首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REASONS FOR PERFORMING STUDY: High-dose dobutamine stress echocardiography has been shown to be cardiotoxic and arrhythmogenic in horses. However, the test may have benefit in practice as a pharmacological challenge of exercise without the treadmill being required. OBJECTIVES: To investigate the effect of low-dose dobutamine on cardiac performance in ponies previously treated with atropine, in order to develop a pharmacological protocol that allows examination of the equine heart under stimulation. METHODS: In 13 healthy Shetland ponies, heart rate (HR), stroke index (SI) and cardiac index (CI) were calculated from pulsed-wave Doppler ultrasound measurements performed at rest and during incremental steps of dobutamine infusion. Group 1 (n = 7) received dobutamine infusion at 2 microg/kg bwt/min for 5 mins followed by incremental rates of 5 microg/kg bwt/min every 5 mins, from 5 to 40 microg/kg bwt/min. Group 2 (n = 6) received dobutamine infusion in incremental rates of 1 microg/kg bwt/min, every 5 mins, from 2 microg/kg bwt/min to 5 microg/kg bwt/min, after premedication with 2 injections of 25 microg/kg bwt of atropine 5 mins apart. RESULTS: The increase in CI during the pharmacological challenge was higher in Group 2 and reached about 2.5 times the resting value. This increase in CI was mediated by a significant increase in HR in both groups, while SI significantly decreased in Group 1 and did not change significantly in Group 2. Ponies of Group 1, but not those of Group 2, showed excessive restlessness and cardiac arrhythmias during the pharmacological challenge and a high intragroup variability in cardiac response. CONCLUSIONS: The results of this study suggest that a low dose of dobutamine in ponies previously given atropine could be a helpful pharmacological protocol to perform stress echocardiography in equids. POTENTIAL RELEVANCE: Further studies should evaluate left ventricular wall motion in horses undergoing low-dose dobutamine protocol after pretreatment with atropine.  相似文献   

2.
The toxicokinetics of ergovaline (an ergopeptine mycotoxin present in some grasses infected with endophytic fungus of the genus Neotyphodium) were studied after intravenous administration of a single dose of 15 microg/kg bwt in four gelding horses. Plasma ergovaline concentrations were measured by high performance liquid chromatography, and the kinetic data were described by a three-compartment model. The elimination half-life and the total clearance of ergovaline were found to be 56.83 +/- 13.48 min and 0.020 +/- 0.004 L/min x kg, respectively. According to the toxicological data previously reported in the horse, and in spite of the very low dose administered, clinical signs were observed, including excessive coolness of the ears and the nose, excessive sweating and prostration.  相似文献   

3.
REASONS FOR PERFORMING STUDY: In order to evaluate its potential as an adjunct to inhalant anaesthesia in horses, the pharmacokinetics of fentanyl must first be determined. OBJECTIVES: To describe the pharmacokinetics of fentanyl and its metabolite, N-[1-(2-phenethyl-4-piperidinyl)maloanilinic acid (PMA), after i.v. administration of a single dose to horses that were awake in Treatment 1 and anaesthetised with isoflurane in Treatment 2. METHODS: A balanced crossover design was used (n = 4/group). During Treatment 1, horses received a single dose of fentanyl (4 microg/kg bwt, i.v.) and during Treatment 2, they were anaesthetised with isoflurane and maintained at 1.2 x minimum alveolar anaesthetic concentration. After a 30 min equilibration period, a single dose of fentanyl (4 microg/kg bwt, i.v.) was administered to each horse. Plasma fentanyl and PMA concentrations were measured at various time points using liquid chromatography-mass spectrometry. RESULTS: Anaesthesia with isoflurane significantly decreased mean fentanyl clearance (P < 0.05). The fentanyl elimination half-life, in awake and anaesthetised horses, was 1 h and volume of distribution at steady state was 0.37 and 0.26 l/kg bwt, respectively. Anaesthesia with isoflurane also significantly decreased PMA apparent clearance and volume of distribution. The elimination half-life of PMA was 2 and 1.5 h in awake and anaesthetised horses, respectively. CONCLUSIONS AND POTENTIAL RELEVANCE: Pharmacokinetics of fentanyl and PMA in horses were substantially altered in horses anaesthetised with isoflurane. These pharmacokinetic parameters provide information necessary for determination of suitable fentanyl loading and infusion doses in awake and isoflurane-anaesthetised horses.  相似文献   

4.
REASON FOR PERFORMING STUDY: The bronchodilator effects of trimetoquinol (TMQ) have been studied when administered i.v. or intratracheally, but not in an aerosolised form. OBJECTIVES: To define the relationship between the therapeutic and adverse responses (therapeutic index) of TMQ when administered as an aerosol or by the oral route. METHODS: Increasing doses of TMQ were administered to horses with heaves as an aerosol and by the oral route. Dose ranged 100-1000 microg/horse for aerosolised TMQ and from 6-60 microg/kg bwt for the oral route. Airway and cardiac effects were assessed by measurement of maximal change in pleural pressure (deltaPplmax) and heart rate (HR), respectively. Side effects of sweating, agitation and muscle trembling were scored subjectively. Duration of action of aerosolised (1000 pg/horse) and oral (6-60 microg/kg bwt) TMQ was evaluated over 6 h. RESULTS: Aerosol administration of TMQ caused dose-dependent bronchodilation but did not change HR or cause other observable side effects. When 1000 microg/horse was administered via aerosol, TMQ produced a 2-phase bronchodilation; an immediate effect lasting up to 30 min and a second phase between 2 and 4 h. Oral TMQ was therapeutically ineffective. CONCLUSION: Aerosol administration of TMQ is a safe and effective method of producing bronchodilation in horses.  相似文献   

5.
REASONS FOR PERFORMING STUDY: It has been reported that i.v. flecainide has a high efficacy for the treatment of experimentally-induced acute atrial fibrillation (AF) in horses and that its use is associated with minimal toxic side effects. OBJECTIVES: The objectives were to study the efficacy of i.v. flecainide as a treatment for atrial fibrillation in horses with naturally-occurring AF. METHODS: Ten horses with naturally-occurring AF were treated with 2 mg/kg bwt flecainide i.v. at a rate of 0.2 mg/kg bwt/min. In 3 horses, the infusion was continued at 0.05-0.10 mg/kg bwt/min until a total dose of 3.0 mg/kg bwt had been administered. Heart rate, QRS duration and average interval between fibrillation waves were measured before, during and following flecainide infusion. If conversion to normal sinus rhythm was not achieved, horses were treated with quinidine sulphate per os at a dose of 22 mg/kg bwt given every 2 h. RESULTS: None of the horses with chronic AF (n = 9) converted to sinus rhythm with flecainide i.v. The only horse treated successfully had acute AF of 12 days' duration. The QRS duration and fibrillation cycle length increased significantly (P = 0.006 and 0.002, respectively) during and following flecainide infusion. Heart rate did not increase significantly over time however, 3 horses developed heart rates in excess of 100 beats/min. Two horses developed a potentially dangerous ventricular dysrhythmia during the first 15 mins of treatment. Quinidine sulphate given per os restored sinus rhythm in 8 out of 9 horses, with minimal adverse effects. CONCLUSIONS: Although flecainide might be efficacious in cases of acute AF, it was not possible to restore sinus rhythm in horses with naturally-occurring chronic AF at the dosages used in this study. In 2 horses, 2.0 mg/kg bwt flecainide was associated with potentially dangerous dysrhythmias. POTENTIAL CLINICAL RELEVANCE: Intravenous administration of 2 mg/kg bwt flecainide is unlikely to convert chronic AF in horses and could induce dangerous dysrhythmias.  相似文献   

6.
The use of propofol, solubilised in a non-ionic emulsifying agent, for the induction and maintenance of anaesthesia in experimental ponies was assessed. Pilot studies revealed that premedication with xylazine (0.5 mg/kg bodyweight [bwt]) intravenously (iv) followed by propofol (2.0 mg/kg bwt) iv provided a satisfactory smooth induction. Two infusion rates (0.15 mg/kg bwt/min and 0.2 mg/kg bwt/min) were compared for maintenance of anaesthesia. An infusion rate of 0.2 mg/kg/min produced adequate anaesthesia in these ponies. Cardiovascular changes included a decrease in arterial pressure and cardiac output during maintenance. Respiratory depression was manifested by a decrease in rate and an increase in arterial carbon dioxide tension. Recovery after 1 h anaesthesia was rapid and smooth. In conclusion, induction and maintenance of anaesthesia with propofol in premedicated ponies proved a satisfactory technique.  相似文献   

7.
REASON FOR PERFORMING STUDY: Trimetoquinol (TMQ) is a potent beta-adrenoceptor agonist bronchodilator used in human medicine but has not been evaluated for potential use as a therapeutic agent for horses with 'heaves'. OBJECTIVES: To assess the pharmacodynamics of TMQ in horses with 'heaves' to determine potential therapeutic effects. METHODS: Increasing doses of TMQ were administered to horses with 'heaves' by i.v. and intratracheal (i.t.) routes. Doses ranged 0.001-0.2 microg/kg bwt i.v. and 0.01-2 microg/kg bwt i.t. Cardiac and airways effects were assessed by measurement of heart rate (HR) and maximal change in pleural pressure (deltaPplmax), respectively. Side effects of sweating, agitation and muscle trembling were scored subjectively. Duration of action to i.v. (0.2 microg/kg bwt) and i.t. (2 microg/kg bwt) TMQ was evaluated over 6 h. RESULTS: Intravenous TMQ was an exceptionally potent cardiac stimulant. Heart rate increased at 0.01 microg/kg bwt, and was still increasing after administration of highest dose, 0.2 microg/kg bwt. Airway bronchodilation, measured as a decrease in deltaPplmax, also commenced at 0.01 microg/kg bwt. By the i.t. route, TMQ was 50-100-fold less potent than by i.v. Side effects included sweating, agitation and muscle trembling. Overall, the onset of HR and bronchodilator effects was rapid, within about 3 min, but effects were over at 2 h. CONCLUSION: When administered i.v. and i.t., TMQ is a highly potent cardiac stimulant and a modest bronchodilator. It may not be an appropriate pharmacological agent by i.v. and i.t. routes for the alleviation of signs in horses with 'heaves'. Further studies of TMQ by oral and aerosol routes are necessary. POTENTIAL RELEVANCE: In horses, TMQ is a fast-acting bronchodilator with a short duration of action. It could be used as a rescue agent during an episode of 'heaves'. The i.v. and i.t. administration of TMQ is associated with side effects, similar to those reported for all other beta-agonists. However, other routes, such as aerosol and oral, may prove useful and safe for the alleviation of bronchoconstriction typical of 'heaves'.  相似文献   

8.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of epsilon-aminocaproic acid (EACA), including the effects of EACA on coagulation and fibrinolysis in healthy horses. ANIMALS: 6 adult horses. PROCEDURES: Each horse received 3.5 mg of EACA/kg/min for 20 minutes, i.v. Plasma EACA concentration was measured before (time 0), during, and after infusion. Coagulation variables and plasma alpha(2)-antiplasmin activity were evaluated at time 0 and 4 hours after infusion; viscoelastic properties of clot formation were assessed at time 0 and 0.5, 1, and 4 hours after infusion. Plasma concentration versus time data were evaluated by use of a pharmacokinetic analysis computer program. RESULTS: Drug disposition was best described by a 2-compartment model with a rapid distribution phase, an elimination half-life of 2.3 hours, and mean residence time of 2.5 +/- 0.5 hours. Peak plasma EACA concentration was 462.9 +/- 70.1 microg/mL; after the end of the infusion, EACA concentration remained greater than the proposed therapeutic concentration (130 microg/mL) for 1 hour. Compared with findings at 0 minutes, EACA administration resulted in no significant change in plasma alpha(2)-antiplasmin activity at 1 or 4 hours after infusion. Thirty minutes after infusion, platelet function was significantly different from that at time 0 and 1 and 4 hours after infusion. The continuous rate infusion that would maintain proposed therapeutic plasma concentrations of EACA was predicted (ie, 3.5 mg/kg/min for 15 minutes, then 0.25 mg/kg/min). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that EACA has potential clinical use in horses for which improved clot maintenance is desired.  相似文献   

9.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

10.
Based on previous in vitro studies, we hypothesised that endothelin (ET) would induce vasoconstriction in the pulmonary circululation of the horse and that this action would be mediated via ET(A) receptors. Pulmonary and systemic haemodynamic responses to endothelin-1 (ET-1), a potent vasoactive endogenous peptide, were investigated in 6 conscious, nonsedated horses at rest. Bolus i.v. injections of exogenous ET-1 (0.1, 0.2 and 0.4 microg/kg bwt) caused significant increases in pulmonary (PAP) and carotid (CAP) artery pressures, with peak increases of 79% and 51% for mean PAP and CAP, respectively. The effect of ET-1 on PAP and CAP was rapid and transient for PAP (-10 min) but prolonged for CAP (up to 60 min). ET-1 significantly decreased cardiac output by up to 35% and significantly increased systemic vascular resistance (SVR) by up to 104%. Pulmonary vascular resistance (PVR) showed a trend (P>0.05) to increase with 0.2 and 0.4 microg/kg bwt ET-1. Infusion of a selective ET(A) receptor antagonist (TBC11251) completely inhibited the responses to a subsequent bolus of 0.2 microg/kg bwt ET-1. We conclude that exogenous ET-1 exerts a potent vasoconstrictive action on the pulmonary and systemic circulations of the horse. These effects appear to be mediated largely through ET(A) receptors in both circulations. Endothelin may play a role in hypertensive conditions in the horse.  相似文献   

11.
This study aimed to identify blood serum lidocaine concentrations in the horse which resulted in clinical signs of intoxication, and to document the effects of toxic levels on the cardiovascular and cardiopulmonary systems. Nineteen clinically normal mature horses of mixed breed, age and sex were observed. Lidocaine administration was initiated in each subject with an i.v. loading dose of 1.5 mg/kg bwt and followed by continuous infusion of 0.3 mg/kg bwt/min until clinical signs of intoxication were observed. Intoxication was defined as the development of skeletal muscle tremors. Prior to administration of lidocaine, blood samples for lidocaine analysis, heart rate, mean arterial blood pressure, systolic blood pressure, diastolic blood pressure, respiratory rate and electrocardiographic (ECG) data were collected. After recording baseline data, repeat data were collected at 5 min intervals until signs of intoxication were observed. The range of serum lidocaine concentrations at which the clinical signs of intoxication were observed was 1.85-4.53 microg/ml (mean +/- s.d. 3.24 +/- 0.74 microg/ml). Statistically significant changes in P wave duration, P-R interval, R-R interval and Q-T interval were observed in comparison to control values, as a result of lidocaine administration. These changes in ECG values did not fall outside published normal values and were not clinically significant. Heart rate, blood pressures and respiratory rates were unchanged from control values. This study establishes toxic serum lidocaine levels in the horse, and demonstrates that there were no clinically significant cardiovascular effects with serum lidocaine concentrations less than those required to produce signs of toxicity.  相似文献   

12.
REASONS FOR PERFORMING STUDY: To search for long-term total i.v. anaesthesia techniques as a potential alternative to inhalation anaesthesia. OBJECTIVES: To determine cardiopulmonary effects and anaesthesia quality of medetomidine-ketamine anaesthesia induction followed by 4 h of medetomidine-propofol anaesthesia in 6 ponies. METHODS: Sedation consisted of 7 microg/kg bwt medetomidine i.v. followed after 10 min by 2 mg/kg bwt i.v. ketamine. Anaesthesia was maintained for 4 h with 3.5 microg/kg bwt/h medetomidine and propofol at minimum infusion dose rates determined by application of supramaximal electrical pain stimuli. Ventilation was spontaneous (F(I)O2 > 0.9). Cardiopulmonary measurements were always taken before electrical stimulation, 15 mins after anaesthesia induction and at 25 min intervals. RESULTS: Anaesthesia induction was excellent and movements after pain stimuli were subsequently gentle. Mean propofol infusion rates were 0.89-0.1 mg/kg bwt/min. No changes in cardiopulmonary variables occured over time. Range of mean values recorded was: respiratory rate 13.0-15.8 breaths/min; PaO2 29.1-37.9 kPa; PaCO2 6.2-6.9 kPa; heart rate 31.2-40.8 beats/min; mean arterial pressure 90.0-120.8 mmHg; cardiac index 44.1-59.8 ml/kg bwt/min; mean pulmonary arterial pressure 11.8-16.4 mmHg. Recovery to standing was an average of 31.1 mins and ponies stood within one or 2 attempts. CONCLUSIONS: In this paper, ketamine anaesthesia induction avoided the problems encountered previously with propofol. Cardiovascular function was remarkably stable. Hypoxaemia did not occur but, despite F(I)O2 of > 0.9, minimal PaO2 in one pony after 4 h anaesthesia was 8.5 kPa. POTENTIAL RELEVANCE: The described regime might offer a good, practicable alternative to inhalation anaesthesia and has potential for reducing the fatality rate in horses.  相似文献   

13.
Sixteen non-pregnant pony mares were divided into four groups of similar age and bodyweight (bwt). Groups were randomly assigned to one of four treatments consisting of oral administration of perphenazine (0.5 and 1.0 mg/kg bwt, phenothiazine (10 mg/kg bwt) and a control group. Blood samples were taken by jugular venepuncture and plasma prolactin concentrations measured using an homologous assay for equine prolactin. Analysis of variance was conducted on data designed as a split plot over time. Perphenazine given orally (0.5 and 1.0 mg/kg bwt) increased plasma prolactin concentrations when measured 3 and 6 h following feeding (P less than 0.05). Prolactin concentrations returned to normal by 11 h post drug administration. There was no response in plasma prolactin concentrations following oral phenothiazine treatment (10 mg/kg bwt). Perphenazine at the 1.0 mg/kg bwt level was discontinued after two days due to two mares exhibiting signs of hyperesthesia.  相似文献   

14.
In Study 1, a single speed test of 6 to 12 m/sec was performed for 2 mins at an incline of 5 degrees on a high-speed treadmill (single-step test). Only one speed was performed per session and blood samples were taken before and after the test. In Study 2 horses cantered for 1 min at increasing speeds of 6 to 13 m/sec on an incline of 3 degrees (multiple-step test). Blood samples were taken before exercise, throughout the test and during recovery. In the single-step test plasma concentrations of adrenaline and noradrenaline both increased at speeds of 9 m/sec, as did blood lactate. Mean concentrations of adrenaline and noradrenaline at the end of the 12 m/sec test were 153 and 148 nmol/litre, respectively. Plasma concentrations were similar over all speeds although there was a tendency for the increase in noradrenaline to be greater than that of adrenaline at the lower speeds. The multiple-step test resulted in smaller increases in both adrenaline and noradrenaline. Although again closely correlated, increases in adrenaline were 20-30% greater than those for noradrenaline. In both exercise models, changes in plasma adrenaline and noradrenaline values with exercise showed an exponential relationship to plasma lactate. A plasma half-life of less than 30 secs was indicated during recovery from the multiple-step test. Changes in adrenaline and noradrenaline were much greater than previously recorded in man and emphasise the importance of catecholamines in mediating the physiological response of the horse to exercise.  相似文献   

15.
The pharmacokinetics of doxorubicinol, a cytotoxic metabolite of the anticancer drug, doxorubicin, were studied in four healthy sulphur-crested cockatoos (Cacatua galerita) after a 20 min intravenous infusion of 2 mg/kg. Plasma doxorubicinol concentrations were measured by HPLC. The pharmacokinetic parameters were estimated using a non-compartmental method. The mean (+/- SD) peak concentration was 8341 +/- 3132 microg/L at 17.5 +/- 5.0 min after the start of the infusion, and doxorubicinol concentrations declined biexponentially to 154.3 +/- 34.5 microg/L, 40 min after the end of the infusion. Systemic clearance was 0.940 +/- 0.473 L/h/kg, mean residence time was 0.165 +/- 0.133 h, and steady-state volume of distribution was 0.123 +/- 0.0526 L/kg. The terminal half-life was 0.660 +/- 0.611 h. Detectible but unquantifiable concentrations of doxorubicinol were present in the plasma ultrafiltrate of two birds during the infusion, indicating very extensive plasma protein binding. Physiological, haematological and biochemical monitoring over 3 weeks showed that doxorubicinol at a single infused dose of 2 mg/kg caused no toxicities of major concern.  相似文献   

16.
Six pregnant mares were used to determine what level of water restriction causes physiological and/or behavioural changes indicative of stress. Nonlegume hay was fed ad libitum. During the first week of restriction, 5 l water/100 kg bwt was available, during the second week 4 l/100 kg bwt and, during the third week, 3 l/100 kg bwt. Ad libitum water intake was 6.9 l/100 kg bwt; at 3 l/100 kg bwt water intake was 42% of this. Daily hay intake fell significantly with increasing water restriction from 12.9 +/- 0.75 kg to 8.3 +/- 0.54 kg; bodyweight fell significantly for a total loss of 48.5 +/- 8.3 kg in 3 weeks. Daily blood samples were analysed; osmolality rose significantly with increasing water restriction from 282 +/- 0.7 mosmols/kg to 293.3 +/- 0.8 mosmols/kg bwt, but plasma protein and PCV did not change significantly. Cortisol concentrations fell from 8.1 ng/ml to 6.4 ng/ml over the 3 week period. Aldosterone fell from 211.3 +/- 74.2 pg/ml to 92.5 +/- 27.5 pg/ml at the end of the first week. The behaviour of 4 of the 6 mares was recorded 24 h/day for the duration of the study. The only significant difference was in time spent eating, which decreased with increasing water restriction from 46 +/- 3% to 30 +/- 3%. It is concluded that water restriction to 4 l/100 kg bwt dehydrates pregnant mares and may diminish their welfare, but is not life- or pregnancy-threatening.  相似文献   

17.
Reasons for performing study: No studies have determined the pharmacokinetics of low‐dose amikacin in the mature horse. Objectives: To determine if a single i.v. dose of amikacin (10 mg/kg bwt) will reach therapeutic concentrations in plasma, synovial, peritoneal and interstitial fluid of mature horses (n = 6). Methods: Drug concentrations of amikacin were measured across time in mature horses (n = 6); plasma, synovial, peritoneal and interstitial fluid were collected after a single i.v. dose of amikacin (10 mg/kg bwt). Results: The mean ± s.d. of selected parameters were: extrapolated plasma concentration of amikacin at time zero 144 ± 21.8 µg/ml; extrapolated plasma concentration for the elimination phase 67.8 ± 7.44 µg/ml, area under the curve 139 ± 34.0 µg*h/ml, elimination half‐life 1.34 ± 0.408 h, total body clearance 1.25 ± 0.281 ml/min/kg bwt; and mean residence time (MRT) 1.81 ± 0.561 h. At 24 h, the plasma concentration of amikacin for all horses was below the minimum detectable concentration for the assay. Selected parameters in synovial and peritoneal fluid were maximum concentration (Cmax) 19.7 ± 7.14 µg/ml and 21.4 ± 4.39 µg/ml and time to maximum concentration 65 ± 12.2 min and 115 ± 12.2 min, respectively. Amikacin in the interstitial fluid reached a mean peak concentration of 12.7 ± 5.34 µg/ml and after 24 h the mean concentration was 3.31 ± 1.69 µg/ml. Based on a minimal inhibitory concentration (MIC) of 4 µg/ml, the mean Cmax : MIC ratio was 16.9 ± 1.80 in plasma, 4.95 ± 1.78 in synovial fluid, 5.36 ± 1.10 in peritoneal fluid and 3.18 ± 1.33 in interstitial fluid. Conclusions: Amikacin dosed at 10 mg/kg bwt i.v. once a day in mature horses is anticipated to be effective for treatment of infection caused by most Gram‐negative bacteria. Potential relevance: Low dose amikacin (10 mg/kg bwt) administered once a day in mature horses may be efficacious against susceptible microorganisms.  相似文献   

18.
Six healthy two-day-old foals (3 pony foals and 3 horse foals) were given a single intravenous (iv) injection of trimethoprim (TMP)--sulphamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg bodyweight (bwt) and 12.5 mg of SMZ/kg bwt. Serum TMP and SMZ concentrations were measured serially during a 24 hour period. The overall elimination rate constant (K) for TMP in the pony and horse foals was 0.45/h, whereas the K values for SMZ for the pony and horse foals were 0.12/h and 0.07/h, respectively (no significant difference; P greater than 0.05). Based on published minimum inhibitory concentration values for equine pathogens (Adamson et al 1985), the primary indication for the use of TMP/SMZ in foals may be in the treatment of infections caused by gram-positive bacteria. A dosage of 2.5 mg of TMP/kg bwt and 12.5 mg of SMZ/kg bwt, given iv at 12 h intervals would be appropriate.  相似文献   

19.
Primary hypothyroidism in dogs is associated with increased release of growth hormone (GH). In search for an explanation we investigated the effect of intravenous administration of thyrotropin-releasing hormone (TRH, 10 microg/kg body weight) on GH release in 10 dogs with primary hypothyroidism and 6 healthy control dogs. The hypothyroid dogs had a medical history and physical changes compatible with hypothyroidism and were included in the study on the basis of the following criteria: plasma thyroxine concentration < 2 nmol/l and plasma thyrotropin (TSH) concentration > 1 microg/l. In addition, (99m)TcO(4)(-) uptake during thyroid scintigraphy was low or absent. TRH administration caused plasma TSH concentrations to rise significantly in the control dogs, but not in the hypothyroid dogs. In the dogs with primary hypothyroidism, the mean basal plasma GH concentration was relatively high (2.3+/-0.5 microg/l) and increased significantly (P=0.001) 10 and 20 min after injection of TRH (to 11.9+/-3.5 and 9.8+/-2.7 microg/l, respectively). In the control dogs, the mean basal plasma GH concentration was 1.3+/-0.1 microg/l and did not increase significantly after TRH administration. We conclude that, in contrast to healthy control dogs, primary hypothyroid dogs respond to TRH administration with a significant increase in the plasma GH concentration, possibly as a result of transdifferentiation of somatotropic pituitary cells to thyrosomatotropes.  相似文献   

20.
The respiratory stimulant lobeline has been used in equine clinical practice to increase inspiratory and expiratory airflow rates at rest in order to facilitate investigation of both lower and upper airway function. Some of the responses to lobeline in the pony have been reported, but the detailed time course, effect of dose, possible side effects and reproducibility associated with lobeline administration have not been described in the horse. Respiratory airflow rates and oesophageal pressure were measured with a Fleisch No. 5 pneumotachometer and lightweight facemask and a microtip pressure transducer catheter, respectively. The output of the Fleisch pneumotachometer was calibrated for flow rates up to +/- 70 l/s. Seven mature horses with no clinical signs of respiratory disease were studied. Investigations were conducted to determine: (1) the responses to different doses of lobeline (0.15, 0.20, 0.25 and 0.30 mg/kg bwt) as a rapid i.v. bolus (6 horses); (2) arterial blood gases during and after lobeline administration (0.20 mg/kg bwt; 3 horses); and (3) the reproducibility of lobeline-stimulated hyperpnoea (5 horses; 2 doses of 0.20 mg/kg bwt lobeline, 15 min apart). All horses tolerated the lobeline-stimulated hyperpnoea well, although one always coughed or snorted at the onset. Mild tremor was noted following the highest dose in several horses. Apnoea of approximately 40 s was common after the hyperpnoea. Both tidal volume (VT) and frequency (fR) increased with lobeline dose. During peak hyperpnoea at a dose of 0.30 mg/kg bwt, peak inspired flow rate (PIF), peak expired flow rate (PEF) and minute ventilation (VE) were mean +/- s.e. 41+/-5 l/s, 61+/-10 l/s and 920+/-99 l/min, respectively. The hyperpnoea also caused marked changes in arterial PaO2, PaCO2 and pHa at 90 s after lobeline (0.20 mg/kg bwt) administration (mean +/- s.e. 146.0+/-6.9 mmHg, 20.6+/-0.8 mmHg and 7.707+/-0.020, respectively) compared to at rest (mean +/- s.e. 104.0+/-4.0 mmHg, 50.6+/-2.8 mmHg and 7.432+/-0.012). Dynamic lung compliance (Cdyn) was unaltered by lobeline administration. The lobeline-induced hyperpnoea was highly reproducible, with no significant difference in any of the parameters during 2 stimulations 15 min apart. Lobeline induced highly reproducible responses without any apparent adverse effects and may be useful in the investigation of pulmonary function in healthy horses and those with airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号