首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
土壤有机质高光谱特征与波长变量优选方法   总被引:6,自引:0,他引:6  
【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40个样本作为训练集,测量其去有机质前、后的土壤有机质含量及光谱数据,计算差值及变化率,分析土壤有机质含量变化对光谱特征的影响,结合无信息变量消除(uninformative variables elimination,UVE)、竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)变量优选方法确定土壤有机质敏感波长;采用45个建模集样本,基于偏最小二乘回归(partial Least Squares Regression,PLSR)和反向传播神经网络(back propagation neural network,BPNN)建立土壤有机质含量的估算模型;利用45个验证集样本检验敏感波长对同类土壤的适用性。【结果】通过有机质去除试验,供试土壤的平均光谱反射率在全波段均有所增加,在可见光波段变化率高于近红外波段;比较UVE、CARS、UVE-CARS、CARS-UVE这4种变量优选方法,得到最佳变量优选方法为UVE-CARS,该方法从2001个波长变量中优选得到84个变量作为土壤有机质的敏感波长,分布于561—721、1 920—2 280 nm波段覆盖范围;基于敏感波长的PLSR、BPNN模型性能均优于全波段模型,其中,基于敏感波长的BPNN模型的估测能力高于PLSR,模型验证集R~2、RMSE、RPD、MAE、MRE值分别为0.74、1.33 g·kg~(-1)、2.02、1.04 g·kg~(-1)、6.2%,可实现土壤有机质含量的有效估测。【结论】通过训练集获得的土壤有机质敏感波长,能够实现对该试验区同种土壤类型样本土壤有机质含量的有效估测;利用去有机质试验结合变量优选方法确定的敏感波长建模,不仅将输入波长压缩至全波段波长数目的 4.2%,而且提升了模型估测精度,降低了变量维度和模型复杂度,为快速准确评估农田土壤有机质含量提供了新途径。  相似文献   

2.
【目的】采用近红外光谱和不同建模方法测定土壤中的有机质和速效P含量。【方法】分别采集江西不同地区的土样240个,采集土壤样品的近红外漫反射光谱,以对光谱数据进行主成分分析得到的前6个主成分(PCs)和偏最小二乘回归(PLSR)建模得到的6个潜在变量(LVs),分别作为反向传播神经网络(BPNN)和偏最小支持向量机(LS-SVM)的输入变量,共建立6个模型,分别为主成分回归(PCR)、PLSR、BPNN-PCs、BPNN-LVs、LS-SVM-PCs和LS-SVM-LVs,并对这些建模方法预测土壤有机质和速效P含量的结果进行评价,从中筛选出最佳模型。【结果】在预测土壤有机质和速效P含量时,LS-SVM-LVs模型的预测效果优于PCR、PLSR、BPNN-PCs、BPNN-LVs和LS-SVM-PCs模型。用LS-SVM-LVs模型得到的有机质、速效P预测集的决定系数(R2)和均方差(RMSE)分别为0.873 4,0.780 1mg/kg和2.92g/kg,4.97mg/kg。【结论】将近红外漫反射光谱和LS-SVM、PLSR相结合可用于测定土壤有机质和速效P含量。  相似文献   

3.
【目的 】结合分数阶微分和异常值识别,提高土壤有机质模型反演精度,实现土壤有机质含量的快速、准确估计。【方法 】文章以吉林省伊通县黑土区为研究区,基于实地采集的213个土壤样本和HyMap-C机载高光谱传感器获取高光谱影像,选择S-G函数和分数阶微分进行光谱预处理,竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)提取特征波段建立土壤有机质含量偏最小二乘回归(Partial Least Squares Regression,PLSR)反演模型,并使用蒙特卡洛交叉验证(Monte Carlo Cross-Validation,MCCV)进行异常值识别。【结果 】(1)将分数阶微分用于机载高光谱可以放大光谱特征,阶数越高、特征越明显,低阶分数微分对噪音不敏感;(2) CARS方法能有效压缩光谱信息;全样本建模中0.4阶分数阶微分CARS-PLSR建模表现较优,但总体精度仍然不高;(3)使用MCCV剔除异常值后,0.6阶分数阶微分CARS-PLSR建立的土壤有机质含量反演模型精度最高,训练集和测试集的均方误差分别为0.219%...  相似文献   

4.
【目的】 剔除土壤高光谱中包含的大量冗余和无效信息,探明土壤有效磷(SAP)的敏感波段,简化SAP的高光谱估算模型并提高模型的预测精度。【方法】 文章以四川省崇州市西河流域110个土壤样本为研究对象,利用ASD Fieldspec3地物光谱仪在室内条件下测定350~2 500 nm波段范围的土壤高光谱数据。对光谱数据进行预处理后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)优选的波长变量作为建模参数,运用偏最小二乘回归(PLSR)方法建立模型并比较其精度。【结果】 结果表明,标准正态变换预处理方法是SAP的最佳土壤光谱数据预处理方法。基于标准正态变换后的光谱数据,CARS、SPA算法可将预测SAP的关键波段变量分别压缩至54和13个,CARS-PLSR模型与SPA-PLSR模型相比,相关系数由0.894提高到0.945,均方根误差由5.73降低到3.56。【结论】 土壤高光谱数据经标准正态变换后,采用CARS-PLSR算法可有效提高有效磷含量预测的鲁棒性。该结果可为高光谱数据快速反演土壤有效磷含量提供理论依据。  相似文献   

5.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

6.
基于正交信号校正的Vis-NIR光谱土壤质地预测   总被引:1,自引:0,他引:1  
为提高基于VIS-NIR光谱的土壤质地预测精度,引入了正交信号校正(OSC)光谱预处理算法。分别用原始光谱、微分处理、OSC处理光谱,建立偏最小二乘回归(PLSR)模型。结果表明,OSC-PLSR模型验证精度高于其他两种方法所建模型,砂粒含量OSC-PLSR模型的RMSEp为5.94,粘粒含量OSC-PLSR模型RMSEp为1.25,相比PLSR模型,分别降低22.22%和9.42%。OSC算法在土壤质地的VIS-NIR反演中能有效消除不相关因素的影响,提高模型预测精度。  相似文献   

7.
为实现杏树叶片含水率数据的准确获取,对新疆南疆杏树的节水灌溉提供科学指导,本研究使用近红外光谱技术对杏树叶片含水率进行预测。采集1 000~1 800 nm范围内‘小白杏’叶片的光谱数据,使用多元散射校正(MSC)、标准正态变量变换(SNV)、均值中心化(MC)、归一化处理(Nor)4种方法对原始光谱进行预处理,采用竞争性自适应重加权算法(CARS)及随机蛙跳算法(RF)获取特征波段,分别建立基于不同预处理方法的全波段及特征波段的偏最小二乘回归(PLSR)和BP神经网络预测模型。结果表明MSC为最佳预处理方法,最佳预测模型为MSC-CARS-BP神经网络模型,所建模型预测相关系数Rp为0.986,预测均方根误差RMSEP为0.404,剩余预测偏差RPD为6.09,模型具有较好的预测能力,因此近红外光谱技术可以用于杏树叶片含水率的快速检测。  相似文献   

8.
为快速准确地测定茶油中脂肪酸含量,建立了应用近红外光谱技术检测茶油中脂肪酸含量的方法。选取市售的156份茶油样品,利用气相色谱仪测定其脂肪酸组成及含量,同时采用近红外光谱仪采集油样的光谱数据,并分析原始(R)光谱、SG平滑(SG)光谱和二阶导数变换(SD)光谱与茶油中脂肪酸含量的相关性,采用偏最小二乘回归法(PLSR)比较全光谱波段与显著性波段对建模精度的影响,优选出茶油中脂肪酸含量的定量检测模型。结果表明:茶油中棕榈酸、油酸和亚油酸含量较高,分别为4.428%~10.931%、78.036%~84.621%、7.013%~9.863%;采集的茶油近红外光谱曲线特征变化较为明显,光谱特征峰的位置分布于8 600~8 200、7 300~6 900、6 000~5 500、4 800~4 500和4 500~4 000 cm–1;茶油中棕榈酸含量与R、SG光谱吸光度呈正相关,油酸和亚油酸含量与R、SG光谱吸光度呈负相关,SD光谱数据与棕榈酸、油酸和亚油酸含量之间的相关系数与R和SG光谱吸光度比较,相关性极大被削弱;基于全波段建立的PLSR模型对棕榈酸、油酸和亚油酸含量的整体预测精度略高于显著性波段所建立的模型,校正集相关系数RC和预测集相关系数RP分别为0.837~0.956和0.818~0.938。从模型的复杂程度分析,采用显著性波段建模的输入变量的数量可压缩至全波段建模的25%以下;SG–PLSR模型对棕榈酸、油酸和亚油酸含量的综合预测性能最优,相应的RP和预测集均方根误差(RMSEP)分别为0.938、0.930、0.925和0.560、0.438、0.287。  相似文献   

9.
【目的】利用高光谱成像技术对水稻纹枯病进行早期的快速无损识别,结合判别分析方法建立相应的鉴别模型。【方法】以健康和感染纹枯病的水稻幼苗为研究对象,采集叶片和冠层各180个样本的380~1 030 nm波段的360条高光谱图像,剔除明显噪声部分后,以440~943 nm波段作为水稻样本的光谱范围,分别用不同的方法预处理获得水稻叶片的光谱曲线。采用偏最小二乘–判别分析(PLS-DA)对不同预处理的光谱建模。采用MNF算法对冠层的原始光谱数据进行特征信息提取,并基于特征信息建立线性判别分析(LDA)模型和误差反向传播神经网络(BPNN)判别模型。【结果】标准正态变量变换(SNV)预处理后建立的PLS-DA模型的预测集判别正确率最高,为92.1%。基于特征信息的LAD和BPNN模型的判别结果优于基于全波段的PLS-DA判别模型。基于最小噪声分离变换特征信息提取的BPNN模型取得了最优效果,建模集和预测集正确率分别达99.1%和98.4%。【结论】采用高光谱成像技术对水稻纹枯病生理特征进行无损鉴别是可行的,本研究为水稻纹枯病的识别提供了一种新方法。  相似文献   

10.
为研究不同土壤颗粒粒径对可见/近红外光谱分析技术在土壤有机质含量快速检测应用中的影响,获取粒径为0.169~2 mm和<0.169 mm的2种土壤样本(各53个)的可见/近红外光谱(325~1075 nm),分别建立各自的主成分-反向传播神经网络(PCA-BPNN)、最小二乘-支持向量机(LS-SVM)和偏最小二乘法(PLS)土壤有机质含量检测模型.结果表明:当土壤粒径为0.169~2 mm时,所建立模型的土壤有机质含量预测相关系数r均在0.84以上,且预测均方根误差(RMSEP)都在0.20以下;而当土壤粒径<0.169 mm时,所建立模型的预测相关系数r均不超过0.71.而RMSEP都在0.23以上;对于相同粒径的土壤,PLS模型对土壤有机质含量的预测效果优于LS-SVM和PCA-BPNN模型.说明不同土壤颗粒粒径会显著影响可见/近红外光谱对于土壤有机质含量的预测结果.  相似文献   

11.
【目的】探讨光谱变量选择及依据土壤类型进行分层校准两种方法对高光谱预测土壤有机碳(SOC)精度的影响。【方法】以江西省为研究区,490个土壤样本为研究对象,对研究区内的所有样本以及不同土壤类型样本分别通过竞争性自适应重加权采样(CARS)算法筛选特征波段,并采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)、反向传播神经网络(BPNN)4种模型,对比不同土壤类型下SOC在全波段以及CARS算法筛选后特征波段的预测精度。进而,还对比了全局校准和分层校准下SOC在全波段以及CARS算法筛选后特征波段的预测精度。【结果】(1)红壤筛选的特征波段为484、683—714和2 219—2 227 nm,水稻土筛选的特征波段为484、689—702和2 146—2 156 nm。红壤采用CARS-BPNN模型预测效果最佳(R 2=0.82),较全波段建模验证集R 2提升0.07。水稻土采用CARS-RF模型预测效果最佳(R 2=0.83),较全波段建模验证集R 2提升0.13。(2)在总体样本上,分层校准相比全局校准精度有所提升。采用CARS-BPNN进行分层校准预测效果最佳(R 2=0.82),较全局校准验证集R 2提升0.06。【结论】采用CARS-BPNN进行分层校准能够较好地预测江西省土壤有机碳含量,本研究可为其他类似地区预测土壤属性提供科学依据。  相似文献   

12.
小麦籽粒蛋白质光谱特征变量筛选方法研究   总被引:4,自引:0,他引:4  
【目的】筛选整粒小麦籽粒蛋白质的近红外特征光谱波段并建立优化模型,可实现快速、无损测定整粒小麦籽粒蛋白质含量,为田间便携式小麦籽粒蛋白质含量速测仪设计提供依据。【方法】2012-2013年以蛋白质含量有明显差异的8个冬小麦品种为试验品种,设置3个施氮量和2个灌溉量共6个处理,建立丰富的样本类型,共采集176个小麦籽粒光谱数据;将ASD FieldSpec Pro光谱仪采集到的基于全反射下垫面的整粒小麦籽粒反射光谱通过公式A=log(1/R)转换为吸收光谱,对吸收光谱采用S-G平滑、多元散射校正和基线校正等方法进行预处理,以消除背景噪声,然后采用交叉验证偏最小二乘回归方法进行特征波段压缩;分析比较无信息变量剔除法(UVE)结合交叉验证偏最小二乘回归、连续投影算法(SPA)结合交叉验证偏最小二乘回归、UVE与SPA组合后结合交叉验证偏最小二乘回归、UVE与SPA组合后结合多元线性回归(MLR)及UVE与SPA组合后结合逐步多元线性回归(SMLR)等多种特征光谱筛选方法选出的蛋白质特征波段的优劣,并与凯氏定氮法测定的小麦籽粒蛋白质含量进行回归分析,构建并优选小麦籽粒蛋白质最佳预测模型。【结果】利用无信息变量剔除(UVE)方法可将与小麦籽粒蛋白质含量无关的信息变量剔除,把籽粒的原始光谱由1 621个波段压缩至717个,在保留了蛋白质信息的同时,实现了特征谱段的初次优选;对逐步多元线性回归(SMLR)、连续投影算法(SPA)、连续投影算法(SPA)+逐步多元线性回归(SMLR)及连续投影算法(SPA)+偏最小二乘回归(PLS)+交叉验证(CV)等特征波段优选算法比较发现,不同的方法获得的特征谱段有差异,构建的模型及精度也明显不同。对经过无信息变量剔除(UVE)法筛选光谱特征谱段,利用SPA消除光谱矩阵中波段共线性影响,再利用SMLR筛选出小麦籽粒蛋白质信息贡献最大的15个特征谱段,所得模型的预测均方根误差(RMSEP)和R2分别为0.5898和0.9410,模型预测精度最高。【结论】本研究利用UVE、SPA与SMLR方法有效压缩了整粒小麦籽粒光谱矩阵,基于所筛选的蛋白质含量特征谱段数构建的预测模型可以实现无损、快速测定整粒小麦籽粒蛋白质含量,预测模型精度可靠,方法经济有效,为设计田间便携式整粒小麦籽粒蛋白质测定仪的波段选择和开发奠定了基础。  相似文献   

13.
以皖北地区采集的115个砂姜黑土样本为研究对象,获取土壤样本光谱数据,采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、随机森林特征选择算法(RFFS)对土壤总氮含量特征波长进行选择,并分别应用偏最小二乘回归(PLSR)、支持向量机回归(SVR)、最小绝对值收缩和选择算子回归(LASSO)建立土壤总氮含量估算模型。结果表明,除CARS-PLSR方法模型精度低于相应的全波长模型外,其他基于选定的特征波长进行建模的效果都优于全波长。综合比较各变量筛选与回归建模组合发现,RFFS方法从全波长(224个波长)中筛选出20个特征波长建立土壤总氮含量的LASSO模型效果最好,该模型在预测集上的决定系数(R2)和相对分析误差(RPD)值分别为0.787 1和2.130 1。RFFS-LASSO模型简单,预测效果好,对土壤总氮含量近地传感器设备开发具有一定的指导意义。  相似文献   

14.
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S~0(122个样本)、训练集S~1(60个样本)、验证集S~2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S~1和S~2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R~2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R~2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R~2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。  相似文献   

15.
【目的】研究基于盛花期冠层高光谱数据的苹果花量估测技术,为植株花果管理和生产力预测技术的建立奠定基础。【方法】以5年生M9无性系砧木‘米奇嘎啦’苹果(Malus pumila‘Mitch Gala’)、树形为高纺锤形的植株为试材,在盛花期采集植株冠层可见-近红外高光谱图像,人工统计供试植株花量,比对分析基于原始光谱反射率(original reflectance spectra,OS)与Savitzky-Golay平滑法(savitzky-golay smoothing,SG)、正态变量标准化(standardization of normal variables,SNV)、标准化(Normalize)、一阶求导(first derivation,lst Der)、二阶求导(second derivation,2nd Der)共5种预处理的高光谱数据的偏最小二乘法(partial least squares method,PLS)模型,以及基于载荷系数法(x-loading weight,x-LW)提取的特征波长的PLS模型、人工神经网络(the back-propagation neural network,BPNN)、最小二乘支持向量机(the least squares support vector machines,LS-SVM)等模型对单株单位面积花量实时估测精度的影响。【结果】苹果树单株花量与单株单位面积花量具有较高的相关系数,表明采用冠层单位面积花量替代单株总花量进行树体花量估测可行。单株单位面积花量与植株冠层光谱反射率在紫外-可见光波长(308—700 nm)呈极显著正相关,在近红外波长(750—1 000 nm)相关性不显著。基于全波长,以Normalize预处理光谱建立的PLS模型对单株单位面积花量的预测效果最好,校正集决定系数(Rc2)和预测集决定系数(Rp2)分别为0.794和0.804,校正集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别为0.084、0.062,预测相对误差(RE%)为3.940。基于特征波长的BPNN模型稳定性差,而LS-SVM模型的建模效果较好,Rc2和Rp2分别为0.826和0.804,RMSEC和RMSEP分别为0.077、0.064,RE%为12.160。【结论】基于Normalize预处理的PLS模型对高纺锤形苹果树冠层单位面积花量的预测效果最优,同时,本研究利用高光谱成像仪获取的数据,经过分析处理对提取特征信息进行简化,可为多光谱遥感数据的应用提供依据。  相似文献   

16.
不同类型土壤的光谱特征及其有机质含量预测   总被引:17,自引:1,他引:17  
 【目的】构建适合土壤有机质含量估测的高光谱参数及定量反演模型。【方法】系统分析中国中、东部地区5种不同类型土壤风干样本有机质含量与350~2 500 nm波段范围高光谱反射率之间的关系,利用特征光谱参数和BP神经网络建立土壤有机质的定量估测模型。【结果】光谱一阶导数构成的两波段光谱参数与土壤有机质含量的相关性明显优于原始光谱,尤其采用Norris平滑滤波后导数光谱效果更好。光谱参数构成形式以差值指数最好,其次为比值和归一化指数。与土壤有机质含量相关程度最高的光谱参数是由可见光区554 nm和近红外区1 398 nm两个波段的一阶导数组合而成的差值指数DI(D554,D1398),两者呈显著指数曲线关系,拟合方程为y= 184.2 ×exp[-1297×DI(D554,D1398)],决定系数为0.90。经不同类型土壤的观测资料检验,模型预测决定系数为0.84,均方根误差RMSE为3.64,相对分析误差RPD为2.98,显示估测模型具有较好的预测精度。另外,利用BP神经网络结合偏最小二乘法(PLS)对导数光谱进行分析,提取贡献率达到99.56 %的前6个主成分建立了三层BP 神经网络模型,模型决定系数为0.98,经不同类型土壤的观测资料检验,模型预测决定系数为0.96,RMSE为2.24,相对偏差RPD为4.83。比较利用DI(D554,D1398)和BP网络进行土壤有机质含量的预测结果,前者精度低于后者,但可以满足土壤有机质监测的需要。【结论】利用差值光谱指数DI(D554,D1398)和BP神经网络模型均可实现对土壤有机质的精确估测。  相似文献   

17.
基于可见-近红外光谱预处理建模的土壤速效氮含量预测   总被引:1,自引:0,他引:1  
以皖南地区采集的188份黄红壤样本为研究对象,利用地物非成像光谱仪获取原始光谱数据。首先,分析样本在350~1 657 nm波段经过预处理变换的平均光谱反射率曲线特征,再基于原始光谱,以及经29种预处理变换后的光谱,分别结合偏最小二乘回归(PLSR)和径向基核函数(RBF)-PLSR算法,建立60个针对土壤速效氮含量的预测模型,并进行模型优化;然后,以模型的决定系数(R2)和相对分析误差(RPD)来评价模型性能。结果显示,基于Savitaky-Golay卷积平滑和对数变换预处理的光谱,用PLSR建立的模型最适用于土壤速效氮含量的校正预测,其在建模集中R2=0.94、RPD=3.88,预测集中R2=0.91、RPD=3.38。该模型达到A类预测精度,可实现对土壤速效氮含量的定量估测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号