首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal and rheological properties of sago starch have been studied in the presence of various concentrations of locust bean gum and guar gum of various molecular masses. At the concentrations studied (<1%) the galactomannans gave rise to only a very slight increase in the gelatinization temperature (up to 0.6 degrees C), and the gelatinization enthalpy remained constant within experimental error. For the low molecular mass galactomannans, depending on the concentration, the storage modulus, G', of the mixtures remained constant or actually decreased, and tan delta remained very low (0.01-0.03 at 0.1 Hz), indicating strong elastic gels. For the higher molecular mass samples G' increased significantly; however, the loss modulus, G' ', increased proportionally to a greater extent, and at 1% galactomannan tan delta was approximately 0.20 at 0.1 Hz, indicating a reduction in elastic character. The systems were shown to undergo phase separation, and the variations in rheological properties have been discussed in the context of their phase behavior and the relative rates of the phase separation and gelation processes. The presence of galactomannans significantly improved the freeze-thaw stability.  相似文献   

2.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

3.
The starches were separated from unripe apples of five cultivars (Criterion, Ruspippum, Red Spur, Skyline Supreme, and Granny Smith) and evaluated using scanning electron microscopy (SEM), gel permeation chromatography (GPC), X-ray diffraction, differential scanning calorimetry (DSC), and dynamic viscoelasticity. SEM showed the presence of round granules as well as granules that had been partially degraded, probably by amylases. The starch granules in different apple starches ranged between 4.1 and 12.0 mum. Debranching of starch with isoamylase and subsequent fractionation of debranched materials by GPC revealed the presence of an apparent amylose, an intermediate fraction (mixture of amylose and amylopectin), long side chains of amylopectin, and short side chains of amylopectin in the range of 28-35.2, 3.6-4.4, 20-21.3, and 39.9-47.1%, respectively. The swelling power of starches ranged between 14.4 and 21.3 g/g. X-ray diffraction of apple starches showed a mixture of A- and B-type patterns. All apple starches showed peak intensities lower than that observed for normal corn and potato starch, indicating the lower crystallinity. The transition temperatures (onset temperature, T(o); peak temperature, T(p); and conclusion temperature, T(c)) and enthalpy of gelatinization (deltaH(gel)) determined using DSC ranged between 54.7 and 56.2 degrees C, between 57.1 and 59.1 degrees C, between 60.2 and 63.5 degrees C, and between 3.3 and 4.2 J/g, respectively. The viscoelastic properties of starch from different cultivars measured during heating and cooling using a rheometer differed significantly. Red Spur and Criterion starches with larger granule size showed higher G' and G' ' values, whereas those containing smaller size and amylolytically degraded granules showed lower G' and G' '.  相似文献   

4.
The objective of this study was to compare gelatinization properties and molecular composition of starches extracted from locally grown organic and conventional spelt using thermal, rheological, and SEC analyses, along with Concanavalin A method. Organic and conventional spelt was planted in six replicated plots, and the extracted starch was analyzed for their gelatinization properties. DSC showed that the gelatinization temperature ranged from 56.7 to 68.8 °C with an average peak of 62.4 °C, with no evidence for statistical difference in gelatinization properties between treatments. Rheological behavior variation among samples was more pronounced than that between the two growing conditions. The amylose content ranged from 23.0% to 29.8%. There was no significant difference in the molecular weight of amylose and amylopectin irrespective of the plot locations, although a significant difference was found between the amylopectin molecular weight of organic and conventional spelt starches when analyzed collectively. The organic spelt starch studied may substitute the conventional starch when gelatinization behavior is considered.  相似文献   

5.
The effects of various salts on the gelatinization and rheological properties of sago starch have been studied using differential scanning calorimetry, small deformation oscillation, and large deformation techniques. The presence of salts affected the gelatinization peak temperature, T(p), gelatinization enthalpy, DeltaH, swelling properties, storage modulus, G', gel strength, GS, and gelation rate constants, k, depending on the type of salt and the concentration. Their influence followed the Hofmeister series, and the effect of anions was more pronounced than that of cations. Sulfate ions increased T(p), G', GS, and k and reduced the swelling properties, whereas iodide and thiocyanate ions reduced T(p), G', GS, and k but increased the swelling properties. For all of the salts studied except for Na(2)SO(4), T(p) increased to a maximum and then decreased again at higher salt concentrations while DeltaH reduced with concentration. In the presence of MgCl(2), CaCl(2), and LiCl complex behavior was observed such that at approximately 3.5 M MgCl(2) and CaCl(2) and 8 M LiCl the starch samples were gelatinized at room temperature, whereas at much higher concentration T(p) increased again and the transition became exothermic.  相似文献   

6.
The rheological behavior of concentrated starch preparations from two different origins (wheat and waxy corn) was studied in the presence of sucrose by dynamic mechanical thermal analysis (DMTA). Moisture contents ranged from 30 to 60% (w/w wsb), and samples contained 0, 10, or 20 g of sucrose for 100 g of the starch-water mixture. The storage modulus (G') changes during heating depended strongly on water content (in the moisture range studied), and the importance of these variations was dependent upon the starch type. Sucrose addition resulted in a shift to higher temperatures of the increase in G' during heating. Differential scanning calorimetry (DSC) and electron-spin resonance (ESR) analyses were performed in parallel in order to relate the viscoelastic changes to water migrations and to structural disorganization of starch. Sucrose was found to increase the gelatinization temperature and enthalpy of both starches, implying a stabilization of the granular structure during heating. The sugar-water interactions do not appear to be the only way by which sucrose delays starch gelatinization. The obtained results suggest that sugar-starch interactions in the amorphous and/or the crystalline regions of the starch granules should be envisaged.  相似文献   

7.
The physicochemical properties of small‐ and large‐granule wheat starches were investigated to reveal whether gelatinization properties and rheological behavior differ between size classes of wheat starch. All samples contained 60% water (w/w, wb). The starch granule size and shape were examined by scanning electron microscopy in the separated A‐ and B‐type granule populations and in the whole wheat starch granule population. Differential scanning calorimetry (DSC) and electron spin resonance (ESR) analyses were performed in parallel with rheological measurements using dynamic mechanical thermal analysis (DMTA) to relate the viscoelastic changes to modifications in dynamic properties of aqueous solutions and structural disorganization of starch. The small (B‐type) granules had slightly higher gelatinization temperature and lower gelatinization enthalpy than did the large (A‐type) granules. Also, B‐type granules had higher enthalpy for the amylose‐lipid complex transition. Moreover, our results suggested that small granules have higher affinity for water at room temperature. It seems that there is a less ordered arrangement of the polysaccharide chains in the smaller granules when compared with the larger ones. These differences in functional properties of small and large granules suggested that the granule size distribution is an important parameter in the baking process.  相似文献   

8.
To determine the effect of amylose content on the starch properties, the amylose content, pasting properties, swelling power, enzymatic digestibility, and thermal properties of partial and perfect waxy types along with their wild‐type parent were analyzed. As expected, amylose content decreases differently in response to the loss of each Wx gene, showing the least response to Wx‐A1a. Most of the characteristics, except the thermal properties of the amylose‐lipid complex in differential scanning calorimetry (DSC), differed significantly among the tested types. Furthermore, the breakdown, setback, and pasting temperatures from the Rapid Visco Analyser (RVA) and the enzymatic digestibility, swelling power, peak temperature, and enthalpy of starch gelatinization from DSC showed a correlation with the amylose content. The relationships between the peak viscosity from the RVA and the onset temperature of starch gelatinization determined by DSC with amylose content of the tested materials were not clear. Waxy starch, which has no amylose, showed a contrasting behavior in starch gelatinization compared with nonwaxy starches. Among the nonwaxy starches, lower setback, lower pasting temperature, higher enzyme digestibility, higher peak temperature, higher enthalpy of starch gelatinization, and higher swelling were generally associated with low amylose starches.  相似文献   

9.
Structural characteristics of native and annealed Peruvian carrot (Arracacia xanthorrhiza) starches were determined and compared to those of cassava and potato starches. Peruvian carrot starch presented round and irregular shaped granules, low amylose content and B-type X-ray pattern. Amylopectin of this starch contained a large proportion of long (DP > 37) and short (DP 6-12) branched chains. These last ones may contribute to its low gelatinization temperature. After annealing, the gelatinization temperatures of all starches increased, but the ΔH and the crystallinity increased only in Peruvian carrot and potato starches. The annealing process promoted a higher exposure of Peruvian carrot amylose molecules, which were more quickly attacked by enzymes, whereas amylopectin molecules became more resistant to hydrolysis. Peruvian carrot starch had structural characteristics that differed from those of cassava and potato starches. Annealing affected the semicrystalline structure of this starch, enhancing its crystallinity, mainly due to a better interaction between amylopectin chains.  相似文献   

10.
The effects of environmental temperature (21 vs. 28°C) during rice seed development on the starch characteristics (apparent amylose content, amylopectin chain length distribution, and gelatinization properties) of nonwaxy Taichung 65 (T65), waxy Taichung (T65wx), du2‐2 mutated low‐amylose strain Taichung (76‐3/T65), and Koshihikari were studied. Amylose contents increased with decreasing environmental temperatures. Analysis of the amylopectin chain length distribution showed that the relative amounts of long chains with degree of polymerization (DP) > 25 in all starches decreased if maturation occurred at 21°C. Gelatinization onset, peak, and conclusion temperatures and enthalpies decreased with decreasing environmental temperatures. Of all starches studied, the du2‐2 mutated low‐amylose Taichung (76‐3/T65) was most affected by maturation temperatures. These results indicate that the du2‐2 mutated low‐amylose Taichung (76‐3/T65) may be a useful strain in understanding biochemical and genetic starch biosynthesis response to slight changes in temperature.  相似文献   

11.
Although starch makes up from 50 to 70% of sweetpotato (SP) dry matter, its role in cooked texture is unknown. The purpose of this research was to characterize raw starches isolated from SP cultivars and experimental selections (C/S) with a wide range of textural properties when cooked and to investigate the relationship between textural properties of the cooked roots and characteristics of the isolated starches. Shear stress measured by uniaxial compression of cooked SP cylinders served as an objective measure of SP texture. Starches were isolated from C/S representing three SP texture types: moist (Jewel and Beauregard); intermediate (NC10-28 and NC2-26); and dry (NC6-30 and NC8-22). The following parameters of isolated starches were measured: amylose content by colorimetric and differential scanning calorimetric (DSC) methods; swelling power, solubility, gelatinization enthalpy (DeltaH), and pasting properties by Brabender amylograph (BA) and rapid viscoanalyzer (RVA). Pasting temperatures for SP C/S measured by BA and RVA were significantly correlated. Due to high shear degradation in RVA, RVA viscosities of starch suspensions decreased as much as 40% during cooking at 95 degrees C, whereas the BA viscosities changed little at this temperature. There were no statistically significant differences among the C/S for amylose or DeltaH. However, significant C/S differences in swelling power, solubility, and pasting properties were observed. Although differences in some rheological and physical properties were observed for C/S starches, shear stress was statistically correlated only with DSC onset temperature (r = 0.78), indicating that factors other than the properties measured on isolated starches are mainly responsible for the texture of cooked SP C/S.  相似文献   

12.
Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch.  相似文献   

13.
Five cassava genotypes were investigated to identify the fine amylopectin structures and granule chemical compositions, which differentiated the starches into high (T(o) = 63.7 degrees C on average) and low (57.3 degrees C on average) gelatinization temperatures. The amylose contents (15.9-22.4%) and granular dimensions (12.9-17.2 microm) significantly differed among the starches. Diverse amylopectin structural elements resulted in significant swelling power, viscoelastic properties, and gel firmness. Debranched starches revealed a trimodal amylopectin distribution of three fractions: FIII (DP 12), FII (DP 24.31), and FI (DP 63) and FIII (DP 12), FII (DP 24.69), and FI (DP 67) for the low and high gelatinization starch groups, respectively. The higher proportion of FI long chain entanglement with amylose chain lengths to form longer helical structures was confirmed in the high gelatinization starch group, which developed "true" gels with better shear resistance, frequency independence, and higher gel firmness. Significant amounts of resistant starch fractions revealed the potential for application of these genotype starches in diverse foods.  相似文献   

14.
Temperature during grain ripening has been shown to affect amylose content and gelatinization temperature of rice starch (1–6). These studies demonstrated that high ambient temperature results in lower amylose content and higher gelatinization temperature of the starch. Rice starches obtained from rice grains that matured at lower temperature had higher iodine blue values and were more susceptible to alkali digestion than those that ripened at higher temperature.  相似文献   

15.
The effect of temperature and duration of cooking on plantain and banana fruit texture and cytpoplasmic and cell wall components was investigated. The firmness of both banana and plantain pulp tissues decreased rapidly during the first 10 min of cooking in water above 70 degrees C, although plantain was much firmer than banana. Cooking resulted in pectin solubilzation and middle lamella dissolution leading to cell wall separation (as observed by SEM). Dessert banana showed more advanced and extensive breakdown than plantain. Although dessert banana had a higher total pectin content than plantain, the former had smaller-sized carboxyethylenediaminetetraacetic acid (CDTA) soluble pectic polymers which are associated with plant tissues that have a propensity to soften. Plantain had higher levels of starch and amylose than banana but this was associated with a firmer fruit texture rather than a softening due to cell swelling during starch gelatinization. Different cooking treatments showed that cooking in 0.5% of CaCl(2) solution and temperatures below 70 degrees C had significant effects on maintenance of pulp firmness.  相似文献   

16.
Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.  相似文献   

17.
The effects of amylose content and other starch properties on concentrated starch gel properties were evaluated using 10 wheat cultivars with different amylose content. Starches were isolated from grains of two waxy and eight nonwaxy wheat lines. The amylose content of waxy wheat lines was 1.4–1.7% and that of nonwaxy lines was 18.5–28.6%. Starch gels were prepared from a concentrated starch suspension (30 and 40%). Gelatinized starch was cooled and stored at 5°C for 1, 8, 16, 24, and 48 hr. The rheological properties of starch gels were studied by measuring dynamic viscoelasticity with parallel plate geometry. The low‐amylose starch showed a significantly lower storage shear modulus (G′) than starches with higher amylose content during storage. Waxy starch gel had a higher frequency dependence of G′ and properties clearly different from nonwaxy starches. In 40% starch gels, the starch with lower amylose showed a faster increase in G′ during 48 hr of storage, and waxy starch showed an extremely steep increase in G′. The amylose content and concentration of starch suspension markedly affected starch gel properties.  相似文献   

18.
We studied the effect of amylose content on the gelatinization, retrogradation, and pasting properties of starch using wheat starches differing in amylose content. Starches were isolated from waxy and nonwaxy wheat and reciprocal F1 seeds by crossing waxy and nonwaxy wheat. Mixing waxy and nonwaxy wheat starch produced a mixed starch with the same amylose content as F1 seeds for comparison. The amylose content of F1 seeds ranged between waxy and nonwaxy wheat. Nonwaxy‐waxy wheat had a higher amylose content than waxy‐nonwaxy wheat. Endothermic enthalpy and final gelatinization temperature measured by differential scanning calorimetry correlated negatively with amylose content. Gelatinization onset and peak temperature clearly differed between F1 and mixed starches with the same amylose content as F1 starches. Enthalpy for melting recrystallized starches correlated negatively with amylose content. Rapid Visco Analyser measurement showed that F1 starches had a higher peak viscosity than waxy and nonwaxy wheat starches. Mixed starches showed characteristic profiles with two low peaks. Setback and final viscosity correlated highly with amylose content. Some of gelatinization and pasting properties differed between F1 starches and mixed starches.  相似文献   

19.
Myosin rod and light meromyosin (LMM) of walleye pollack and white croaker were examined for their rheological properties by measuring dynamic viscoelastic parameters. Rods from walleye pollack and white croaker increased their storage moduli (G') in the ranges of 29-43 degrees C and 31-38 degrees C, respectively, in temperature sweep analysis. Walleye pollack LMM showed no peak of G' upon heating, whereas the white croaker counterpart exhibited a single sharp peak of G' at 35 degrees C. Loss modulus (G") showed similar temperature-dependent changes for the two fish species as the case of G', irrespective of rod and LMM, although G" values were lower than those of G'. Thus, rheological properties of rod and LMM were different between walleye pollack and white croaker. Taken together with data previously reported for myosin, it was considered that both myosin rods from walleye pollack and white croaker are attributed to thermal gel formation of myosin in a low-temperature range, though in a species-specific manner.  相似文献   

20.
Mixolab is a new instrument with capability to measure starch pasting properties on actual dough. It characterizes dough rheological behavior using a dual constraints of mixing and temperature. Rice samples (183) collected from 15 provinces across China were tested to determine the possibility of using Mixolab in predicting rice quality. Mixolab measurements, torque (Nm) at different mixing and heating stages (C1 to C5) were compared with rice quality characteristics (gelatinization temperature and consistency, amylose and protein contents), Rapid Visco‐Analyser (RVA) parameters and sensory assessments scores of cooked rice. Our results showed that Mixolab parameters were good indicators of amylose and protein content and quality suggested by significant correlations among Mixolab parameters, and between Mixolab and RVA measurements. Based on a subsample of 30 rice cultivars, correlation coefficients between the Mixolab parameter C4 and sensory assessment characteristics of palatability and total sensory score was negatively significant (P < 0.05). Cb (C3 – C4) was also significantly correlated with flavor (P < 0.05). The rice samples that gave high palatability and total sensory scores had low C4 values and low amylose contents. The cooked rice with high flavor had high values of Cb and GT but low protein content. It is possible to determine physicochemical properties of rice flour and sensory characteristics of cooked rice using Mixolab parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号