首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anti‐anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA‐containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC‐MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half‐life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative‐like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent.  相似文献   

2.
Cetirizine is an antihistamine used in performance horses for the treatment of hypersensitivity reactions and as such a withdrawal time is necessary prior to competition. The objective of the current study was to describe the disposition and elimination of cetirizine following oral administration in order to provide additional serum concentration data upon which appropriate regulatory recommendations can be established. Nine exercised thoroughbred horses were administered 0.4 mg/kg of cetirizine orally BID for a total of five doses. Blood samples were collected immediately prior to drug administration and at various times postadministration. Serum cetirizine concentrations were determined and selected pharmacokinetic parameters determined. The serum elimination half‐life was 5.83 ± 0.841 h. Average serum cetirizine concentrations were still above the LOQ of the assay (0.05 ng/mL) at 48 h (final sample collected) postadministration of the final dose.  相似文献   

3.
The study objective was to compare butorphanol pharmacokinetics and physiologic effects following intravenous and subcutaneous administration in horses. Ten adult horses received 0.1 mg/kg butorphanol by either intravenous or subcutaneous injections, in a randomized crossover design. Plasma concentrations of butorphanol were measured at predetermined time points using highly sensitive liquid chromatography–tandem mass spectrometry assay (LC‐MS/MS). Demeanor and physiologic variables were recorded. Data were analyzed with multivariate mixed‐effect model on ranks (≤ 0.05). For subcutaneous injection, absorption half‐life and peak plasma concentration of butorphanol were 0.10 ± 0.07 h and 88 ± 37.4 ng/mL (mean ± SD), respectively. Bioavailability was 87%. After intravenous injection, mean ± SD butorphanol steady‐state volume of distribution and clearance was 1.2 ± 0.96 L/kg and 0.65 ± 0.20 L/kg/h, respectively. Terminal half‐lives for butorphanol were 2.31 ± 1.74 h and 5.29 ± 1.72 h after intravenous and subcutaneous administrations. Subcutaneous butorphanol reached and maintained target plasma concentrations >10 ng/mL for 2 ± 0.87 h (Mean ± SD), with less marked physiologic and behavioral effects compared to intravenous injection. Subcutaneous butorphanol administration is an acceptable alternative to the intravenous route in adult horses.  相似文献   

4.
Dermorphin is a μ‐opioid receptor‐binding peptide that causes both central and peripheral effects following intravenous administration to rats, dogs, and humans and has been identified in postrace horse samples. Ten horses were intravenously and/or intramuscularly administered dermorphin (9.3 ± 1.0 μg/kg), and plasma concentration vs. time data were evaluated using compartmental and noncompartmental analyses. Data from intravenous administrations fit a 2‐compartment model best with distribution and elimination half‐lives (harmonic mean ± pseudo SD) of 0.09 ± 0.02 and 0.76 ± 0.22 h, respectively. Data from intramuscular administrations fit a noncompartmental model best with a terminal elimination half‐life of 0.68 ± 0.24 (h). Bioavailability following intramuscular administration was variable (47–100%, n = 3). The percentage of dermorphin excreted in urine was 5.0 (3.7–10.6) %. Excitation accompanied by an increased heart rate followed intravenous administration only and subsided after 5 min. A plot of the mean change in heart rate vs. the plasma concentration of dermorphin fit a hyperbolic equation (simple Emax model), and an EC50 of 21.1 ± 8.8 ng/mL was calculated. Dermorphin was detected in plasma for 12 h and in urine for 48 or 72 h following intravenous or intramuscular administration, respectively.  相似文献   

5.
Knych, H. K., Casbeer, H. C., McKemie, D. S., Arthur, R. M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. vet. Pharmacol. Therap.  36 , 21–30. Butorphanol is a narcotic analgesic commonly used in horses. Currently, any detectable concentration of butorphanol in biological samples collected from performance horses is considered a violation. The primary goal of the study reported here was to update the pharmacokinetics of butorphanol following intravenous administration, utilizing a highly sensitive liquid chromatography‐mass spectrometry (LC‐MS) assay that is currently employed in many drug‐testing laboratories. An additional objective was to characterize behavioral and cardiac effects following administration of butorphanol. Ten exercised adult horses received a single intravenous dose of 0.1 mg/kg butorphanol. Blood and urine samples were collected at time 0 and at various times for up to 120 h and analyzed using LC‐MS. Mean ± SD systemic clearance, steady‐state volume of distribution, and terminal elimination half‐life were 11.5 ± 2.5 mL/min/kg, 1.4 ± 0.3 L/kg, and 5.9 ± 1.5 h, respectively. Butorphanol plasma concentrations were below the limit of detection (LOD) (0.01 ng/mL) by 48 h post administration. Urine butorphanol concentrations were below the LOD (0.05 ng/mL) of the assay in seven of 10 horses by 120 h post drug administration. Following administration, horses appeared excited as noted by an increase in heart rate and locomotion. Gastrointestinal sounds were markedly decreased for up to 24 h.  相似文献   

6.
The use of anti‐ulcer medications, such as cimetidine, ranitidine, and omeprazole, is common in performance horses. The use of these drugs is regulated in performance horses, and as such a withdrawal time is necessary prior to competition to avoid a medication violation. To the authors' knowledge, there are no reports in the literature describing repeated oral administrations of these drugs in the horse to determine a regulatory threshold and related withdrawal time recommendations. Therefore, the objective of the current study was to describe the disposition and elimination pharmacokinetics of these anti‐ulcer medications following oral administration to provide data upon which appropriate regulatory recommendations can be established. Nine exercised Thoroughbred horses were administered 20 mg/kg BID of cimetidine or 8 mg/kg BID of ranitidine, both for seven doses or 2.28 g of omeprazole SID for four doses. Blood samples were collected, serum drug concentrations were determined, and elimination pharmacokinetic parameters were calculated. The serum elimination half‐life was 7.05 ± 1.02, 7.43 ± 0.851 and 3.94 ± 1.04 h for cimetidine, ranitidine, and omeprazole, respectively. Serum cimetidine and ranitidine concentrations were above the LOQ and omeprazole and omeprazole sulfide below the LOQ in all horses studied upon termination of sample collection.  相似文献   

7.
The objective of this study was to determine the pharmacokinetics of meropenem in horses after intravenous (IV) administration. A single IV dose of meropenem was administered to six adult horses at 10 mg/kg. Plasma and synovial fluid samples were collected for 6 hr following administration. Meropenem concentrations were determined by bioassay. Plasma and synovial fluid data were analyzed by compartmental and noncompartmental pharmacokinetic methods. Mean ± SD values for elimination half‐life, volume of distribution at steady‐state, and clearance after IV administration for plasma samples were 0.78 ± 0.176 hr, 136.1 ± 19.69 ml/kg, and 165.2 ± 29.72 ml hr‐1 kg?1, respectively. Meropenem in synovial fluid had a slower elimination than plasma with a terminal half‐life of 2.4 ± 1.16 hr. Plasma protein binding was estimated at 11%. Based on a 3‐compartment open pharmacokinetic model of simultaneously fit plasma and synovial fluid, dosage simulations were performed. An intermittent dosage of meropenem at 5 mg/kg IV every 8 hr or a constant rate IV infusion at 0.5 mg/kg per hour should maintain adequate time above the MIC target of 1 μg/ml. Carbapenems are antibiotics of last resort in humans and should only be used in horses when no other antimicrobial would likely be effective.  相似文献   

8.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

9.
Acepromazine is a tranquilizer used commonly in equine medicine. This study describes serum and urine concentrations and the pharmacokinetics and pharmacodynamics of acepromazine following intravenous, oral, and sublingual (SL) administration. Fifteen exercised adult Thoroughbred horses received a single intravenous, oral, and SL dose of 0.09 mg/kg of acepromazine. Blood and urine samples were collected at time 0 and at various times for up to 72 hr and analyzed for acepromazine and its two major metabolites (2‐(1‐hydroxyethyl) promazine and 2‐(1‐hydroxyethyl) promazine sulfoxide) using liquid chromatography–tandem mass spectrometry. Acepromazine was also incubated in vitro with whole equine blood and serum concentrations of the parent drug and metabolites determined. Acepromazine was quantitated for 24 hr following intravenous administration and 72 hr following oral and SL administration. Results of in vitro incubations with whole blood suggest additional metabolism by RBCs. The mean ± SEM elimination half‐life was 5.16 ± 0.450, 8.58 ± 2.23, and 6.70 ± 2.62 hr following intravenous, oral, and SL administration, respectively. No adverse effects were noted and horses appeared sedate as noted by a decrease in chin‐to‐ground distance within 5 (i.v.) or 15 (p.o. and SL) minutes postadministration. The duration of sedation lasted 2 hr. Changes in heart rate were minimal.  相似文献   

10.
Flunixin meglumine is commonly used in horses for the treatment of musculoskeletal injuries. The current ARCI threshold recommendation is 20 ng/mL when administered at least 24 h prior to race time. In light of samples exceeding the regulatory threshold at 24 h postadministration, the primary goal of the study reported here was to update the pharmacokinetics of flunixin following intravenous administration, utilizing a highly sensitive liquid chromatography–mass spectrometry (LC‐MS). An additional objective was to characterize the effects of flunixin on COX‐1 and COX‐2 inhibition when drug concentrations reached the recommended regulatory threshold. Sixteen exercised adult horses received a single intravenous dose of 1.1 mg/kg. Blood samples were collected up to 72 h postadministration and analyzed using LC‐MS. Blood samples were collected from 8 horses for determination of TxB2 and PGE2 concentrations prior to and up to 96 h postflunixin administration. Mean systemic clearance, steady‐state volume of distribution and terminal elimination half‐life was 0.767 ± 0.098 mL/min/kg, 0.137 ± 0.12 L/kg, and 4.8 ± 1.59 h, respectively. Four of the 16 horses had serum concentrations in excess of the current ARCI recommended regulatory threshold at 24 h postadministration. TxB2 suppression was significant for up to 24 h postadministration.  相似文献   

11.
A simple LC/MSMS method has been developed and fully validated to determine concentrations and characterize the concentration vs. time course of methocarbamol (MCBL) and guaifenesin (GGE) in plasma after a single intravenous dose and multiple oral dose administrations of MCBL to conditioned Thoroughbred horses. The plasma concentration–time profiles for MCBL after a single intravenous dose of 15 mg/kg of MCBL were best described by a three‐compartment model. Mean extrapolated peak (C0) plasma concentrations were 23.2 (±5.93) μg/mL. Terminal half‐life, volume of distribution at steady‐state, mean residence time, and systemic clearance were characterized by a median (range) of 2.96 (2.46–4.71) h, 1.05 (0.943–1.21) L/kg, 1.98 (1.45–2.51) h, and 8.99 (6.68–10.8) mL/min/kg, respectively. Oral dose of MCBL was characterized by a median (range) terminal half‐life, mean transit time, mean absorption time, and apparent oral clearance of 2.89 (2.21–4.88) h, 2.67 (1.80–2.87) h, 0.410 (0.350–0.770) h, and 16.5 (13.0–20) mL/min/kg. Bioavailability of orally administered MCBL was characterized by a median (range) of 54.4 (43.2–72.8)%. Guaifenesin plasma concentrations were below the limit of detection in all samples collected after the single intravenous dose of MCBL whereas they were detected for up to 24 h after the last dose of the multiple‐dose oral regimen. This difference may be attributed to first‐pass metabolism of MCBL to GGE after oral administration and may provide a means of differentiating the two routes of administration.  相似文献   

12.
Romifidine is an alpha‐2 adrenergic agonist used for sedation and analgesia in horses. As it is a prohibited substance, its purported use at low doses in performance horses necessitates further study. The primary goal of the study reported here was to describe the serum concentrations and pharmacokinetics of romifidine following low‐dose administration immediately prior to exercise, utilizing a highly sensitive liquid chromatography–tandem mass spectrometry assay that is currently employed in many drug testing laboratories. An additional objective was to describe changes in heart rate and rhythm following intravenous administration of romifidine followed by exercise. Eight adult Quarter Horses received a single intravenous dose of 5 mg (0.01 mg/kg) romifidine followed by 1 h of exercise. Blood samples were collected and drug concentrations measured at time 0 and at various times up to 72 h. Mean ± SD systemic clearance, steady‐state volume of distribution and terminal elimination half‐life were 34.1 ± 6.06 mL/min/kg and 4.89 ± 1.31 L/kg and 3.09 ± 1.18 h, respectively. Romifidine serum concentrations fell below the LOQ (0.01 ng/mL) and the LOD (0.005 ng/mL) by 24 h postadministration. Heart rate and rhythm appeared unaffected when a low dose of romifidine was administered immediately prior to exercise.  相似文献   

13.
Albarellos, G. A., Montoya, L., Denamiel, G. A. A., Velo, M. C., Landoni, M. F. Pharmacokinetics and bone tissue concentrations of lincomycin following intravenous and intramuscular administrations to cats. J. vet. Pharmacol. Therap.  35 , 534–540. The pharmacokinetic properties and bone concentrations of lincomycin in cats after single intravenous and intramuscular administrations at a dosage rate of 10 mg/kg were investigated. Lincomycin minimum inhibitory concentration (MIC) for some gram‐positive strains isolated from clinical cases was determined. Serum lincomycin disposition was best‐fitted to a bicompartmental and a monocompartmental open models with first‐order elimination after intravenous and intramuscular dosing, respectively. After intravenous administration, distribution was rapid (T1/2(d) = 0.22 ± 0.09 h) and wide as reflected by the volume of distribution (V(d(ss))) of 1.24 ± 0.08 L/kg. Plasma clearance was 0.28 ± 0.09 L/h·kg and elimination half‐life (T1/2) 3.56 ± 0.62 h. Peak serum concentration (Cmax), Tmax, and bioavailability for the intramuscular administration were 7.97 ± 2.31 μg/mL, 0.12 ± 0.05 h, and 82.55 ± 23.64%, respectively. Thirty to 45 min after intravenous administration, lincomycin bone concentrations were 9.31 ± 1.75 μg/mL. At the same time after intramuscular administration, bone concentrations were 3.53 ± 0.28 μg/mL. The corresponding bone/serum ratios were 0.77 ± 0.04 (intravenous) and 0.69 ± 0.18 (intramuscular). Lincomycin MIC for Staphylococcus spp. ranged from 0.25 to 16 μg/mL and for Streptococcus spp. from 0.25 to 8 μg/mL.  相似文献   

14.

This study investigated the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl metabolite (M-I) after single-dose intravenous (IV) administration (10 mg/kg) of PTX in six healthy cattle. The safety of PTX was evaluated by clinical observation and biochemical analysis. Plasma concentrations of PTX and M-I were simultaneously determined by reverse-phase high performance liquid chromatography. Pharmacokinetic parameters were calculated using non-compartmental methods. Salivation and discomfort were observed for 2 h following the drug administration. Serum direct bilirubin, total bilirubin, and phosphorus levels at 24 h following the drug administration were significantly different from the control values (0 h) (P?<?0.05). Pharmacokinetic variables of PTX were characterized by a short terminal elimination half-life (1.05?±?0.19 h), a large volume of distribution (6.30?±?1.76 L/kg), and high total body clearance (5.31?±?1.27 L/h/kg). The mean ratio between the area under the concentration-time curves of M-I and PTX was 1.34. These results indicate that single-dose administration of PTX at 10 mg/kg IV in cattle resulted in therapeutic concentrations similar to those observed in humans and horse. However, further studies are necessary to determine the safety and pharmacokinetics following repeated administrations of PTX.

  相似文献   

15.
A study on bioavailability and pharmacokinetics of cefquinome in piglets was conducted after intravenous (i.v.) and intramuscular (i.m.) administrations of 2.0 mg/kg of body weight, respectively. Plasma concentrations were measured by high‐performance liquid chromatography assay with UV detector at 268‐nm wavelength. Plasma concentration–time data after i.v. administration were best fit by a two‐compartment model. The pharmacokinetic values were distribution half‐life 0.27 ± 0.21 h, elimination half‐life 1.85 ± 1.11 h, total body clearance 0.26 ± 0.08 L/kg·h, area under curve 8.07 ± 1.91 μg·h/mL and volume of distribution at steady state 0.46 ± 0.10 L/kg. Plasma concentration–time data after i.m. administration were also best fit by a two‐compartment model. The pharmacokinetic parameters were distribution half‐life 0.88 ± 0.42 h, elimination half‐life 4.36 ± 2.35 h, peak concentration 4.01 ± 0.57 μg/mL and bioavailability 95.13 ± 9.93%.  相似文献   

16.
Guaifenesin is an expectorant commonly used in performance horses to aid in the clearance of mucus from the airways. Guaifenesin is also a centrally acting skeletal muscle relaxant and as such is a prohibited drug with withdrawal necessary prior to competition. To the authors' knowledge, there are no reports in the literature describing single or multiple oral administrations of guaifenesin in the horse to determine a regulatory threshold and related withdrawal time. Therefore, the objective of the current study was to describe the pharmacokinetics of guaifenesin following oral administration in order to provide data upon which appropriate regulatory recommendations can be established. Nine exercised Thoroughbred horses were administered 2 g of guaifenesin orally BID for a total of five doses. Blood samples were collected immediately prior to drug administration and at various times postadministration. Serum guaifenesin concentrations were determined and pharmacokinetic parameters calculated. Guaifenesin was rapidly absorbed (Tmax of 15 min) following oral administration. The Cmax was 681.3 ± 323.8 ng/mL and 1080 ± 732.8 following the first and last dose, respectively. The serum elimination half‐life was 2.62 ± 1.24 h. Average serum guaifenesin concentrations remained above the LOQ of the assay (0.5 ng/mL) by 48 h postadministration of the final dose in 3 of 9 horses.  相似文献   

17.
The pharmacokinetic of deflazacort after intravenous and oral administration and the effect of erythromycin on the disposition of deflazacort in rabbits were investigated. A parallel study was carried out in twelve rabbits. The plasma concentration–time profiles of deflazacort were determined after intravenous and oral administration of single dosages of 5 mg/kg in the presence and absence (baseline) of multiple dose erythromycin regimens. Plasma concentrations of 21‐desacetyldeflazacort were determined by HPLC. Plasma concentration–time curves were analysed by compartmental pharmacokinetic and noncompartmental methods. The t½λz values following intravenous and oral administration were 3.67 and 4.96 hr, respectively. The apparent volume of distribution at steady‐state (Vss) was 4.08 ± 0.31 L/kg, this value indicates that deflazacort is widely distributed into the extravascular tissues. Moreover, bioavailability after oral administration of deflazacort (= 87.48%) was high. Pharmacokinetic analysis after both routes of administration revealed a significant reduction in total body clearance, a significant increase in mean residence time, half‐life and plasma concentrations of the steroid in the presence of multiple dose erythromycin. The results indicated the influence of the erythromycin on deflazacort disposition, which is consistent with a pharmacokinetic‐type interaction in the elimination of the drug from the body. Moreover, this interaction should be considered to avoid adverse effects when using both drugs concomitantly.  相似文献   

18.
The objective of this study was to compare the pharmacokinetics of minocycline in foals vs. adult horses. Minocycline was administered to six healthy 6‐ to 9‐week‐old foals and six adult horses at a dose of 4 mg/kg intragastrically (IG) and 2 mg/kg intravenously (i.v.) in a cross‐over design. Five additional oral doses were administered at 12‐h intervals in foals. A microbiologic assay was used to measure minocycline concentration in plasma, urine, synovial fluid, and cerebrospinal fluid (CSF). Liquid chromatography–tandem mass spectrometry was used to measure minocycline concentrations in pulmonary epithelial lining fluid (PELF) and bronchoalveolar (BAL) cells. After i.v. administration to foals, minocycline had a mean (±SD) elimination half‐life of 8.5 ± 2.1 h, a systemic clearance of 113.3 ± 26.1 mL/h/kg, and an apparent volume of distribution of 1.24 ± 0.19 L/kg. Pharmacokinetic variables determined after i.v. administration to adult horses were not significantly different from those determined in foals. Bioavailability was significantly higher in foals (57.8 ± 19.3%) than in adult horses (32.0 ± 18.0%). Minocycline concentrations in PELF were higher than in other body fluids. Oral minocycline dosed at 4 mg/kg every 12 h might be adequate for the treatment of susceptible bacterial infections in foals.  相似文献   

19.
Minocycline is commonly used to treat bacterial and rickettsial infections in adult horses but limited information exists regarding the impact of feeding on its oral bioavailability. This study's objective was to compare the pharmacokinetics of minocycline after administration of a single oral dose in horses with feed withheld and with feed provided at the time of drug administration. Six healthy adult horses were administered intravenous (2.2 mg/kg) and oral minocycline (4 mg/kg) with access to hay at the time of oral drug administration (fed) and with access to hay delayed for 2 hr after oral drug administration (fasted), with a 7‐day washout between treatments. Plasma concentration versus time data was analyzed based on noncompartmental pharmacokinetics. Mean ± SD bioavailability (fasted: 38.6% ± 4.6; fed: 15.7% ± 2.3) and Cmax (fasted: 1.343 ± 0.418 μg/ml; fed: 0.281 ± 0.157 μg/ml) were greater in fasted horses compared to fed horses (p < .05 both). Median (range) Tmax (hr) in fasted horses was 2.0 (1.5–3.5) and in fed horses was 5.0 (1.0–8.0) and was not significantly different between groups. Overnight fasting and delaying feeding hay 2 hr after oral minocycline administration improve drug bioavailability and thus plasma concentrations.  相似文献   

20.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号