共查询到18条相似文献,搜索用时 62 毫秒
1.
饲料总能近红外反射光谱定量分析模型的优化 总被引:1,自引:0,他引:1
利用近红外反射分析技术, 采用偏最小二乘(PLS)回归方法,分别对光谱进行附加散射校正、变量标准化、一阶导数和二阶导数处理,建立了饲料中总能的预测模型.通过比较,附加散射校正和一阶导数处理定标效果最优.定标集化学分析值与预测值之间的决定系数R2和标准差RMSEC分别为0.9060和0.153,相对分析误差为3.36;验证集化学分析值与预测值之间的决定系数r2和标准差RMSEP分别为0.8924和0.156,相对分析误差为3.22.结果表明,利用近红外光谱反射(NIRS)分析技术可以定量检测充料总能的含量. 相似文献
2.
鱼粉中氨基酸近红外光谱定量分析 总被引:22,自引:8,他引:14
收集了145个鱼粉样本,应用偏最小二乘(PLS)方法,建立了鱼粉中17种氨基酸和总氨基酸NIRS定标模型。天冬氨酸、蛋氨酸、赖氨酸、苏氨酸、谷氨酸、甘氨酸、丙氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、精氨酸、脯氨酸和总氨基酸的化学分析值与NIRS预测值的决定系数R^2都达到0.87以上,相对标准差均小于10%,相对分析误差均大于3;酪氨酸的决定系数R^2为0.8678,相对标准差为8.65%,相对分析误差为2.77;组氨酸、丝氨酸和半胱氨酸的决定系数R。分别为0.9005、0.7436和0.3541,相对标准差分别为14.19%、17.85%和33.85%,相对分析误差分别为2.96、1.98和1.04。结果表明,利用近红外光谱分析技术能够较准确地检测鱼粉中14种氨基酸;酪氨酸只能进行粗略估测;组氨酸、丝氨酸和半胱氨酸难于进行实际检测。 相似文献
3.
为了实现核桃仁蛋白质的快速无损检测,采用近红外光谱技术,建立了核桃仁蛋白质含量预测模型,并对近红外光谱波段筛选方法进行了研究。首先针对3种不同粒度核桃仁样本,采集了1040~2560nm范围全波段信息,采用多元散射校正法和标准正态化方法对原始光谱进行了预处理。然后,采用间隔偏最小二乘算法筛选了光谱特征波段,并建立了全波段和特征波段下核桃仁蛋白质含量偏最小二乘算法预测模型。通过对不同粒度核桃仁样本近红外光谱分析表明,核桃仁粒度大小对核桃仁蛋白质含量预测效果并无显著影响。采用间隔偏最小二乘算法的波段筛选,核桃整仁样本验证集的均方根误差和相关系数分别为0.021和0.913, 表明该方法能够优化模型质量并降低模型复杂度。 相似文献
4.
基于近红外与中红外光谱技术的淀粉回生度检测 总被引:1,自引:0,他引:1
淀粉食品在加工、运输及储藏过程中会逐渐出现回生,其回生程度是影响淀粉食品品质的重要因素。利用近红外和中红外光谱技术快速、无损检测淀粉回生度。首先采集了储存不同时间淀粉的近红外和中红外光谱,分别利用近红外、中红外以及两者融合的光谱数据结合化学计量学方法(偏最小二乘法(PLS、iPLS、biPLS、siPLS))建立淀粉回生度检测模型。结果显示,近红外和中红外融合光谱技术的biPLS检测模型最佳,校正集和预测集相关系数分别为0.965 5和0.931 3。研究结果表明,红外光谱技术可以快速、无损检测玉米淀粉回生度,保障了富含淀粉食品的质量与安全。 相似文献
5.
基于NIRS的苹果酒特征香气生成动力学模型 总被引:1,自引:0,他引:1
在前期探明苹果酒特征香气种类的基础上,对苹果酒发酵过程中特征香气的近红外光谱检测模型进行了研究,结果表明选择波数为9747.1 ~7498.3cm-1和6102.0~5446.3cm-1两段谱区,采用一阶导数和多元散射校正处理光谱后,利用偏最小二乘法建模效果较好,其中校正集R2为0.920 5,交叉验证均方根差为4.87 mg/L;验证集预测值与实测值的R2为0.938 8,预测均方根差为3.76 mg/L,表明利用近红外光谱法建立的模型达到了良好的预测效果.研究了苹果酒发酵过程中特征香气的产生特性,基于Luedeking-Piret方程,建立了描述苹果酒特征香气生成的动力学模型(R2为0.993 0),经检验表明该模型能够很好地拟合苹果酒发酵过程特征香气的生成状况. 相似文献
6.
近红外透射光谱无损检测赣南脐橙糖度的研究 总被引:1,自引:0,他引:1
探讨了近红外透射光谱无损检测赣南脐橙内部糖度指标的可行性,并建立近红外透射光谱与赣南脐橙内部糖度指标之间的关系.以80个赣南脐橙为研究对象,利用透射光谱测定法获取完整赣南脐橙的近红外光谱(200~1100nm),选取不同的光谱波段范围对水果样本的透射光谱进行有效信息的提取,并结合多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)3种不同的数学校正方法对赣南脐橙的糖度(SC)进行定量分析.实验结果为:在550~900nm波段范围内,PLS校正模型的预测精度最好,其相关系数为0.9032,预测样本均方根误差为0.2421.实验结果表明,近红外透射光谱可以作为一种准确、可靠、无损的检测方法,用于检测赣南脐橙内部的糖度指标. 相似文献
7.
基于可见/近红外光谱的牡丹叶片花青素含量预测 总被引:1,自引:0,他引:1
以开花初期不同品种牡丹叶片为研究对象,分析叶片花青素含量与反射光谱之间的相关关系,分别建立基于单波长、不同植被指数、相关系数大于0.52的可见光波段的叶片花青素含量预测模型。研究结果表明,牡丹叶片反射光谱与花青素含量的最大相关系数位于544 nm;以544 nm波长反射率及花青素反射指数(ARI)、调整花青素反射指数(MARI)为自变量建立的预测模型可以用于牡丹叶片花青素含量预测;以偏最小二乘回归(PLSR)构建的牡丹叶片花青素含量预测模型的建模和验模R2分别为0.873和0.811,RMSE为0.068μmol/g,RPD为2.352,是预测牡丹叶片花青素含量的最优模型。 相似文献
8.
鱼粉中肉骨粉含量的近红外反射光谱分析 总被引:9,自引:3,他引:9
收集了112个鱼粉和34个肉骨粉样品,在鱼粉中掺入不同比例(5%~60%)的肉骨粉,制备了163个样本。应用偏最小二乘(PLS)定标方法,在8678.10~4250.34cm。波数范围内,采用变量标准化(SNV)、7点平滑和一阶导数对光谱进行预处理,建立了鱼粉中肉骨粉含量的NIRS定量分析模型。定标集真值与NIRS定标模型预测值之间的决定系数R^2和标准差RMSEC分别为0.9529和3.22,相对分析误差RPD为4.798。验证集真值与NIRS预测值之间的决定系数r^2及标准差RMSEP分别为0.9668和2.68,相对分析误差RPD为5.484。结果表明.利用NIRS分析技术可准确地检测鱼粉中肉骨粉含量. 相似文献
9.
10.
在使用近红外光谱技术进行食用油酸值与过氧化值检测时,仪器制造与检测环境的差异导致不同仪器建立的校正模型无法共享。为解决食用油酸值与过氧化值模型转移问题,使用125个食用油样本于主机建立偏最小二乘校正模型,采用光谱空间转换法进行模型转移,并与斜率/截距算法、直接标准化算法、分段直接标准化算法、极限学习机自编码器算法进行对比。结果表明,采用光谱空间转换法进行模型转移后,验证集酸值与过氧化值的预测均方根误差分别从0.583 6 mg/g和15.801 0 mmol/kg降低到了0.167 0 mg/g与9.989 3 mmol/kg,说明光谱空间转换法可以有效应用于食用油酸值与过氧化值间的模型转移,使不同仪器之间实现模型共享,这对于近红外光谱应用于食用油品质快速检测具有实际意义。 相似文献
11.
应用激光拉曼光谱技术结合偏最小二乘法实现了食用调和油中5种原料油(花生油、芝麻油、菜籽油、大豆油和玉米油)的定量检测。首先选取食用油脂肪酸信息丰富的169.58~1813.61cm-1谱区,再通过一阶导数+Norris 3点预处理对该谱区进行滤波去噪,净化拉曼光谱信息,采用偏最小二乘法建立食用调和油中各原料组分的拉曼定量检测模型,其中花生油、芝麻油、菜籽油、大豆油和玉米油的检测模型的校正集相关系数分别为0.9998、0.9418、0.9988、0.9998、0.9961,验证集相关系数分别为0.9435、0.8593、0.9542、0.9676、0.9429,均方根误差分别为0.117、0.218、0.128、0.125、0.179。研究结果表明,激光拉曼光谱法结合化学计量学方法快速、准确地测定食用调和油中各原料组分的含量具有可行性,且预测能力良好。 相似文献
12.
芝麻油掺伪的近红外透射光谱检测技术 总被引:2,自引:0,他引:2
采用近红外光谱技术结合间隔偏最小二乘法分别建立芝麻油中掺入大豆油、玉米油和花生油的定量检测模型。实验配制不同比例的掺假芝麻油混合样品,采集样品在4 000~12 000 cm-1范围内的近红外透射光谱,把数据分为校正集与预测集。将4 420~12 000 cm-1波段的光谱进行各种预处理,最佳方法为平滑预处理,并利用间隔偏最小二乘波长筛选法(iPLS)选取光谱特征波段,最后采用偏最小二乘法建立掺假芝麻油的定标模型。结果显示:3种掺假芝麻油的PLS模型预测相关系数分别达到0.998、0.999、0.999,预测均方根误差分别为0.24%、0.24%和0.19%,具有较高的预测精度。实验证明近红外光谱技术对芝麻油掺假的快速检测具有可行性。 相似文献
13.
基于近红外光谱的食用油酸价和过氧化值自动化检测 总被引:1,自引:0,他引:1
为实现食用油酸价和过氧化值的自动化快速检测,以常见食用油为材料,利用近红外自动分析仪结合连续进样流通池,建立食用油酸价和过氧化值的定量模型并进行模型验证。结果表明:在波数范围为5 500~4 600 cm-1时,光谱预处理选择(6 524,4 823)两点基线校正和标准正交变换,酸价定量模型验证相关系数和预测标准偏差分别为0.987 3和0.114 mg/g;在波数范围为6 050~4 450 cm-1时,选择一阶求导和Norris导数平滑,过氧化值定量模型验证相关系数和预测标准偏差分别为0.995 8和0.90 mmol/kg;模型盲样验证效果良好,模型可行,通过近红外自动分析仪每小时可检测90个样品。 相似文献
14.
葡萄酒发酵过程主要参数近红外光谱分析 总被引:2,自引:0,他引:2
用近红外光谱结合化学计量学方法对葡萄酒酒精发酵中葡萄糖、果糖、乙醇和甘油4个指标进行了定量分析,化学指标的测定采用高效液相色谱法.通过对近红外数据进行筛选、变量标准化等预处理,比较了主成分回归和偏最小二乘回归定量分析的模型质量,以决定系数、校正均方根误差、预测均方根误差为模型质量的评价指标.通过比较发现,对于葡萄糖和果糖,主成分回归与偏最小二乘回归的预测精度相当;对于乙醇,主成分回归预测结果较优;对于甘油,偏最小二乘回归的预测结果要优于主成分回归.主成分回归所采用的成分数要多于偏最小二乘回归,但二者都可以用于上述4种成分的定量分析,其预测精度也相近. 相似文献
15.
16.
17.
基于近红外光谱技术的叶面药液浓度检测 总被引:1,自引:0,他引:1
提出了一种应用近红外光谱技术快速检测叶面药液浓度的方法。采用漫反射测量方式获取了叶面药液的近红外光谱。选用标准偏差归一化、三点滑动平均滤波和一阶导数为最优组合预处理。通过7种波段方案的对比,得出最优波段为350~1 900 nm。采用偏最小二乘法建立了叶面药液质量浓度与光谱反射率的定量分析模型。其预测集相关系数为0.994,预测均方根误差为0.039。结果表明,利用近红外光谱技术检测叶面药液浓度具有实际指导意义。 相似文献
18.
基于支持向量机的有机肥总养分含量NIRS分析 总被引:1,自引:1,他引:1
以我国22个省市的120份畜禽粪便为原料的有机肥产品样品为研究对象,利用近红外漫反射光谱法与支持向量机相结合建立了有机肥产品中总养分含量的快速测定模型,并与偏最小二乘法所建模型作了比较.利用偏最小二乘回归法所建立的基于原始样品和干燥粉碎样品的总养分含量近红外模型验证决定系数R_v~2、预测标准差SEP和验证相对分析误差RPD分别为0.96、7.95 g/kg、2.47和0.93、8.02 g/kg、3.58.利用支持向量机回归法所建立的干燥粉碎样品中总养分含量的近红外模型验证决定系数R_v~2、预测标准差SEP和验证相对分析误差RPD分别为0.93、7.38 g/kg和3.88.结果表明,近红外漫反射光谱法可以快速测定畜禽粪便为原料的有机肥产品中总养分含量,与偏最小二乘法相比,支持向量机所建模型具有更高的预测精度. 相似文献