首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Physiological and symbiotic characteristics were identified in Rhizobium fredii isolated from subtropical-tropical soils. The generation times of R. fredii Taiwan isolated-SB 357 and -SB 682 were 1.7 and 2.5 h, respectively. These strains were associated with acid production in yeast-extract mannitol medium. They were able to use hexoses, pentose, sucrose, trehalose and raffinose. Strain SB 357 can resist a high concentration of kanamycin (100 g ml–1 and penicillin (400 g ml–1). It can tolerate up to 2.34% NaCl and 1031.3 mosmol kg–1 (23.4 bars). The growth rate of R. fredii SB 357 under the concentration of approximately 450 mosmol kg–1 (10.2 bars) was not affected by salinity, but responded to osmotic pressure. Both strains (SB 357 and SB 682) isolated from subtropical-tropical soils were able to form an effective N2-fixing symbiosis with the US soybean cv Clark lanceolate leaflet.  相似文献   

2.
Summary Plants grown from seed with high (1.5–7.3 g Mo seed-1) and low (0.07–1.4 g Mo seed-1) Mo contents were grown in the presence and absence of Mo in growth media (perlite) or in a flowing-solution culture, in a controlled environment. Neither the high (1.5 g Mo seed-1) nor the low (0.1 g Mo seed-1) Mo content in seed from a small-seeded genotype (BAT 1297) was able to prevent Mo deficiency (reduced shoot, root and nodule dry weight, N2 fixation and seed production) in growth media without an external supply of Mo, whereas both the high (7.3 g Mo seed-1) and the low (0.07 g Mo seed-1) contents in seed were able to prevent Mo deficiency in a large-seeded genotype (Canadian Wonder). Responses to Mo treatment by the Two genotypes were inconsistent between the growth media and solution culture experiments. Seed with a large Mo content (3.5 g Mo seed-1) from the Canadian Wonder genotype was unable to prevent Mo deficiency (reduced shoot and nodule dry weight and N2-fixation) in a solution culture without an external source of Mo, whereas both the large (1.7 g Mo seed-1) and the small (0.13 g Mo seed-1) contents in seed prevented a deficiency in BAT 1297. Growing plants from seed with a small Mo content, without additional Mo, reduced the seed Mo content by 83–85% and seed production by up to 38% in both genotypes. Changes in seed size and increases in shoot, root and nodule dry weight occurred, but varied with the genotype and growth conditions. These effects were also observed in some cases where plants were grown with additional Mo, demonstrating that the amount of Mo in the seed sown can influence plant nutrition irrespective of the external Mo supply. Nodule dry weight, total N content of shoots and seed production were improved by using seed with a small Mo content (1.64–3.57 g Mo seed-1) on acid tropical soils in Northern Zambia. Plants of both the large- and small-seeded genotypes grown from seed with a small Mo content (<1.41 g Mo seed-1) had a smaller nodule weight, accumulated less N and produced less seed. The viability of seed with a small Mo content was lower (germination up to 50% less) than that of seed with a large Mo content.  相似文献   

3.
Summary Six fast-growing soybean rhizobia (Rhizobium fredii) and thirteen slow-growing soybean rhizobia (Bradyrhizobium japonicum) were examined for resistance to 10 antibiotics. Axenic studies were carried out to determine the competitiveness of dual-strain inocula consisting of fast- and slow-growing rhizobia isolated from subtropical-tropical soils for nodule occupancy on a hybrid of Asian and US soybean cultivars. Nodule occupancy was determined by intrinsic resistance to erythromycin and neomycin. The results showed wide variability in resistance to 10 antibiotics for fast- and slow-growing rhizobia. The intrinsic antibiotic resistance of fast- and slow-growing rhizobia was extremely high against nalidixic acid (400 g ml–1) and penicillin (200 g ml–1). The competitive ability of inoculant strains for nodule occupancy varied for different combination sets and with the plant growing media. Our results show that fast-growing rhizobia nodulate a hybrid of Asian and US soybean cultivars. Fast-growing soybean rhizobia did not completely exclude nodulation by the slow-growing strains, which formed 0–79% nodules, depending on the strain used in the inoculum.  相似文献   

4.
Summary Strains of Bradyrhizobium influenced root colonization by a species of vesicular-arbuscular mycorrhizae (VAM), and species of VAM influenced root nodulation by strains of Bradyrhizobium in pot experiments. In a field experiment, the effects of VAM on competition amongst inoculated bradyrhizobia were less evident, but inoculation with Bradyrhizobium strains increased root colonization by VAM. Certain VAM/Bradyrhizobium inoculum strain combinations produced higher nodule numbers. Plants grown without Bradyrhizobium and VAM, but supplied with ammonium nitrate (300 g ml–1) and potassium phosphate (16 g ml–1), produced higher dry-matter yields than those inoculated with both symbionts in the pot experiment. Inoculation with either symbiont in the field did not result in higher pod and haulm yields at harvest.ICRISAT Journal Article No. 886  相似文献   

5.
Summary A 2-year study (1983–1984 to 1984–1985) was conducted to estimate temporal and seasonal changes and the effects of fertiliser on some soil chemical, biochemical and microbiological characteristics. The soil used was a Typic Vitrandept under grazed pasture. Soil samples were taken regularly to a depth of 75 mm from paired unfertilised and fertilised (500 kg ha 30% potassic superphosphate) plots. Except for organic C, fertiliser had little or no effect on the characteristics measured. Organic C averaged about 9.2% in unfertilised soil and was about 0.3% higher in the fertilised soil. The size of the microbial biomass fluctuated widely in the 1st year (3000 g C g–1 in February to 1300 g C g–1 in September) but there was less variation in the 2nd year (range 1900 g C g–1 to 2500 g C g–1 soil). CO2 production values (10- to 20-day estimates averaged 600 g of CO2-C g–1 soil) were generally higher in spring compared to the rest of the year. Water extractable C increased over winter and declined through spring in both years (range 50 g C g–1 soil to 150 g C g–1 soil). Mineral-N flush values were higher in summer (300 g N g–1 soil) and lower in winter months (200 g N g–1 soil). The pattern of variation of microbial N values was one of gradual accumulation followed by rapid decline. This rapid decline in values occurred in spring and autumn (range 130–220 g N g–1 soil). N mineralisation and bicarbonate-extractable N showed no clear trend; these values ranged from 100–200 and 122–190 g N g–1 soil, respectively. There was a significant correlation (0.1%) between N mineralisation and bicarbonate-extractable N in the late summer-autumn-early winter period (February–August) in both years but not in spring. These results and their relationships to climatic factors and rates of pasture production are discussed.  相似文献   

6.
Cadmium toxicity reduces the species diversity of soil microbial communities and their ability to metabolize different carbon substrates. However, it is not yet clear whether there is a relationship between loss of species diversity and the metabolic rates at which different substrates are used. In this research, the ability of a soil microbial community to metabolize 31 C substrates was examined using Biolog Ecoplates amended with Cd over a range of concentrations (0, 5, 10, 20, 50 g ml–1). After 48 h growth, the bacterial communities that were produced on ten of the substrates were characterized in relation to their 16S rDNA profiles by PCR denaturing-gradient gel electrophoresis. Results showed that both the microbial growth rates and the numbers of substrates that were used were reduced with increasing Cd concentration. When examined across all substrates, approximately 30% of the 16S rDNA bands representing different bacterial species were eliminated by 5 g Cd ml–1. However, there was considerable variation in the bacterial community responses with different C substrates. Both cluster analysis and discriminant analysis indicated that the bacterial community structures could be grouped into sensitive, moderately sensitive, and Cd-resistant communities.  相似文献   

7.
Growth rate change in earthworms is considered to be a suitable endpoint when determining sublethal effects. In this study we evaluated growth and maturation in the vermicomposting earthworm speciesEudrilus eugeniae as marker of sublethal toxicity of copper and zinc. We also compared routes of uptake. Apart from exposing worms experimentally for 73 days to contaminated food, a series of contact filter paper tests was also performed to determine LD50 for copper and zinc. Both copper and zinc at sublethal concentrations affected growth and maturation in worms exposed to contaminated food. These worms had a copper content of 34.5 g g–1 after 73 days and a zinc content of 184.9 g g–1, showing a differential uptake. Copper was more toxic than zinc. Also in the contact test worms did take up more zinc than copper and the LD50 (48 h) for copper was 0.011 mg cm–2 and for zinc 0.066 mg cm–2, which translated to body burdens of 6 g g–1 for copper and 131 g g–1 for zinc. Indications were that a regulatory mechanism existed for both metals. Both metals were taken up through the body wall at a relatively fast rate. This study indicated that the skin was the major route of metal uptake. This study also showed a poor relation between the two types of tests for purposes of evaluating lethality of zinc and copper.  相似文献   

8.
The degree to which floating aquatic plants concentrate Se in tissues was determined for four species grown in solutions containing various levels of Se. Results of this greenhouse study showed that all four plant species, Azolla caroliniana, Eichhornia crassipes, Salvinia rotundi folia, and Lemna minor absorbed Se quickly upon exposure to Se in water as concentrated as 2.5 g Se mL–1, and attained maximum tissue concentrations within 1 to 2 weeks. Azolla absorbed Se to the highest tissue concentration (about 1000 g Se g–1 dry matter) from the 2.5 g Se mL–1 solution, followed by Salvinia (700 g Se g–1), Lemna (500 g Se g–1),and Eichhornia (300 g Se g–1). Plant growth appeared unaffected by solution Se concentrations lower than about 1.25 g mL–1. These results indicate potential for rapid Se movement from water into aquatic food chains, and for use of aquatic plants for Se removal in wastewater treatment systems.  相似文献   

9.
Summary The influence of the partial pressure of oxygen on denitrification and aerobic respiration was investigated at defined P02 values in a mull rendzina soil. The highest denitrification and respiration rates obtained in remoistened, glucose- and nitrate-amended soil were 43 1 N20 h–1g–1 soil and 130 1 O2 h–1g–1 soil, respectively. At -55 kPa matric water potential, corresponding to 40% water saturation, N20 was produced only below P02 40 hPa. The K m, for O2 was 3.0 x 106 M. Formation of N2O and consumption of O2 occurred simultaneously with half maximum rates at P02 6.7–13.3 hPa. Nitrite accumulated in soil below 40 hPa and increased with decreasing pO2. The upper threshold for N20 formation in amended soil was P02 33–40 hPa (39-47 M O2).  相似文献   

10.
The effects of soil texture (silt loam or sandy loam) and cultivation practice (green manure) on the size and spatial distribution of the microbial biomass and its metabolic quotient were investigated in soils planted with a permanent row crop of hops (Humulus lupulus). The soil both between and in the plant rows was sampled at three different depths (0–10, 10–20, and 20–30 cm). The silt loam had a higher overall microbial biomass C concentration (260 g g-1) than the sandy loam (185 g g-1), whereas the sandy loam had a higher (3.1 g CO2-C mg-1 microbial Ch-1) metabolic quotient than the silt loam (2.6 g CO2-C mg-1 microbial C h-1), on average over depth (0–30 cm) and over all treatments. There was a sharp decrease in the microbial biomass with increasing depth for all plots. However, this was more pronounced in the silt loam than in the sandy loam. There was no distinct influence of sampling depth on the metabolic quotient. The microbial biomass was considerably higher in the rows than between the rows, especially in the silt loam plots. There was no significant difference between plots without green manure and plots with green manure for either the microbial biomass or the metabolic quotient.  相似文献   

11.
Field evolution of CH4 and CO2 from soils under four dominant land uses in the Mardi watershed, western Nepal, were monitored at 15-day intervals for 1 year using closed chamber techniques. The CH4 oxidation rate (mean±SE, g CH4 m–2 h–1) in the forest (22.8±6) was significantly higher than under grazing land (14±2) and an upland rainfed maize and millet system (Bari) (2.6±0.9). Irrigated rice fields (Khet) showed an oxidation rate of 6±0.8 g CH4 m–2 h–1 in the dry season (December–May) but emitted a mean rate of 131 g CH4 m–2 h–1 in the rainy season and autumn (June–October). The evolution of CO2 ranged from 10 mg CO2 m–2 h–1 in the Bari in January to 1,610 mg CO2 m–2 h–1 in the forest in July. Higher evolution of CO2 (mean±SE, mg CO2 m–2 h–1) was observed in the Bari (399±39) and forest (357±36) compared to Khet (246±25) and grazing (206±20) lands. The annual emission of CO2 evolution varied from 86.6 to 1,836 g CO2 m–2 year–1. The activation energy for CH4 and CO2 varied between 16–283 and 80–117 kJ mol–1, respectively. The estimated temperature coefficient for CO2 emission varied from 2.5 to 5.0. Temperature explained 46–51% of the variation in CO2 evolution, whereas it explained only 4–36% of the variation in CH4 evolution.  相似文献   

12.
Summary Fifteen- and forty-year-old cropfields developed from a dry tropical forest were examined for soil organic C and total N and soil microbial C and N. The 15-year-old field had never been manured while the 40-year-old field had been fertilized with farmyard manure every year. The native forest soil was also examined. The results indicated that the native forest soil lost about 57% and 62% organic C and total N, respectively, in the 0–10 cm layer after 15 years of cultivation. The microbial C and N contents of the forest soil were greater than those of the cultivated soils. Application of farmyard manure increased the biomass-C and -N levels in the cultivated soil but the values were still markedly lower than in the forest soil. There was an appreciable seasonal variation in biomass C and N, the values being highest in summer and lowest in the rainy season. During an annual cycle, biomass-C contents varied from 180 to 727 g g–1 and N from 20 to 80 g g–1 dry soil, and both were linearly related. Microbial biomass C represented 1.6%–3.6% of total soil organic C and microbial biomass N represented 1.7% 1–4.4% of soil organic N.  相似文献   

13.
Summary N2 fixation by free-living microorganisms was investigated at an intensively studied low Arctic site near Toolik Lake in the northern foothills of the Brooks Range, Alaska, during July 1987. Four characteristic vegetation associations along an elevational gradient were assayed using minimally disruptive in situ acetylene reduction assay methods. The acetylene reduction rates did not differ significantly among vegetation associations. The mean rate for the site was 9.60 mol m–2 h–1 or 90 g N m–2 day–1, which is within the range of values given for other Arctic and alpine tundra studies. The complex microtopography and resulting patchy distribution of free-living and phycobiont diazotrophs is the most likely cause of the high spatial variability in acetylene reduction activity. Rates were most variable among samples from the lowest position, a riparian site. The potential contribution of heterotrophic diazotrophs was examined through a laboratory enrichment study. Soils from the two lower slope positions showed dramatic responses to added C, suggesting that heterotrophs may contribute fixed N2 to this system.  相似文献   

14.
Summary The kinetics of Zn absorption were studied in mycorrhizal (Glomus macrocarpum) and non-mycorrhizal roots of corn (Zea mays L.) at pH 6.0 at Zn concentrations of 75 mol to 1.07 mol m-3. Five concentration-dependent phases of Zn absorption were recognized; phase 0 (1.5–4.0 mmol m-3) was linear but the other four phases (4.0 mmol to 1.07 mol m-3) obeyed Michaelis-Menten kinetics. At low concentrations (less than 4 mmol m-3), sigmoidal kinetics of Zn absorption were observed. The absorption of Zn by mycorrhizal maize was greater at low concentrations but decreased at higher levels. This appeared to be a result of a higher maximal uptake rate in phase 1 and lower K m values in the subsequent phases. Kinetic models yielding continuous isotherms could not account for the observed multiphasic pattern.Research paper no. 6820 through the Director, Experiment Station, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, UP, India  相似文献   

15.
Summary We studied the effects of the organophosphorus insecticide methidathion, at concentrations of 10, 50, 100, 200 and 300 g g-1 in an agricultural soil, on fungi, total bacterial populations, aerobic N2-fixing bacteria, denitrifying bacteria, nitrifying bacteria (phases I and II), and nitrogenase activity (acetylene reduction assay). The presence of 10–300 g g-1 of methidathion significantly increased fungal populations (colony-forming units). Denitrifying bacteria, aerobic N2-fixing bacteria and N2 fixation were significantly increased at concentrations of 50–300 g g-1. The total number of bacteria increased significantly at concentrations of 100–300 g g-1. Nitrifying bacteria decreased initially at concentrations of 300 g g-1, but recovered rapidly to levels similar to those in the control soil without the insecticide.  相似文献   

16.
The Lysina catchment in the Czech Republic was studied to investigate the biogeochemical response of Al to high loadings of acidic deposition. The catchment supports Norway spruce plantations and is underlain by granite and podzolic soil. Atmospheric deposition to the site was characterized by high H+ and SO4 2– fluxes in throughfall. The volume-weighted average concentration of total Al (Alt) was 28 mol L–1 in the O horizon soil solution. About 50% of Alt in the O horizon was in the form of potentially-toxic inorganic monomeric Al (Ali). In the E horizon, Alt increased to 71 mol L–1, and Ali comprised 80% of Alt. The concentration of Alt (120 mol L–1) and the fraction of Ali (85%) increased in the lower mineral soil due to increases in Ali and decreases in organic monomeric Al (Alo). Shallow ground water was less acidic and had lower Alt concentration (29 mol L–1). The volume-weighted average concentration of Alt was extremely high in stream water (60 mol L–1) with Ali accounting for about 60% of Alt. The major species of Ali in stream water were fluorocomplexes (Al-F) and aquo Al3+. Soil solutions in the root zone were undersaturated with respect to all Al-bearing mineral phases. However, stream water exhibited Ali concentrations close to solubility with jurbanite. Acidic waters and elevated Al concentrations reflected the limited supply of basic cations on the soil exchange complex and slow weathering, which was unable to neutralize atmospheric inputs of strong acids.  相似文献   

17.
Summary Four soils with 6, 12, 23, and 47% of clay were incubated for 5 years with 15N-labeled (NH4 2SO4 and hemicellulose. The incubations took place at 20°C and 55% water-holding capacity. Samples of whole soils, and clay- (<2 m) and silt-(2–20 m) size fractions (isolated by ultrasonic dispersion and gravity sedimentation) were analysed for labeled and native mineral-fixed ammonium. Mineral-fixed ammonium in non-incubated soil samples accounted for 3.4%–8.3% of the total N and showed a close positive correlation with the soil clay content (r 2 = 0.997). After 5 years of incubation, the content of mineral-fixed ammonium in the clay fraction was 255–430 g N g–1, corresponding to 71%–82% of the mineral-fixed ammonium in whole soils. Values for silt were 72–166 g N g–1 (14%–33% of whole soil content). In the soils with 6% and 12% clay, less than 1 % of the labeled clay N was present as mineral-fixed ammonium. In the soil with 23% clay, 3% of the labeled N in the clay was mineral-fixed ammonium. Labeled mineral-fixed ammonium was not detected in the silt fractions. For whole soils, and clay and silt fractions, the proportion of native N present as mineral-fixed ammonium varied between 3% and 6%. In contrast, the proportion of labeled N found as mineral-fixed ammonium in the soil with 4701o clay was 23%, 38% and 31% for clay, silt, and whole-soil samples, respectively. Corresponding values for native mineral-fixed ammonium were 12%, 16%, and 10%. Consequently, studies based on soil particle-size fractions and addressing the N turnover in clay-rich soils should consider the pool of mineral-fixed ammonium, especially when comparing results from different size fractions with those from fractions isolated from soils of a widely different textural composition.  相似文献   

18.
Concentrations of CH4, a potent greenhouse gas, have been increasing in the atmosphere at the rate of 1% per year. The objective of these laboratory studies was to measure the effect of different forms of inorganic N and various N-transformation inhibitors on CH4 oxidation in soil. NH 4 + oxidation was also measured in the presence of the inhibitors to determine whether they had differential activity with respect to CH4 and NH 4 + oxidation. The addition of NH4Cl at 25 g N g-1 soil strongly inhibited (78–89%) CH4 oxidation in the surface layer (0–15 cm) of a fine sandy loam and a sandy clay loam (native shortgrass prairie soils). The nitrification inhibitor nitrapyrin (5 g g-1 soil) inhibited CH4 oxidation as effectively as did NH4Cl in the fine sandy loam (82–89%), but less effectively in the sandy clay loam (52–66%). Acetylene (5 mol mol-1 in soil headspace) had a strong (76–100%) inhibitory effect on CH4 consumption in both soils. The phosphoroamide (urease inhibitor) N-(n-butyl) thiophosphoric triamide (NBPT) showed strong inhibition of CH4 consumption at 25 g g-1 soil in the fine sandy loam (83%) in the sandy clay loam (60%), but NH 4 + oxidation inhibition was weak in both soils (13–17%). The discovery that the urease inhibitor NBPT inhibits CH4 oxidation was unexpected, and the mechanism involved is unknown.  相似文献   

19.
Summary The influence of 28 nitrification inhibitors on denitrification of nitrate in soil was studied by determining the effects of different amounts of each inhibitor on the amounts of nitrate lost and the amounts of nitrite, N2O and N2 produced when soil samples were incubated anaerobically after treatment with nitrate or with nitrate and mannitol. The inhibitors used included nitrapyrin (N-Serve), etridiazole (Dwell), potassium azide, 2-amino-4-chloro-6-methylpyrimidine (AM), sulfathiazole (ST), 4-amino-1,2,4-triazole(ATC),2,4-diamino-6-trichloromethyl-s-triazine (CL-1580), potassium ethylxanthate, guanylthiourea (ASU), 4-nitrobenzotrichloride, 4-mesylbenzotrichloride, sodium thiocarbonate (STC), phenylmercuric acetate (PMA), and dicyandiamide (DCD).Only one of the nitrification inhibitors studied (potassium azide) retarded denitrification when applied at the rate of 10 g g–1 soil, and only two (potassium azide and 2,4-diamino-6-trichloromethyl-s-triazine) inhibited denitrification when applied at the rate of 50 g g–1 soil. The other inhibitors either had no appreciable effect on denitrification, or enhanced denitrification, when applied at the rate of 10 or 50 g g–1 soil, enhancement being most marked with 3-mercapto-1,2,4-triazole. Seven of the inhibitors (potassium azide, sulfathiazole, potassium ethylxanthate, sodium isopropylxanthate, 4-nitrobenzotrichloride, sodium thiocarbonate, and phenylmercuric acetate) retarded denitrification when applied at the rate of 50 g g–1 soil to soil that had been amended with mannitol to promote microbial activity.Reports that nitrapyrin (N-Serve) and etridiazole (Dwell) inhibit denitrification when applied at rates as low as 0.5 g g–1 soil could not be confirmed. No inhibition of denitrification was observed when these compounds were applied at the rate of 10 g g–1 soil, and enhancement of denitrification was observed when they were applied at the rate of 50 or 100 g g–1 soil.  相似文献   

20.
Summary Increasing the sulfate concentration and concomitant increases in the organic S concentration failed to exert any effect on organic S mobilization in samples collected from all depths within the mineral soil profile, from 15 sites differing in soil type, vegetation, and geographic location. Mobilization capacities at saturating concentrations of sulfate for organic S formation generally tended to increase with increasing depth. The potentials for the accumulation of organic S with various sulfate inputs exhibited saturation kinetics similar to those observed for organic S formation; values for the former parameter ranged from 3×10-3 to 12.6 mol S g–1 dry weight 24 h-1 for the uppermost (A, E) soil horizons, 3 nmol to 10 mol S g-1 dry weight 24 h–1 for intermediate (primarily AB) soil horizons, and from 3 nmol to 13.4 mol S g-1 dry weight 24 h–1 for the lowermost (B, C) soil horizons. Irrespective of depth, the Fullerton, Tarklin, and Loblolly sites in Tennessee and the Florida site showed the least net accumulation of organic S at saturation (<0.2 mol S g-1 dry weight 24 h–1 for all horizons examined), while the Duke Forest (North Carolina), Douglas Fir (Washington), Whiteface (New York) and the Howland (Maine) sites had the highest potential net accumulation of organic S at saturation (>1.0 mol S g-1 dry weight 24 h-1 for most horizons examined).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号