole-ecosystem experiments designed to validate these models are scarce. We experimentally manipulated a small forested catchment in southern Norway by increasing soil temperature (+3  °C in summer to +5  °C in winter) using heating cables installed at 1 cm depth in the litter layer. Especially nitrification in the 0 to 10-cm soil layer increased as a result of the climate manipulation. Betula litter, produced after exposing trees for 2 years to ambient and elevated CO2 in greenhouses, was incubated for 1 year in the manipulated catchment. Exposure to elevated CO2 did not affect the C/N ratio or decomposition of the Betula litter, but lignin content decreased by 10%. We found no effect of elevated temperature on litter decomposition, probably due to desiccation of the litter. The heating cables caused a permanent increase in soil temperature in this soil layer, but when soils were dry, the temperature difference between control and heated plots decreased with increasing distance from the cables. When soils were wet, no gradients in temperature increase occurred. Received: 25 November 1997  相似文献   

17.
 An open incubation technique was used to measure S mineralization in a range of upland soils of north China. Six mineralization patterns were examined, and a soil S-exhaustion experiment with ryegrass (Lolium multiflorum L.) was conducted to investigate the availability of various organic S pools to plants. For all of the 12 soils tested, the release of S as SO4 2– was curvilinear with time, and during a 28-week incubation at 30  °C the amount of S mineralized ranged from 14.0 mg S kg–1 soil to 37.4 mg S kg–1 soil. A first-order model and Gompertz model appeared to best describe S mineralization. Examination of the soils after incubation revealed the bulk of the mineralized S was mainly derived from the C-bonded S pool, while the majority of mineralized S under soil S exhaustion by ryegrass was derived from the HI-reducible S pool. Received: 9 July 1998  相似文献   

18.
Soil solarization is an ecologically friendly method of controlling various plant pathogens and pests, but also affects non-pathogenic members of the soil biota. Here, we studied the impact of soil solarization on the community structure of soil ciliates using a culture-independent molecular approach, namely denaturing gradient gel electrophoresis (DGGE) of targeted 18S rRNA gene fragments. Greenhouse soil with added organic fertilizers was solarized for 33 days at an average temperature of 47–48°C. Solarization caused a drastic change in the ciliate community. The variation between replicates was large, which suggested that the distribution of ciliates was spatially heterogeneous in the soil, probably due to their decreased numbers. In contrast, non-solarized soil had a stable and homogeneous ciliate community during the experimental period. In solarized soil, most of the original ciliate community recovered 76 days after solarization. Sequence analysis of DGGE fragments indicated that both r-selected and K-selected species of ciliates were affected by solarization but recovered with time after solarization. Our results demonstrated both the vulnerability and resilience of the ciliate community to soil solarization and also the utility of using molecular-based analysis of ciliate communities as bioindicators of soil stress caused by solarization.  相似文献   

19.
 CH4 production in an alluvial soil, unamended or amended with rice straw (1% w/w), was examined under nonflooded [–1.5 MPa, –0.01 MPa and 0 MPa (saturated) and flooded (1 : 1.25 soil to water ratio)] conditions during a 40-day incubation in closed Vacutainer tubes. CH4 production was negligible at –1.5 MPa, but increased with an increase in the moisture level. Addition of rice straw distinctly increased CH4 production in the soil at all moisture levels including –1.5 MPa. Evidence, in terms of the drop in redox potential and Fe2+ accumulated, suggested that the addition of rice straw hastened the reduction of the soil, even under nonflooded conditions; thus its addition stimulated even the nonflooded soil to produce CH4 in substantial amounts. Our results indicate that many currently unidentified sources of CH4, possibly including organic-amended nonflooded soils, may make a significant contribution to the global CH4 budget. Received: 10 July 1997  相似文献   

20.
Soil microbial and extractable C and N after wildfire   总被引:12,自引:0,他引:12  
 The effect of wildfire on soil microbes and extractable C (Cext) and N (Next) changed with respect to the time from burning and soil depth. Initially, microbial biomass C (Cmic) and N (Nmic) were drastically reduced in the soil surface layer (0–5 cm) and reduced by 50% in the subsurface (5–10 cm), whereas Cext increased by 62% in the surface layer and did not significantly change in the subsurface. These parameters were affected for the following 4 years, during which the average reductions in the soil surface and subsurface layers were, respectively, 60% and 50% for Cmic, 70% and 45% for Nmic, 60% and 40% for the ratio Cmic: organic C (Corg) and 70% and 30% for the ratio Nmic: total N (Ntot), while for Cext the surface layer was the only zone consistently affected and Cext decreased by up to 59%. Immediately after a fire, the Cext : Corg ratio increased by 3.5-fold and 2-fold in the surface and subsurface layers, respectively; thereafter for 2 years, it decreased in the surface layer (by up to 45%) while the effect on the subsurface layer was not consistent. The effect of burning on Next lasted 1 year, in which Next increased by up to 7- and 3-fold in the surface and subsurface layers, respectively, while the average Next : Ntot ratio doubled in the surface layer and increased by 34% in the subsurface. During the time in which each parameter was affected by burning, the soil factor explained a high percentage of variance in the fluctuations of Cmic, Nmic, Cmic : Corg and Nmic : Ntot, while those of Next and Next : Ntot, but not those of Cext and Cext : Corg depended on both the soil and its depth. In the burned soils similar patterns of response were found between the following parameters listed in pairs: Cmic and Nmic; Cmic : Corg and Nmic : Ntot; Cext and Next; and Cext : Corg and Next : Ntot. However, after the fire relationships found previously between the parameters studied and many other soils properties were either no longer evident, or were inverted. Although the addition of cellulose to the burned soil favoured fungal mycelium development and increased Cmic and Cext contents, the negative effect of burning on the microbial biomass and the Cext was not counteracted even under incubation conditions suitable for both microbial growth and C mineralization. Received: 28 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号