首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-month microcosm study was carried out in order to evaluate: (i) the capacity of sorghum plants to phytoextract Cd (50 mg kg−1) and Zn (1000 mg kg−1) from artificially polluted soil and (ii) the possibility of biomonitoring the efficiency of phytoremediation using parameters related to the size, activity and functional diversity of the soil microbial community. Apart from plant and soil (total and bioavailable) metal concentrations, the following parameters were determined: soil physicochemical properties (pH, OM content, electrical conductivity, total N, and extractable P and K), dehydrogenase activity, basal- and substrate-induced respiration (with glucose and a model rhizodeposit solution, both adjusted to 800 mg C kg−1 DW soil and 45.2 mg N kg−1 DW soil), microbial respiration quotient, functional diversity through community level physiological profiles and, finally, seed germination toxicity tests with Lepidium sativum. Sorghum plants were highly tolerant to metal pollution and capable of reaching high biomass values in the presence of metals. In the first two harvests, values of shoot Cd concentrations were higher than 100 mg Cd kg−1 DW, the threshold value for hyperaccumulators. Nonetheless, in the third harvest, the bioconcentration factor was 1.34 and 0.35 for Cd and Zn, respectively, well below the threshold value of 10 considered for a phytoextraction process to be feasible. In general, microbial parameters showed lower values in metal polluted than in control non-polluted soils, and higher values in planted than in control unplanted pots. As a result of the phytoextraction process, which includes both plant growth and metal phytoextraction, the functioning of the phytoremediated soil, as reflected by the values of the different microbial parameters here determined, was restored. Most importantly, although the phytoextracted soil recovered its function, it was still more phytotoxic than the control non-polluted soil.  相似文献   

2.
Soil enzymatic activities (phosphatases, arylsulphatase and dehydrogenase) were measured in microcosm systems designed for the study of the impact of a commercial mixture of Linear Alkylbenzene Sulphonate (LAS) homologues on a xerofluvent agricultural soil. The soil microcosms consisted of glass columns filled with 800 g of dry soil which were fed with sterile commercial LAS solutions at concentrations of 10 or 50 mg l−1 for periods of time up to 21 days. A soil microcosm fed with sterile distilled water was included in this study and considered as control. Our results showed that the continuous application of the anionic surfactant to soil increased the values of the enzymes acid and alkaline phosphatases and arylsulphatase. On the contrary, the dehydrogenase activity was decreased by the continuous application of 10 or 50 mg l−1 LAS when compared with control microcosms. In addition, a statistically negative correlation was found between this enzymatic activity in the upper portion of the soil columns amended with LAS and the viable counts of heterotrophic aerobic microorganisms. Moreover, in order to test the influence of LAS on nutrient availability and, consequently, on bacteria populations and soil biological activities, phosphate concentration was regularly determined in the microcosm leachates. The phosphate concentration tested in the leachate of the microcosm continuously amended with 50 mg l−1 LAS solution was significantly lower than the concentrations detected in the leachate of the microcosms continuously amended with 10 mg l−1 LAS throughout the experiment.  相似文献   

3.
The Tai Lake Region (TLR) is traditionally an ecologically sustainable agricultural area due to the intensive application of traditional organic fertilizer. However in the past 50 years, agricultural management practices such as fertilizer usage and cropping systems changed this situation. In order to investigate how these changes affected soil chemical properties and ultimately the sustainability of agriculture production, a case study was conducted in Taicang County in the TLR. It was found that soil organic carbon (SOC) content significantly decreased from 22.8 g kg−1 in 1959 to 12.9 g kg−1 in 1981 while soil total nitrogen (TN) increased significantly from 1.2 g kg−1 in 1959 to 1.6 g kg−1 in 1981 due to the application of mineral fertilizer especially N fertilizer nearly entirely replacing of traditional organic fertilizer, and then both slightly increased to 14.0 g kg−1 and 1.7 g kg−1, respectively in 2004. Soil total phosphorus (TP), total potassium (TK), and available K (AK) contents showed little changes from 1981 to 2004 but soil available P (AP) content increased significantly from 7 mg kg−1 in 1981 to 26 mg kg−1 in 2004. The changes of soil properties from 1959 to 1981 were attributed to the changes of fertilizer usage and the changes of soil properties from 1981 to 2004 were attributed to the changes of cropping systems and fertilizer application, particularly vegetable production which resulted in the significant changes of fertilizer usage.  相似文献   

4.
The response of a fresh, agricultural soil when contaminated with pentachlorophenol (PCP) and supplemented with compost (C) or dissolved organic matter (DOM) was studied in the laboratory. The concentration of PCP and the changes in various functionally related properties (i.e. microbial biomass, basal respiration, soil hydrolase and oxidoreductase activity) were measured over 150 d. Variations in the main physical and chemical properties of the soils were also monitored. Two different doses of compost (C1 = 0.27% and C2 = 0.83%, corresponding to 10 and 30 t ha−1, respectively) or DOM (D1 = 0.07% and D2 = 0.2%) equivalent to the carbon content of the two compost doses C1 and C2 were used and the following five systems were investigated: soil (S), soil–compost (S-C1 and S-C2) and soil–DOM (S-D1 and S-D2). PCP concentrations declined progressively and significantly with time. This effect was most pronounced for the soils amended with the lower compost dose C1 (S-C1) and with the two DOM (S-D1 and S-D2) amounts. Significantly reduced amounts of PCP were extracted after its 500-d residence in the various systems. Higher amounts of the residual PCP were extracted from the humic acids (HA), fulvic acids (FA) and humin–mineral (HU) fractions of the 500 d aged samples than from the same unfractionated samples, indicating that the residual PCP preferentially accumulated in the organic fractions of soil. The soil showed an endogenous microbial activity as indicated by basal respiration, microbial biomass and all the enzymatic activities tested (dehydrogenase, glucosidase, phosphatase, arylsulphatase and urease). Addition of the PCP severely depressed some of the tested biochemical properties suggesting an inhibitory effect on microbial activity. Conversely, higher basal respiration, and similar β-glucosidase and phosphatase activities were measured in comparison with the controls. No significant effects were observed following the addition of two doses of the compost or the DOM. Fungal colonies belonging to the taxonomic group of Ascomycetes and identified as Byssochlamys fulva developed with time in all the PCP-contaminated samples. Growth of B. fulva in vitro in the presence of PCP showed that the isolate was tolerant to 12.5 and 25 mg l−1 PCP and degraded 20% of its initial concentration in 8 d. Overall, the results indicate that many complex processes occurred in the contaminated soil and combinations of these determined the response to PCP contamination. The sorption of PCP to the soil matrix (which increased with time) and its degradation/transformation by indigenous soil microbial activity were likely involved. Both the processes appeared to be favoured by the presence of dissolved organic matter.  相似文献   

5.
Soil organic carbon (SOC) has an important role in improving soil quality and sustainable production. A long-term fertilization study was conducted to investigate changes in SOC and its relation to soil physical properties in a rice paddy soil. The paddy soils analyzed were subjected to different fertilization practices: continuous application of inorganic fertilizers (NPK, N–P–K = 120–34.9–66.7 kg ha−1 yr−1 during 1967–1972 and 150–43.7–83.3 kg ha−1 yr−1 from 1973 to 2007), straw based compost (Compost, 10 Mg ha−1 yr−1), a combination of NPK + Compost, and no fertilization (control). Soil physical properties were investigated at rice harvesting stage in the 41st year for analyzing the relationship with SOC fraction. Continuous compost application increased the total SOC concentration in plough layers and improved soil physical properties. In contrast, inorganic or no fertilization markedly decreased SOC concentration resulting to a deterioration of soil physical health. Most of the SOC was the organo-mineral fraction (<0.053 mm size), accounting for over 70% of total SOC. Macro-aggregate SOC fraction (2–0.25 mm size), which is used as an indicator of soil quality rather than total SOC, covered 8–17% of total SOC. These two SOC fractions accumulated with the same tendency as the total SOC changes. Comparatively, micro-aggregate SOC (0.25–0.053 mm size), which has high correlation with physical properties, significantly decreased with time, irrespective of the inorganic fertilizers or compost application, but the mechanism of decrease is not clear. Conclusively, compost increased total SOC content and effective SOC fraction, thereby improving soil physical properties and sustaining production.  相似文献   

6.
We measured the terpene concentration in pentane and water extracts from soil horizons (litter, organic, top and low mineral) and from roots growing in top and low mineral horizons on a distance gradient from Pinus halepensis L. trees growing alone on a grassland. Terpene concentrations in pentane were higher than in water extracts, although β-caryophyllene showed relatively high solubility in water. The litter and roots were important sources of terpenes in soil. Alpha-pinene dominated in roots growing in both “top” (A1) and “low” (B) mineral horizons (123 ± 36 μg g−1 or 14 ± 5 mg m−2) and roots in low mineral horizon (270 ± 91 μg g−1 or 7 ± 2 mg m−2). Beta-caryophyllene dominated in litter (1469 ± 331 μg g−1 or 2004 ± 481 mg m−2). Terpene concentration in soil decreased with increasing distance to the trunk. This is likely to be related to changes in litter and roots type on the distance gradient from pine to grass and herbs. The relative contributions of all compounds, except α-pinene, were similar in the mineral soils and litter. This suggests that litter of P. halepensis is probably the main source of major terpene compounds. However, long-term emissions of α-pinene from P. halepensis roots might also contribute to α-pinene concentrations in rhizosphere soils.  相似文献   

7.
Cover crop and tillage effects on soil enzyme activities following tomato   总被引:2,自引:0,他引:2  
Increasing numbers of vegetable growers are adopting conservation tillage practices and including cover crops into crop rotations. The practice helps to increase or maintain an adequate level of soil organic matter and improves vegetable yields. The effects of the practices, however, on enzyme activities in southeastern soils of the United States have not been well documented. Thus, the objectives of the study were to investigate the effects of cover crops and two tillage systems on soil enzyme activity profiles following tomato and to establish relationships between enzyme activities and soil organic carbon (C) and nitrogen (N). The cover crops planted late in fall 2005 included black oat (Avena strigosa), crimson clover (Trifolium incarnatum L.), or crimson clover–black oat mixed. A weed control (no cover crop) was also included. Early in spring 2006, the plots were disk plowed and incorporated into soil (conventional tillage) or mowed and left on the soil surface (no-till). Broiler litter as source of N fertilizer was applied at a rate of 4.6 Mg ha−1, triple super phosphate at 79.0 kg P ha−1, and potassium chloride at 100 kg K ha−1 were also applied according to soil testing recommendations. Tomato seedlings were transplanted and grown for 60 days on a Marvyn sandy loam soil (fine-loamy, kaolinitic, thermic Typic Kanhapludults). Ninety-six core soil samples were collected at incremental depths (0–5, 5–10, and 10–15 cm) and passed through a 2-mm sieve and kept moist to study arylamidase (EC 3.4.11.2), l-asparaginase (EC 3.5.1.1), l-glutaminase (EC 3.5.1.2), and urease (EC 3.5.1.5) activities. Tillage systems affected only l-glutaminase activity in soil while cover crops affected activities of all the enzymes studied with the exception of urease. The research clearly demonstrated that in till and no-till systems, l-asparaginase activity is greater (P ≤ 0.05) in plots preceded by crimson clover than in those preceded by black oat or their mixture. Activity of the enzyme decreased from 11.7 mg NH4+–N kg−1 2 h−1 at 0–5 cm depth to 8.73 mg NH4+–N kg−1 2 h−1 at 5–10 cm and 10–15 cm depths in the no-till crimson clover plots. Arylamidase activity significantly correlated with soil organic C (r = 0.699**) and soil organic N (r = 0.764***). Amidohydrolases activities significantly correlated with soil organic N but only urease significantly correlated with soil organic C (r = 0.481*). These results indicated that incorporation of cover crops into rotations may increase enzyme activities in soils.  相似文献   

8.
Earthworm burrows contribute to soil macroporosity and support diverse microbial communities. It is not well known how fluctuations in soil temperature and moisture affect the burrowing activities of earthworms. The objective of this experiment was to evaluate the maximum depth and length of burrows created by the endogeic earthworm Aporrectodea caliginosa (Savigny) and the anecic earthworm Lumbricus terrestris L. for a range of temperatures (5–20 °C) and soil water potentials (−5 and −11 kPa). The laboratory microcosm was a plexiglass chamber (45 cm high, 45 cm wide) containing 0.14 m2 of pre-moistened soil and litter, designed to house a single earthworm for 7 days. Earthworm mass, surface casting and burrowing activities were affected significantly by soil temperature, moisture and the temperature×moisture interaction. Burrow length and maximum burrow depth increased with increasing temperature, but there was less burrowing in wetter soil (−5 kPa) than drier soil (−11 kPa). Weight gain and surface casting, however, were greater in soil at −5 kPa than −11 kPa. Our results suggest more intensive feeding and limited burrowing in wetter soil than drier soil. Earthworms inhabiting the non-compacted, drier soil may have pushed aside particles without ingesting them to create burrows. The result was that earthworms explored a larger volume of soil, deeper in the chamber, when the soil was drier. How these burrowing activities may affect the community structure and activity of soil microorganisms and microfauna in the drilosphere remains to be determined.  相似文献   

9.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties.  相似文献   

10.
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (ρb) and increased total N concentration of the 0–15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m−2 d−1 and 1.82 kg N ha−1 year−1) and CT (0.74 mg m−2 d−1 and 1.96 kg N ha−1 year−1) than NT (0.29 mg m−2 d−1 and 0.94 kg N ha−1 year−1). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha−1 year−1, while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha−1 year−1, respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface ρb, suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management.  相似文献   

11.
In sandy soils of the southeastern USA coastal plains, crop production is limited by low water holding capacity and compacted soil layers that reduce root growth and productivity. Polyacrylamide (PAM) was added to sandy coastal plain soils to improve physical properties and yield. Soils were amended with linear and cross-linked PAMs. Treatments and controls included the following: (1) spraying a 600 mg kg−1 solution of linear PAM behind a subsoil shank at a rate of 3.93 kg ha−1, (2) spraying a 100 mg kg−1 solution at 0.66 kg ha−1, (3) spraying only water at 13.1 m3 ha−1, (4) dropping a dry PAM powder formulation (3005 KB) behind a subsoil shank at 300 kg ha−1, (5) dropping another dry PAM powder formulation (3005 K2) at 230 kg ha−1, (6) dropping a dry PAM powder formulation 3005 K2 at a lower rate of 55 kg ha−1, (7) applying nothing behind a subsoil shank, and (8) not subsoiling. In each of the 3 years of the experiment, new sets of treatments were set up while the old ones were maintained to look at longevity of the PAM effect. Though treatment effects were dominated by the tillage, the cross-linked PAMs were the only treatments more effective than tillage alone. The cross-linked PAMs may have been more effective because we could add more in dry form than in the spray form. The effect diminished with time similar to or faster than the results seen in tillage only. Though some PAM applications may have reduced cone indices, yields were not affected.  相似文献   

12.
The soils of the Antarctic dry valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain small communities of micro-organisms that contribute to the biogeochemical transformations of the bioelements, albeit at slow rates. We have determined the dehydrogenase, β-glucosidase, acid and alkaline phosphatase and arylsulphatase activities and the rates of respiration (CO2 production) in laboratory assays of soils collected from a field experiment in an Antarctic dry valley. The objective of the field experiment was to test the responses of the soil microbial community to additions of C and N in simple (glucose and NH4Cl) and complex forms (glycine and lacustrine detritus from the adjacent lake comprising principally cyanobacterial necromass). The soil samples were taken 3 years after the experimental treatments had been applied. In unamended soil, all enzyme activities and respiration were detected indicating that the enzymatic capacity to mineralize organic C, P and S compounds existed in the soil, despite the very low organic matter content. Relative to the control (unamended soil), respiration was significantly increased by all the experimental additions of C and N except the smallest NH4Cl addition (1 mg N g−1 soil) and the smallest detritus addition (1.5 mg C g−1 soil and 0.13 mg N g−1 soil). The activities of all enzymes except dehydrogenase were increased by C and combined large C (10 mg C g−1 soil) and N additions, but either unchanged or diminished by addition of either N only or N (up to 10 mg N g−1 soil) with only small C (1 mg C g−1 soil) additions in the form of glucose and NH4Cl. This suggests that in the presence of a large amount of N, the C supply for enzyme biosynthesis was limited. When normalized with respect to soil respiration, only arylsulphatase per unit of respiration showed a significant increase with C and N additions as glucose and NH4Cl, consistent with S limitation when C and N limitations have been alleviated. Based on the positive responses of enzyme activity, detritus appeared to provide either conditions or resources which led to a larger biological response than a similar amount of C and more N added in the form of defined compounds (glucose, NH4Cl or glycine). Assessment of the soil microbial community by ester-linked fatty acid (ELFA) analysis provided no evidence of changes in the community structure as a result of the C and N supplementation treatments. Thus the respiration and enzyme activity responses to supplementation occurred in an apparently structurally stable or unresponsive microbial community.  相似文献   

13.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   

14.
Forests play a significant role in the global carbon (C) cycle. Variability in weather, species, stand age, and current and past disturbances are some of the factors that control stand-level C dynamics. This study examines the relative roles of stand age and associated structural characteristics and weather variability on the exchange of carbon dioxide between the atmosphere and three different coastal Douglas-fir stands at different stages of development after clearcut harvesting. The eddy covariance technique was used to measure carbon dioxide fluxes and a portable soil chamber system was used to measure soil respiration in the three stands located within 50 km of each other on the east coast of Vancouver Island, British Columbia, Canada. In 2002, the recently clearcut harvested stand (HDF00) was a large C source, the pole/sapling aged stand (HDF88) was a moderate C source, and the rotation-aged stand (DF49) was a moderate C sink (net ecosystem production of −606, −133, and 254 g C m−2 year−1, respectively). Annual gross ecosystem production and ecosystem respiration also increased with increasing stand age. Differences in stand structural characteristics such as species composition and phenology were important in determining the timing and magnitude of maximum gross ecosystem production and net ecosystem production through the year. Both soil and ecosystem respiration were exponentially related to soil temperature in each stand with total ecosystem respiration differing more among stands than soil respiration. Between 1998 and 2003, annual net ecosystem production ranged from 254 to 424 g C m−2 year−1 over 6 years for DF49, from −623 to −564 g C m−2 year−1 over 3 years for HDF00, and from −154 to −133 g C m−2 year−1 over 2 years for HDF88. Interannual variations in C exchange of the oldest, most structurally stable stand (DF49) were related to variations in spring weather while the rapid growth of understory and pioneer species influenced variations in HDF00. The differences in net ecosystem production among stands (maximum of 1000 g C m−2 year−1 between the oldest and youngest stands) were an order of magnitude greater than the differences among years within a stand and emphasized the importance of age-related differences in stand structure on C exchange processes.  相似文献   

15.
We studied the influence of different soil tillage and fertilization on chemical parameters, soil structure stability and carbon distribution in water-stable macro-aggregates (WSAma) of loamy Orthic Luvisol. In 1994, the Department of Plant Production of the Slovak Agricultural University in Nitra established a long-term field experiment in locality Dolná Malanta. In 1994–2007, the soil samples were collected from the depth 0–0.3 m. The field experiment included two types of soil tillage (conventional tillage—CT and reduced tillage—RT) and three variants of fertilization (1. Co—without fertilization, 2. PR + NPK—crop residues together with added NPK fertilizers, 3. NPK—with added NPK fertilizers). Different tillage and fertilization had statistically significant influence on changes of the soil pH and soil sorptive complex. The values of pH were more favourable in RT than in CT. In NPK (by 26%) and in PR + NPK (by 21%) decreased values of hydrolytic acidity. On the other hand it increased the sum of basic cations. This led to the increase of cation exchangeable capacity. In comparison to CT, a higher total carbon concentration (Ct) was determined in RT. According to vulnerability coefficient (Kv), the soil structure stability was better in RT (4.64 ± 1.54) than in CT (5.15 ± 1.75). Average value of WSAma was higher by 9% in RT and it led to increasing of the sum of mean weight diameters of water-stable aggregates (MWD-WSA) by 11% and increasing of index stability (Sw) by 12%. We determined linear dependences between Ct and critic level of soil organic matter concentration (St) in CT and RT as well as in PR + NPK and NPK. The negative correlation between Ca2+ and St (−0.507**) and positive correlation between Ca2+ and crusting index (0.525**) were detected in CT. The values of Ca2+ were in positive correlation with crusting index (0.363*) in RT. We observed higher concentrations of Ct and labile carbon content (CL) in water-stable micro-aggregates (WSAmi) and WSAma in the size fractions from 25 × 10−4 to 3 × 10−3 m in RT. There were also higher concentrations of Ct and CL in WSAma in the size fractions >3 × 10−3 m in CT. The application of crop residues together with NPK fertilizers increased the concentration of Ct in all fractions of WSAma. On the other hand, Ct concentration decreased by 7% in WSAmi. In PR + NPK, the highest concentration of CL was observed in WSAma in the size fraction 2 × 10−3 to 3 × 10−3 m.  相似文献   

16.
Soil quality assessment has been recognized as an important step toward understanding the long-term effects of conservation practices within agricultural watersheds. Our objective was to assess soil quality within the South Fork watershed of the Iowa River using various indicators and assessment approaches. Soil samples were collected during 2003 and 2004 from 29 areas of 32 ha (80 acres) each along two transects traversing the watershed. Soil pH, Mehlich III extractable P, K, Ca and Mg, electrical conductivity (EC), total organic carbon (TOC), and total N (TN) were measured. The Soil Management Assessment Framework (SMAF) was used to compute a soil quality index (SQI), while soil loss, the soil tillage intensity rating (STIR), N-leaching potential, and soil conditioning index (SCI) were determined for each sampling area using the 2003 version of the Revised Soil Loss Equation (RUSLE2). Overall, there were no soil fertility limitations within the watershed based on an average pH of 6.96 and extractable P and K levels of 36 and 162 mg kg−1, respectively. Soil loss, STIR, N-leaching, and SCI averaged 1.13 Mg ha−1, 68, 3, and 0.4, respectively. The SMAF analysis indicated soils within the watershed were functioning at 87% of their full potential. The lowest indicator score was associated with TOC (0.60) because the average value was only 28.4 g kg−1. The SCI and SQI indices were positively correlated although since it used measured data, the SMAF appears to provide more information about the effects of management practices within the watershed. Soils in upper landscape positions had lower TOC and C:N ratios indicating an increased risks for both erosion and for nitrate leaching. Management of soils on hilltops may be the most effective way to minimize N and P losses within the watershed.  相似文献   

17.
The introduction of N2-fixing white clover (Trifolium repens) in grassland is a management measure that may contribute to sustainable grassland systems by making them less dependent on inorganic fertilizers. However, little is known about the impact of this measure on soil biota and ecosystem services. We investigated earthworms, nematodes, bacteria and fungi in an experiment in which white clover-only and a mixture of grass and white clover without fertilization were compared with grass-only with and without fertilization.In comparison with grass-only, white clover-only had a lower total root biomass and a lower C/N-ratio in the above- and below-ground plant biomass. These plant characteristics resulted in a lower bacterial biomass, a lower fungal biomass, a higher proportion of bacterivorous nematode dauerlarvae, a lesser proportion of herbivorous nematodes and a greater abundance of earthworms in clover-only.The quantity and quality (C/N-ratio) of the above- and below-ground plant biomass in the mixture of grass and white clover (20–30% clover in the DM) was comparable with grass fertilized with 150 kg N ha−1 of inorganic fertilizer. Differences between these treatments might show specific clover effects in the grass–clover mixture on soil biota other than quantity and C/N-ratio of the litter. However, the only differences were a higher proportion of bacterivorous nematode dauerlarvae and a different nematode community composition in grass–clover.The soil structure in white clover-only showed a higher proportion of angular blocky elements, a lower penetration resistance, a higher number of earthworm burrows, a higher potential N-mineralization and respiration than the soil in grass-only. This suggests that clover stimulates the ecosystem services of water infiltration and supply of nutrients, but is less conducive to soil structure maintenance. The grass–clover mixture differed from grass-only in a higher respiration and from clover-only in a higher percentage of soil crumbs. We suggest that when clover is introduced in grassland to reduce the reliance on inorganic fertilizer, the mixture of grass and clover maintains the positive impact of grass roots on soil structure and increases the supply of nutrients via the soil food web. Thus, a grass–clover mixture combines the agronomic benefits of the two plant types.  相似文献   

18.
Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early-successional stages. Since most fertilization studies have focused on mature boreal forests, the response of burned boreal ecosystems to increased nutrient availability is unclear. Therefore, we used a nitrogen (N) fertilization experiment to test how C cycling in a recently-burned boreal ecosystem would respond to increased N availability. We hypothesized that fertilization would increase rates of decomposition, soil respiration, and the activity of extracellular enzymes involved in C cycling, thereby reducing soil C stocks. In line with our hypothesis, litter mass loss increased significantly and activities of cellulose- and chitin-degrading enzymes increased by 45-61% with N addition. We also observed a significant decline in C concentrations in the organic soil horizon from 19.5 ± 0.7% to 13.5 ± 0.6%, and there was a trend toward lower total soil C stocks in the fertilized plots. Contrary to our hypothesis, mean soil respiration over three growing seasons declined by 31% from 78.3 ± 6.5 mg CO2-C m−2 h−1 to 54.4 ± 4.1 mg CO2-C m−2 h−1. These changes occurred despite a 2.5-fold increase in aboveground net primary productivity with N, and were accompanied by significant shifts in the structure of the fungal community, which was dominated by Ascomycota. Our results show that the C cycle in early-successional boreal ecosystems is highly responsive to N addition. Fertilization results in an initial loss of soil C followed by depletion of soil C substrates and development of a distinct and active fungal community. Total microbial biomass declines and respiration rates do not keep pace with plant inputs. These patterns suggest that N fertilization could transiently reduce but then increase ecosystem C storage in boreal regions experiencing more frequent fires.  相似文献   

19.
This study was undertaken to identify critical and practical factors explaining spatial variations in soil respiration and to estimate stand-scale soil respiration in an aseasonal tropical rainforest on Borneo Island. To this aim, we conducted soil respiration measurements at 25 points in a 40 m × 40 m subplot of a 4 ha study plot between 2002 and 2006, and examined the spatial variation in soil respiration averaged over the 4 years in relation to soil, root, and forest structural factors. In addition, we examined the spatial representativeness of soil respiration measured in the subplot using a specific scaling procedure. Consequently, we found significant positive correlation between the soil respiration and forest structural parameters such as the mean diameter at breast height (DBH), total basal area, and maximum DBH within 6 m of the measurement points. The most important factor was the mean DBH within 6 m of the measurement points, which had a significant linear relationship with soil respiration. Using the derived linear regression and an inventory dataset, we estimated the 4 ha plot-scale soil respiration. The 4 ha plot-scale estimation (6.0 μmol m−2 s−1) was nearly identical to the subplot-scale measurements (5.7 μmol m−2 s−1), which were roughly comparable to the nocturnal CO2 fluxes calculated using the eddy covariance technique. In addition, we discuss characteristics of the stand-scale soil respiration at this site by comparing with those of other forests reported in previous literature in terms of the soil C balance. Soil respiration at our site was noticeably greater, relative to the incident litterfall amount, than soil respiration in other tropical and temperate forests probably owing to the larger total belowground C allocation by emergent trees. Overall, this study suggests the arrangement of emergent trees with larger DBH and their belowground C allocation could be primary factors controlling spatial variations in soil respiration in the tropical rainforest.  相似文献   

20.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号