首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to determine the pharmacokinetics and tissue concentrations of doxycycline after repeated intragastric administration, and to determine the minimum inhibitory concentrations (MIC) for equine pathogenic bacteria. In experiment 1, 2 mares received a single intragastric dose of doxycycline hyclate (3 mg/kg bwt). Mean peak serum concentration was 0.22 microg/ml 1 h postadministration. In experiment 2, 5 doses of doxycycline hyclate (10 mg/kg bwt), dissolved in water, were administered to each of 6 mares via nasogastric tube at 12 h intervals. The mean +/- s.e. peak serum doxycycline concentration was 0.32+/-0.16 microg/ml 1 h after the first dose and 0.42+/-0.05 microg/ml 2 h after the fifth dose. The mean trough serum concentrations were > 0.16 microg/ml. Highest mean synovial concentration was 0.46+/-0.13 microg/ml and highest mean peritoneal concentration was 0.43+/-0.07 microg/ml, both 2 h after the fifth dose. Highest urine concentration was mean +/- s.e. 145+/-25.4 microg/ml 2 h after the last dose. Highest endometrial concentration was mean +/- s.e. 1.30+/-0.36 microg/ml 3 h after the fifth dose. Doxycycline was not detected in any of the CSF samples. Mean +/- s.e. Vd(area) was 25.3+/-5.0 l/kg and mean t1/2 was 8.7+/-1.6 h. In experiment 3, minimum inhibitory concentrations of doxycycline were determined for 168 equine bacterial culture specimens. The MIC90 was < or = 1.0 microg/ml for Streptococcus zooepidemicus and 0.25 microg/ml for Staphylococcus aureus. Based on drug concentrations achieved in the serum, synovial and peritoneal fluids and endometrial tissues and MIC values determined in the present study, doxycycline at a dose of 10 mg/kg bwt per os every 12 h may be appropriate for the treatment of infections caused by susceptible (MIC < 0.25 microg/ml) gram-positive organisms in horses.  相似文献   

2.
A recently described mycoplasma, Mycoplasma alligatoris, was isolated from dead American alligators (Alligator mississippiensis) that had demonstrated clinical signs of lethargy, anorexia, bilateral ocular discharge, edema. paraparesis, and polyarthritis. The in vitro minimum inhibitory concentration for nine antibacterial agents was determined through serial dilution in broth and plate culture for M. alligatoris isolates. The inhibitory concentration obtained for doxycycline, enrofloxacin, sarafloxacin, oxytetracycline, tilmicosin, and tylosin (< 1 microg/ml) was lower than that of clindamycin (1-8 microg/ml), chloramphenicol (8-16 microg/ml), and erythromycin (32-138 microg/ml).  相似文献   

3.
OBJECTIVE: To determine the pharmacokinetics of ceftazidime following subcutaneous administration and continuous IV infusion to healthy dogs and to determine the minimum inhibitory concentration (MIC) of ceftazidime for clinical isolates of Pseudomonas aeruginosa. ANIMALS: 10 healthy adult dogs. PROCEDURE: MIC of ceftazidime for 101 clinical isolates of P aeruginosa was determined in vitro. Serum concentrations of ceftazidime were determined following subcutaneous administration of ceftazidime (30 mg/kg of body weight) to 5 dogs and continuous IV infusion of ceftazidime (loading dose, 4.4 mg/kg; infusion rate, 4.1 mg/kg/h) for 36 hours to 5 dogs. RESULTS: The MIC of ceftazidime for P aeruginosa was < or = 8 microg/ml; all isolates were considered susceptible. Following SC administration of ceftazidime, mean beta disappearance half-life was 0.8 hours, and mean serum ceftazidime concentration exceeded the MIC for P aeruginosa for only 4.3 hours. Two dogs had gastrointestinal tract effects. Mean serum ceftazidime concentration exceeded 16 microg/ml during continuous IV infusion. None of the dogs developed adverse effects. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ceftazidime subcutaneously (30 mg/kg, q 4 h) or as a constant IV infusion (loading dose, 4.4 mg/kg; rate, 4.1 mg/kg/h) would maintain serum ceftazidime concentrations above the MIC determined for 101 clinical isolates of P aeruginosa. Use of these dosages may be appropriate for treatment of dogs with infections caused by P aeruginosa.  相似文献   

4.
OBJECTIVE: To assay concentrations of cartilage oligomeric matrix protein (COMP) in canine sera and synovial fluid (SF), to compare COMP concentrations in clinically normal dogs and dogs with joint disease, and to analyze changes in COMP concentrations in dogs with experimentally induced acute synovitis. ANIMALS: 69 control dogs without joint disease, 23 dogs with naturally occurring aseptic arthropathy, and 6 dogs with experimentally induced synovitis. PROCEDURE: Serum (n = 69) and SF (36) were obtained from control dogs. Samples of serum (n = 23) and SF (13) were obtained from dogs with naturally occurring aseptic arthropathy with or without radiographic features of osteoarthritis (OA). Serum and SF were obtained before and 1, 2, 3, and 7 days after induction of synovitis. The COMP concentrations were determined by use of an inhibition ELISA that had canine cartilage COMP and monoclonal antibody against human COMP. RESULTS: Concentrations of COMP in serum and SF of control dogs were 31.3+/-15.3 and 298.7+/-124.7 microg/ml, respectively. In naturally occurring OA, COMP concentrations in serum (44.9+/-177 microg/ml) and SF (401.7+/-74.3 microg/ml) were significantly higher than corresponding concentrations in control dogs. The COMP concentration in SF peaked 24 and 48 hours after induction of synovitis, whereas concentration in serum peaked on day 3. CONCLUSIONS AND CLINICAL RELEVANCE: These results supported the hypothesis that COMP concentration in serum and SF of dogs may be altered after cartilage degradation or synovitis. Measurement of COMP concentrations can be useful when differentiating arthropathies in dogs.  相似文献   

5.
OBJECTIVES: To measure urinary concentrations of doxycycline in cats and dogs and tetracycline in dogs 4 h after conventional oral dosing and determine whether these antibiotics were present in sufficient concentrations to be effective against common feline and canine urinary tract pathogens as assessed in vitro by Epsilometer and disc diffusion antimicrobial susceptibility methods. DESIGN: A prospective study involving oral administration to clinically normal cats and dogs of doxycycline or tetracycline (dogs only) and culture of bacteria from dogs and cats with urinary tract infections to determine their susceptibility to both doxycycline and tetracycline in vitro. PROCEDURE: In the first study, nine cats and eight dogs were administered doxycycline monohydrate (5 mg/kg every 12 h) and a further eight dogs were administered tetracycline hydrochloride (20 mg/kg every 8 h) for 72 h. Blood was collected at 2 and 4 h, and urine at 4 h, after the last dose. The concentration of each agent in serum and urine was determined by modified agar diffusion. In the second study, 45 urine samples from cats and dogs with urinary tract infections were cultured. Every bacterial isolate was tested in vitro using both Epsilometer (doxycycline and tetracycline) and disc diffusion (doxycycline, tetracycline or amoxycillin-clavulanate) tests. RESULTS: Serum doxycycline concentrations in sera of cats and dogs at 2 h were 4.2 +/- 1.0 mg/mL and 3.4 +/- 1.1 mg/mL, respectively. The corresponding concentrations at 4 h were 3.5 +/- 0.7 mg/mL and 2.8 +/- 0.6 mg/mL. Urinary doxycycline concentrations at 4 h (53.8 +/- 24.4 mg/mL for cats and 52.4 +/- 24.1 mg/mL for dogs) were substantially higher than corresponding serum values. Serum tetracycline concentrations in dogs at 2 and 4 h, and in urine at 4 h, were 6.8 +/- 2.8, 5.4 +/- 0.8, 144.8 +/- 39.4 mg/mL, respectively. Most of the urinary tract pathogens (35/45) were susceptible to urinary concentrations of doxycycline and 38/45 were susceptible to tetracycline. In contrast 41/45 of all isolates were susceptible to amoxycillin-clavulanate. CONCLUSION: This is the first report of urinary concentrations of doxycycline after conventional oral administration. Concentrations attained in the urine of normal cats and dogs were sufficient to inhibit the growth of a significant number of urinary tract pathogens and thus doxycycline may be a useful antimicrobial agent for some urinary tract infections.  相似文献   

6.
OBJECTIVE: To determine pharmacokinetics, safety, and penetration into interstitial fluid (ISF), polymorphonuclear leukocytes (PMNLs), and aqueous humor of doxycycline after oral administration of single and multiple doses in horses. ANIMALS: 6 adult horses. PROCEDURE: The effect of feeding on drug absorption was determined. Plasma samples were obtained after administration of single or multiple doses of doxycycline (20 mg/kg) via nasogastric tube. Additionally, ISF, PMNLs, and aqueous humor samples were obtained after the final administration. Horses were monitored for adverse reactions. RESULTS: Feeding decreased drug absorption. After multiple doses, mean +/- SD time to maximum concentration was 1.63 +/- 1.36 hours, maximum concentration was 1.74 +/- 0.3 microg/mL, and elimination half-life was 12.07 +/- 3.17 hours. Plasma protein binding was 81.76 +/- 2.43%. The ISF concentrations correlated with the calculated percentage of non-protein-bound drug. Maximum concentration was 17.27 +/- 8.98 times as great in PMNLs, compared with plasma. Drug was detected in aqueous humor at 7.5% to 10% of plasma concentrations. One horse developed signs of acute colitis and required euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that doxycycline administered at a dosage of 20 mg/kg, PO, every 24 hours will result in drug concentrations adequate for killing intracellular bacteria and bacteria with minimum inhibitory concentration < or = 0.25 microg/mL. For bacteria with minimum inhibitory concentration of 0.5 to 1.0 microg/mL, a dosage of 20 mg/kg, PO, every 12 hours may be required; extreme caution should be exercised with the higher dosage until more safety data are available.  相似文献   

7.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

8.
OBJECTIVES: To determine systemic and local platinum concentrations released from subcutaneously implanted cis-diamminedichloroplatinum (cisplatin) -impregnated polymethylmethacrylate (PMMA) and to evaluate systemic or local adverse reactions. ANIMALS: 6 healthy dogs. PROCEDURE: Cisplatin (20 mg) was inserted into PMMA that was fashioned into cylinders and placed into subcutaneous tissue chambers overlying the thorax (treated site). An empty tissue chamber was placed over the opposite side (control site). Plasma samples were obtained for platinum determination before implantation, at 3, 6, and 12 hours after implantation on day 0, and once daily on days 1, 2, 3, 7, 14, 21, and 29. At similar times on similar days, tissue chamber fluid samples also were obtained for platinum determination. Complete blood count, serum urea nitrogen and creatinine concentration determinations, and urinalyses were performed on days 1, 2, 3, 7, 14, 21, and 29. Complete necropsy was performed at conclusion of the study. RESULTS: Tissue chamber platinum concentrations at the treated site were significantly greater than plasma and control site tissue chamber concentrations on days 2, 3, 7, 10. Mean plasma platinum concentration at 3 (0.735 microg/ml), 6 (0.691 microg/ml), 12 (0.534 microg/ml), 24 (0.131 microg/ml), 48 (0.2 microg/ml), 72 (0.1 microg/ml), and 158 (0.014 microg/ml) hours was significantly greater than pretreatment values (0.0 microg/ml). Plasma platinum concentration 10 days after treatment (0.011 microg/ml) did not significantly differ from pretreatment values. Local or systemic adverse reactions were not apparent. CONCLUSIONS: The route of cisplatin administration was safe. Greater concentration of platinum was released locally relative to plasma concentration for an extended period.  相似文献   

9.
OBJECTIVE: To determine concentrations of marbofloxacin in alveolar macrophages (AMs) and epithelial lining fluid (ELF) and compare those concentrations with plasma concentrations in healthy dogs. ANIMALS: 12 adult mixed-breed and purebred hounds. PROCEDURE: 10 dogs received orally administered marbofloxacin at a dosage of 2.75 mg/kg every 24 hours for 5 days. Two dogs served as nontreated controls. Fiberoptic bronchoscopy and bronchoalveolar lavage procedures were performed while dogs were anesthetized with propofol, approximately 6 hours after the fifth dose. The concentrations of marbofloxacin in plasma and bronchoalveolar fluid (cell and supernatant fractions) were determined by use of high-performance liquid chromatography with detection of fluorescence. RESULTS: Mean +/- SD plasma marbofloxacin concentrations 2 and 6 hours after the fifth dose were 2.36 +/- 0.52 microg/mL and 1.81 +/- 0.21 microg/mL, respectively. Mean +/- SD marbofloxacin concentration 6 hours after the fifth dose in AMs (37.43 +/- 24.61 microg/mL) was significantly greater than that in plasma (1.81 +/- 0.21 microg/mL) and ELF (0.82 +/- 0.34 microg/mL), resulting in a mean AM concentration-to-plasma concentration ratio of 20.4, a mean AM:ELF ratio of 60.8, and a mean ELF-to-plasma ratio of 0.46. Marbofloxacin was not detected in any samples from control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Marbofloxacin concentrations in AMs were greater than the mean inhibitory concentrations of major bacterial pathogens in dogs. Results indicated that marbofloxacin accumulates in AMs at concentrations exceeding those reached in plasma and ELF The accumulation of marbofloxacin in AMs may facilitate treatment for susceptible intracellular pathogens or infections associated with pulmonary macrophage infiltration.  相似文献   

10.
Pharmacokinetics of tinidazole in dogs and cats   总被引:1,自引:0,他引:1  
Pharmacokinetics of tinidazole in dogs and cats after single intravenous (15 mg/kg) and oral doses (15 mg/kg or 30 mg/kg) were studied in a randomized crossover study. Tinidazole was completely absorbed at both oral dose levels in cats and dogs. Peak tinidazole concentration in plasma was 17.8 micrograms/ml in dogs and 22.5 micrograms/ml in cats after 15 mg/kg p.o. The oral dose of 30 mg/kg resulted in peak levels of 37.9 micrograms/ml in dogs and 33.6 micrograms/ml in cats. The apparent total plasma clearance of the drug was about twofold higher in dogs than in cats, resulting in an elimination half-life that was twice as long in cats (8.4 h) as in dogs (4.4 h). The apparent volume of distribution was 663 ml/kg in dogs and 536 ml/kg in cats. Therapeutic plasma drug concentrations higher than the MIC values of most tinidazole-sensitive bacteria were achieved for 24 h in cats and for 12 h in dogs after a single oral dose of 15 mg/kg. From the pharmacokinetic standpoint tinidazole seems to be well-suited to clinical use in small animal practice.  相似文献   

11.
A total of 18 chlamydial isolates from various psittacine birds, one isolate from a domestic pigeon and one isolate from a Pekin duck were isolated in continuous Buffalo Green Monkey (BGM) kidney cell cultures. All 20 isolates were identified by nested multiplex polymerase chain reaction as Chlamydophila psittaci. These isolates were multiplied to high titres and subsequently tested for in vitro sensitivity against two tetracyclines (chlortetracycline and doxycycline) and two quinolones (enrofloxacin and difloxacin) at concentrations of 0.0, 0.25, 0.50, 1.00, and 10.00 microg/ml. Replication of chlamydia in BGM cell cultures is assayed on the basis of formation of intracytoplasmic inclusions that are visualized by Giménez staining. All isolates, although to variable degrees, are sensitive to all four drugs. The number of chlamydial inclusions decreases gradually over a broad range of increasing concentrations of the drugs. The variation in the number of inclusions between isolates is remarkably high for chlortetracycline less for doxycycline and minimal for both fluoroquinolones, the enrofloxacin and difloxacin. The decline in numbers of inclusions is highly dose-dependend and the observed reduction stretches over a wide range of drug dilutions. Therefore, it is proposed to calculate drug sensitivity values in terms of inhibitory concentration 50%, (IC5). Its calculation includes all tested drug dilutions instead of the hitherto more common minimal inhibitory concentration, MIC, which is based on results of serial dilution tests for cell-free growing bacteria. Using a logistic regression model for the calculation of the inhibitory concentration 50% of all 20 chlamydial isolates, the IC50 is 0.807 microg/ml for tetracycline, 0.497 microg/ml for doxycycline, 0.180 microg/ml for enrofloxacin and 0.168 microg/ml for difloxacin. Complete prevention of inclusion formation was already seen for enrofloxacin at a concentration of 1.0 microg/ml in 12 out of 20 and for difloxacin in 5 out of 20 isolates whereas more than 10 microg/mI chlortetracycline is needed in 15 out of 20 isolates and for doxycycline 9 out of 20 isolates yielded inclusions at 10 microg/ml.  相似文献   

12.
Mycoplasma iguanae proposed species nova was isolated from vertebral abscesses of two feral iguanas (Iguana iguana) from Florida. Three strains were evaluated for sensitivity to a variety of antibiotics. The minimum inhibitory concentrations for M. iguanae, assessed by broth dilution methods, of clindamycin, doxycycline, enrofloxacin, oxytetracycline, and tylosin (all <1 microg/ml) were lower than those of chloramphenicol (32 micro/ml) and erythromycin (64 microg/ml). The profile was identical to that of Mycoplasma alligatoris, previously isolated from American alligators (Alligator mississippiensis). M. iguanae strain 2327T was subcultured without antibiotics to assess mycoplasmacidal activity. Clindamycin, doxycycline, oxytetracycline, and tylosin were bacteriostatic from 0.1 to 0.5 microg/ml, whereas enrofloxacin was bactericidal at 20 ng/ml. An enrofloxacin dosage of 5-10 mg/kg achieves peak plasma concentrations >1 microg/ml, with an elimination half-life of 6-20 hr, in alligators. Although concentrations achieved in the vertebrae by i.m. or i.v. injection are probably lower than those in plasma, these data suggest that enrofloxacin may be useful to treat M. iguanae mycoplasmosis in iguanas.  相似文献   

13.
Reasons for performing study: Tetracycline compounds have been used to slow the progression of osteoarthritis (OA) and rheumatoid arthritis but the concentration of doxycycline attained in synovial fluid following oral, low‐dose administration has yet to be determined. Objective: To determine the concentration of doxycycline in synovial fluid following oral, low‐dose administration. Methods: Six mature horses received doxycycline (5 mg/kg bwt q. 12 h for 5 doses). Venous blood and synovial fluid samples were collected at t = 0, 0.25, 0.5, 1, 12, 24, 48 and 72 h. Doxycycline concentrations were measured using reverse phase high pressure liquid chromatography with ultraviolet detection. Results: Doxycycline concentrations at all time points after t = 0 were above the lower limit of quantification for the assay. Plasma concentrations of doxycycline were above 0.21 µg/ml at t = 0.5 h. The mean ± s.d. peak concentration (Cmax) of doxycycline in plasma was 0.37 ± 0.22 µg/ml and time to peak concentration was 0.54 ± 0.19 h. Synovial fluid concentrations of doxycycline were above 0.12 µg/ml 1 h after drug administration. The mean Cmax of doxycycline in the synovial fluid was 0.27 ± 0.10 µg/ml. The penetration factor of doxycycline from plasma into synovial fluid, as determined by a ratio of the area‐under‐the‐curve for synovial fluid:plasma during the sampling period, was 4.6. Potential relevance: Orally administered doxycycline distributes easily into synovial fluid with a penetration factor of 4.6. Terminal half‐life of the drug in synovial fluid was longer than in the plasma, indicating possible accumulation in this compartment. Further in vivo studies are warranted to define a medication protocol prior to routine clinical use of doxycycline for the treatment of OA.  相似文献   

14.
A bioavailability and pharmacokinetics study of doxycycline was carried out on 30 healthy ostriches after a single intravenous (IV), intramuscular (IM) and oral dose of 15 mg/kg body weight. The plasma doxycycline concentration was determined by HPLC/UV at 0 (pretreatment), 0.08, 0.25, 0.5 1, 2, 4, 6, 8, 12, 24 and 48 h after administration. The plasma concentration-time curves were examined using non-compartmental methods based on the statistical moment theory for only the higher dose. After IV administration, the elimination half-life (t1/2β), mean residence time (MRT), volume of distribution at the steady-state (Vss), volume of distribution (Vdarea) and total body clearance (ClB) were 7.67 ± 0.62 h, 6.68 ± 0.86 h, 0.86 ± 0.16 l/kg, 1.67 ± 0.52 l/kg and 2.51 ± 0.63 ml/min/kg, respectively. After IM and oral dosing, the mean peak plasma concentrations (Cmax) were 1.34 ± 0.33 and 0.30 ± 0.04 µg/ml, respectively, which were achieved at a post-administration time (tmax) of 0.75 ± 0.18, 3.03 ± 0.48 h, respectively. The t1/2β, Vdarea and ClB after IM administration were 25.02 ± 3.98 h, 23.99 ± 3.4 l/kg and 12.14 ± 1.71 ml/min/kg, respectively and 19.25 ± 2.53 h, 61.49 ± 7 l/kg and 40.19 ± 3.79 ml/min/kg after oral administration, respectively. The absolute bioavailability (F) of doxycycline was 5.03 and 17.52% after oral and IM administration, respectively. These results show that the dose data from other animals particularly mammals cannot be extrapolated to ostriches. Therefore, based on these results along with those reported in the literature, further studies on the pharmacokinetic/pharmacodynamic, in vitro minimum inhibitory concentration values and clinical applications of doxycycline in ostriches are required.  相似文献   

15.
Serum concentrations and pharmacokinetics of enrofloxacin were studied in 6 mares after intravenous (IV) and intragastric (IG) administration at a single dose rate of 7.5 mg/kg body weight. In experiment 1, an injectable formulation of enrofloxacin (100 mg/mL) was given IV. At 5 min after injection, mean serum concentration was 9.04 microg/mL and decreased to 0.09 microg/mL by 24 h. Elimination half-life was 5.33 +/- 1.05 h and the area under the serum concentration vs time curve (AUC) was 21.03 +/- 5.19 mg x h/L. In experiment 2, the same injectable formulation was given IG. The mean peak serum concentration was 0.94 +/- 0.97 microg/mL at 4 h after administration and declined to 0.29 +/- 0.12 microg/mL by 24 h. Absorption of this enrofloxacin preparation after IG administration was highly variable, and for this reason, pharmacokinetic values for each mare could not be determined. In experiment 3, a poultry formulation (32.3 mg/mL) was given IG. The mean peak serum concentration was 1.85 +/- 1.47 microg/mL at 45 min after administration and declined to 0.19 +/- 0.06 microg/mL by 24 h. Elimination half-life was 10.62 +/- 5.33 h and AUC was 16.30 +/- 4.69 mg x h/L. Bioavailability was calculated at 78.29 +/- 16.55%. Minimum inhibitory concentrations of enrofloxacin were determined for equine bacterial culture specimens submitted to the microbiology laboratory over an 11-month period. The minimum inhibitory concentration of enrofloxacin required to inhibit 90% of isolates (MIC90) was 0.25 microg/mL for Staphylococcus aureus, Escherichia coli, Salmonella spp., Klebsiella spp., and Pasteurella spp. The poultry formulation was well tolerated and could be potentially useful in the treatment of susceptible bacterial infections in adult horses. The injectable enrofloxacin solution should not be used orally.  相似文献   

16.
BACKGROUND: Ineffective clearance of Ehrlichia canis after doxycycline administration has been reported despite the fact that the recommended treatment for canine ehrlichiosis is doxycycline. The effectiveness of doxycycline in clearing E canis infection from the blood and tissues of dogs requires additional evaluation. HYPOTHESIS: Doxycycline (5 mg/kg PO q12h), administered for 4 weeks, will eliminate E canis infection from the blood and tissues of experimentally infected dogs. ANIMALS: Fifteen Walker hound-mixed breed dogs were inoculated subcutaneously with E canis-infected canine histiocytic cells 4 months before doxycycline treatment. METHODS: Four dogs were treated with doxycycline (5 mg/kg PO q12h for 3 weeks), 5 dogs were treated with doxycycline at the same dosage for 4 weeks, and 5 control dogs were not treated. Dexamethasone (0.4 mg/kg i.v.) was given after treatment to precipitate recrudescence of any remaining E canis organisms. Platelet counts, anti-E canis immunofluorescent antibodies, and polymerase chain reaction (PCR) detection of E canis deoxyribonucleic acid (DNA) in blood and tissues were evaluated. RESULTS: E canis DNA was not detected in the blood and tissues of doxycycline-treated dogs after treatment. Platelet counts were within reference intervals, and E canis antibodies decreased. Spontaneous clearance of E canis infection occurred in 2 of 5 control dogs. Three control dogs had E canis DNA detected in blood and tissues, platelet counts remained low or within the reference interval, and E canis antibodies remained high. CONCLUSIONS AND CLINICAL IMPORTANCE: As administered in this study, doxycycline cleared E canis from the blood and tissues of experimentally infected dogs.  相似文献   

17.
The pharmacokinetics of a single dose of enrofloxacin administered orally, both pilled and in fish, and i.v. to African penguins (Spheniscus demersus) at 15 mg/kg were determined. Plasma concentrations of enrofloxacin and its metabolite ciprofloxacin were measured via high-pressure liquid chromatography with mass spectrometry. An i.v. administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 7.86 microg/ml at time zero. Plasma volume of distribution for i.v. administration was 3.00 L/kg, with a mean elimination half-life of 13.67 hr and a mean total body clearance rate of 3.03 ml/min/kg. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of4.38 microg/ml at 4.8 hr after administration when pilled, whereas mean maximum plasma concentration was 4.77 microg/ml at 1.59 hr after administration when given in fish. Mean terminal elimination half-life was 13.79 hr pilled and 11.93 hr when given in fish. Low concentrations of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration. Enrofloxacin administered to African penguins at 15 mg/kg p.o.q. 24 hr, whether in fish or pilled, is expected to achieve the surrogate markers of efficacy for bacteria with a minimum inhibitory concentration of 0.5 microg/ml or less; however, clinical studies are needed to determine efficacy.  相似文献   

18.
OBJECTIVE: To determine acute cardiovascular effects and pharmacokinetics of carvedilol in healthy dogs. ANIMALS: 14 mature healthy Beagles. PROCEDURE: 12 dogs were anesthetized with morphine and alpha-chloralose. Catheters were placed in the aorta, left ventricle, and right atrium to record systemic and pulmonary pressures and determine vascular resistance and cardiac output. Electrocardiograms (leads I, aVF, and V3) were recorded to determine electrocardiographic changes. Variables were measured before and after IV injection of incremental doses of carvedilol (cumulative doses, 10, 30, 70, 150, 310, and 630 microg/kg of body weight; n = 6) or vehicle alone (6). Pharmacokinetic analysis was performed, using 2 conscious dogs given 160 microg of carvedilol/kg as a single IV injection. RESULTS: Heart rate and velocity of fiber shortening at zero load (Vmax) increased slightly but significantly from baseline values at doses of carvedilol > or = 310 microg/kg and 10 microg/kg, respectively. Carvedilol did not affect systemic and pulmonary pressures or vascular resistances. Intravenous administration of approximately 150 microg of carvedilol/kg resulted in a plasma carvedilol concentration of approximately 100 ng/ml. Mean elimination half-life was 54 minutes, half-life of distribution was 3.5 minutes, and volume of distribution was 2,038 ml/kg. CONCLUSIONS AND CLINICAL RELEVANCE: The therapeutic plasma concentration of carvedilol in humans is 100 ng/ml. At that plasma concentration in dogs, the reduction in afterload and positive inotropic effect that we observed would be beneficial for treating heart failure and minimizing the cardiotoxic effects of doxorubicin.  相似文献   

19.
OBJECTIVE: To determine the role of platelet activating factor (PAF) in lipopolysaccharide (LPS)-induced thrombocytopenia and neutropenia in dogs. ANIMALS: 42 dogs. PROCEDURES: Blood samples were obtained from dogs given LPS (40 microg/kg of body weight; n = 16), PAF (1 microg/kg; 6), PAF (5 microg/kg/h for 90 minutes; 4), or physiologic saline (0.9% NaCl) solution (0.1 ml/kg/h for 90 minutes; 3) IV to monitor changes in blood cell counts, using automated counters and blood smears stained with Giemsa. Blood samples were also obtained from dogs given LPS (40 microg/kg) that had (n = 5) or had not (6) been treated beforehand with TCV-309, a potent PAF antagonist. Concentration of PAF in blood was determined by use of 125I-radioimmunoassay in dogs given LPS at 1 mg/kg (n = 3) and 40 microg/kg (9). RESULTS: Thrombocytopenia and neutropenia were found in all dogs except those given saline solution. The LPS-induced thrombocytopenia was significantly suppressed by prior treatment with TCV-309. The PAF concentrations increased markedly 1 hour after injection of 1 mg/kg of LPS and increased slightly but significantly 10 minutes after injection of 40 microg/kg of LPS. CONCLUSION AND CLINICAL RELEVANCE: PAF plays an important role in the development of LPS-induced thrombocytopenia and neutropenia in dogs. Control of PAF production, PAF-induced effects, or both may be important in the treatment of dogs with gram-negative bacterial infections and associated thrombocytopenia and neutropenia.  相似文献   

20.
OBJECTIVE: To determine sensitivity and specificity of assays of D-dimer concentrations in dogs with disseminated intravascular coagulation (DIC) and healthy dogs and to compare these results with those of serum and plasma fibrin-fibrinogen degradation product (FDP) assays. ANIMALS: 20 dogs with DIC and 30 healthy dogs. PROCEDURE: Semi-quantitative and quantitative D-dimer concentrations were determined by use of latex-agglutination and immunoturbidometry, respectively. Fibrin-fibrinogen degradation products were measured by use of latex-agglutination. A reference range for the immunoturbidometric D-dimer concentration assay was established; sensitivity and specificity of the assay were determined at 2 cutoff concentrations (0.30 microg/ml and 0.39 microg/ml). RESULTS: Reference range for the immunoturbidometric D-dimer concentration assay was 0.08 to 0.39 microg/ml; median concentrations were significantly higher in dogs with DIC than in healthy dogs. Latex-agglutination D-dimer and serum and plasma FDP assays had similar sensitivity (85 to 100%) and specificity (90 to 100%); the immunoturbidometric assay had lower specificity (77%) at the 0.30 microg/ml cutoff and lower sensitivity (65%) at the 0.39 microg/ml cutoff. Sensitivity or specificity of the latex-agglutination D-dimer assay was not significantly improved when interpreted in series or parallel with FDP assays. CONCLUSIONS AND CLINICAL RELEVANCE: Measurement of D-dimer concentrations by latex-agglutination appears to be a sensitive and specific ancillary test for DIC in dogs. Specificity of D-dimer concentrations in dogs with systemic disease other than DIC has not been determined, therefore FDP and D-dimer assays should be performed concurrently as supportive tests for the diagnosis of DIC in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号