首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration–time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half‐life (T1/2β) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006–0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.  相似文献   

2.
The comparative pharmacokinetics of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in healthy and Aeromonas hydrophila‐infected crucian carp after a single oral (p.o.) administration at a dose of 10 mg/kg at 25 °C. The plasma concentrations of ENR and of CIP were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR concentrations by noncompartmental modeling. In healthy fish, the elimination half‐life (T1/2λz), maximum plasma concentration (Cmax), time to peak (Tmax), and area under the concentration–time curve (AUC) values were 64.66 h, 3.55 μg/mL, 0.5 h, and 163.04 μg·h/mL, respectively. In infected carp, by contrast, the corresponding values were 73.70 h, 2.66 μg/mL, 0.75 h, and 137.43 μg·h/mL, and the absorption and elimination of ENR were slower following oral administration. Very low levels of CIP were detected, which indicates a low extent of deethylation of ENR in crucian carp.  相似文献   

3.
The pharmacokinetics of dantrolene and its active metabolite, 5‐hydroxydantrolene, after a single oral dose of either 5 or 10 mg/kg of dantrolene was determined. The effects of exposure to dantrolene and 5‐hydroxydantrolene on activated whole‐blood gene expression of the cytokines interleukin‐2 (IL‐2) and interferon‐γ (IFN‐γ) were also investigated. When dantrolene was administered at a 5 mg/kg dose, peak plasma concentration (Cmax) was 0.43 μg/mL, terminal half‐life (t1/2) was 1.26 h, and area under the time–concentration curve (AUC) was 3.87 μg·h/mL. For the 10 mg/kg dose, Cmax was 0.65 μg/mL, t1/2 was 1.21 h, and AUC was 5.94 μg·h/mL. For all calculated parameters, however, there were large standard deviations and wide ranges noted between and within individual dogs: t1/2, for example, ranged from 0.43 to 6.93 h, Cmax ratios ranged from 1.05 to 3.39, and relative bioavailability (rF) values ranged from 0.02 to 1.56. While activated whole‐blood expression of IL‐2 and IFN‐γ as measured by qRT‐PCR was markedly suppressed following exposure to very high concentrations (30 and 50 μg/mL, respectively) of both dantrolene and 5‐hydroxydantrolene, biologically and therapeutically relevant suppression of cytokine expression did not occur at the much lower drug concentrations achieved with oral dantrolene dosing.  相似文献   

4.
The pharmacokinetics and bioavailability of butafosfan in piglets were investigated following intravenous and intramuscular administration at a single dose of 10 mg/kg body weight. Plasma concentration–time data and relevant parameters were best described by noncompartmental analysis after intravenous and intramuscular injection. The data were analyzed through WinNolin 6.3 software. After intravenous administration, the mean pharmacokinetic parameters were determined as T1/2λz of 3.30 h, Cl of 0.16 L kg/h, AUC of 64.49 ± 15.07 μg h/mL, Vss of 0.81 ± 0.44/kg, and MRT of 1.51 ± 0.27 h. Following intramuscular administration, the Cmax (28.11 μg/mL) was achieved at Tmax (0.31 h) with an absolute availability of 74.69%. Other major parameters including AUC and MRT were 48.29 ± 21.67 μg h/mL and 1.74 ± 0.29 h, respectively.  相似文献   

5.
The objective of this study was to evaluate the disposition kinetics of enrofloxacin (ENR) in the plasma and its distribution in the muscle tissue of Nile tilapia (Oreochromis niloticus) after a single oral dose of 10 mg/kg body weight via medicated feed. The fish were kept at a temperature between 28 and 30 °C. The collection period was between 30 min and 120 h after administration of the drug. The samples were analyzed by high‐performance liquid chromatography with a fluorescence detector (HPLC‐FLD). The ENR was slowly absorbed and eliminated from the plasma (Cmax = 1.24 ± 0.37 μg/mL; Tmax = 8 h; T1/2Ke = 19.36 h). ENR was efficiently distributed in the muscle tissue and reached maximum values (2.17 ± 0.74 μg/g) after 8 h. Its metabolite, ciprofloxacin (CIP), was detected and quantified in the plasma (0.004 ± 0.005 μg/mL) and muscle (0.01 ± 0.011 μg/g) for up to 48 h. After oral administration, the mean concentration of ENR in the plasma was well above the minimum inhibitory concentrations (MIC50) for most bacteria already isolated from fish except for Streptococcus spp. This way the dose used in this study allowed for concentrations in the blood to treat the diseases of tilapia.  相似文献   

6.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) administration of 10 mg/kg body weight (b.w.) in 300 healthy allogynogenetic silver crucian carp at 24-26°C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high-performance liquid chromatography. After i.v. administration, the plasma concentration-time data were described by an open two-compartment model. The elimination half-life (T(1/2β)), area under the concentration-time curve (AUC) and total body clearance of EF were 63.5 h, 239.6 μg·h/mL and 0.04 L/h/kg, respectively. Following p.o. administration, the plasma concentration-time data showed a double peak-shaped curve, indicating the possibility of enterohepatic recirculation of EF in allogynogenetic silver crucian carp. The maximum plasma concentration (C(max)), T(1/2β) and AUC of EF were 4.5 μg/mL, 62.7 h and 205.9 μg·h/mL, respectively. Absorption of EF was very good with a bioavailability (F) of 86%, which could be correlated with the unique structure of the alimentary canal in allogynogenetic silver crucian. CF, an active metabolite of EF, was not detected in this study.  相似文献   

7.
In this study, the pharmacokinetic profile of flumequine (FMQ) was investigated in blunt snout bream (Megalobrama amblycephala) after intravascular (3 mg/kg body weight (b.w.)) and oral (50 mg/kg b.w.) administrations. The plasma samples were determinedby ultra‐performance liquid chromatography (UPLC) with fluorescence detection. After intravascular administration, plasma concentration–time curves were best described by a two‐compartment open model. The distribution half‐life (t1/2α), elimination half‐life (t1/2β), and area under the concentration–time curve (AUC) of blunt snout bream were 0.6 h, 25.0 h, and 10612.7 h·μg/L, respectively. After oral administration, a two‐compartment open model with first‐order absorption was also best fit the data of plasma. The t1/2α, t1/2β, peak concentration (Cmax), time‐to‐peak concentration (Tmax), and AUC of blunt snout bream were estimated to be 2.5 h, 19.7 h, 3946.5 μg/L, 1.4 h, and 56618.1 h. μg/L, respectively. The oral bioavailability (F) was 32.0%. The pharmacokinetics of FMQ in blunt snout bream displayed low bioavailability, rapid absorption, and rapid elimination.  相似文献   

8.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

9.
The pharmacokinetics and tissue distribution of quinocetone (QCT) in crucian carp (Carassius auratus), common carp (Cyprinus carpio L.), and grass carp (Ctenopharyngodon idella) were compared after oral administration of QCT (50 mg/kg body weight) at water temperature of 24 ± 1 °C. Similar QCT plasma concentration–time profiles were found in the three species of cyprinid fish at the same dosage regimen and water temperature, which were all fitted two‐compartment open pharmacokinetic model. However, different pharmacokinetic parameters were observed in crucian carp, common carp, and grass carp. The absorption rate constants (Ka) of QCT were 1.65, 1.40 and 1.74/h, respectively and absorption half‐lives (t1/2) were 0.42, 0.49, and 0.40/h, respectively. The distribution half‐life (t1/2α) was 2.83, 0.67, and 0.88 h, respectively, and elimination half‐lives (t1/2β) of QCT were 133.97, 63.55, and 40.76 h, respectively. The maximum concentrations (Cmax) of QCT in plasma were 0.315, 0.182, and 0.139 μg/mL and the time to peak concentrations (Tp) were 1.45, 0.96, and 1.08 h, respectively. The area under the plasma concentration‐time curves (AUC) were 12.35, 5.99, and 4.52 μg·h/mL, respectively. The distribution volumes (Vd/F) of QCT were calculated as 117.81, 128.71, and 220.10 L/kg, respectively. The tissue analysis showed that a similar regularity was obtained in the three species of cyprinids with a single dose of 50 mg/kg body weight after oral administration at the same water temperature. The tissue concentration of QCT in each fish was in order of liver>kidney>muscle, while the residues of QCT in the three species of cyprinid fish were in order of crucian carp>common carp>grass carp.  相似文献   

10.
The pharmacokinetics of cefquinome was studied in plasma after a single dose (10 mg/kg) of intramuscular (i.m.) or intraperitoneal (i.p.) administration to tilapia (Oreochromis niloticus) in freshwater at 30 °C. Ten fish per sampling point were examined after treatment. The data were fitted to two‐compartment open models following both routes of administration. The estimates of total body clearance (CL/F), volume of distribution (Vd/F), and absorption half‐life (T1/2ka) were 0.049 and 0.037 L/h/kg, 0.41 and 0.33 L/kg, and 0.028 and 0.035 h following i.m. and i.p. administration, respectively. After i.m. injection, the elimination half‐life (T1?2β) was calculated to be 5.81 h, the maximum plasma concentration (Cmax) to be 49.40 μg/mL, the time to peak plasma cefquinome concentration (Tmax) to be 0.14 h, and the area under the plasma concentration–time curve (AUC) to be 204.6 μg h/mL. Following i.p. administration, the corresponding estimates were 6.05 h, 44.39 μg/mL, 0.17 h and 267.8 μg h/mL. The minimum inhibitory concentrations of cefquinome, determined for 30 strains of Streptococcus agalactiae isolated from diseased tilapia, ranged from 0.015 to 0.12 μg/mL. Results from these studies support that 10 mg cefquinome/kg body weight daily could be expected to control tilapia bacterial pathogens inhibited in vitro by a minimal inhibitory concentration value of ≤2 μg/mL.  相似文献   

11.
Sucralfate and minocycline may be administered concurrently to dogs. The relative bioavailability of tetracyclines may be reduced if administered with sucralfate, but studies confirming these interactions in dogs are not available. This study evaluated the pharmacokinetics of oral minocycline in dogs (M), determined the effects of concurrent administration of sucralfate and minocycline (MS) on minocycline pharmacokinetics, determined the effects of delaying sucralfate administration by 2 h (MS+2) on minocycline pharmacokinetics, and established dosing recommendations based on pharmacodynamic indices. Oral minocycline (300 mg) and sucralfate suspension (1 g) were administered to five greyhounds in a randomized crossover design. Minocycline plasma concentrations were evaluated using liquid chromatography with mass spectrometry. The maximum plasma concentration (CMAX) and area under the curve (AUC) of minocycline were 1.15 μg/mL and 8.0 h* μg/mL, respectively. The CMAX and AUC were significantly lower (P < 0.05) in the MS group (CMAX = 0.33 μg/mL, AUC 3.0 h*μg/mL) compared with M or MS+2 (CMAX = 0.97 μg/mL, AUC 10.3 h*μg/mL). Delaying sucralfate by 2 h did not decrease oral minocycline absorption, but concurrent administration significantly decreased minocycline absorption. A dose of 7.5 mg/kg p.o. q12 h achieves the pharmacodynamic index for a bacterial minimum inhibitory concentration (MIC) of 0.25 μg/mL (AUC:MIC≥33.9).  相似文献   

12.
The pharmacokinetics and bioavailability of cefquinome in Beagle dogs were determined by intravenous (IV), intramuscular (IM) or subcutaneous (SC) injection at a single dose of 2 mg/kg body weight (BW). The minimum inhibitory concentrations (MIC) of cefquinome against 217 Escherichia coli isolated from dogs were also investigated. After IV injection, the plasma concentration‐time curve of cefquinome was analyzed using a two‐compartmental model, and the mean values of t1/2α (h), t1/2β (h), Vss (L/kg), ClB (L/kg/h) and AUC (μg·h/mL) were 0.12, 0.98, 0.30, 0.24 and 8.51, respectively. After IM and SC administration, the PK data were best described by a one‐compartmental model with first‐order absorption. The mean values of t1/2Kel, t1/2Ka, tmax (h), Cmax (μg/mL) and AUC (μg·h/mL) were corresponding 0.85, 0.14, 0.43, 4.83 and 8.24 for IM administration, 0.99, 0.29, 0.72, 3.88 and 9.13 for SC injection. The duration of time that drug levels exceed the MIC (%T > MIC) were calculated using the determined MIC90 (0.125 μg/mL) and the PK data obtained in this study. The results indicated that the dosage regimen of cefquinome at 2 mg/kg BW with 12‐h intervals could achieve %T > MIC above 50% that generally produced a satisfactory bactericidal effect against E. coli isolated from dogs in this study.  相似文献   

13.
Three asymptomatic koalas serologically positive for cryptococcosis and two symptomatic koalas were treated with 10 mg/kg fluconazole orally, twice daily for at least 2 weeks. The median plasma Cmax and AUC0‐8 h for asymptomatic animals were 0.9 μg/mL and 4.9 μg/mL·h, respectively; and for symptomatic animals 3.2 μg/mL and 17.3 μg/mL·h, respectively. An additional symptomatic koala was treated with fluconazole (10 mg/kg twice daily) and a subcutaneous amphotericin B infusion twice weekly. After 2 weeks the fluconazole Cmax was 3.7 μg/mL and the AUC0‐8 h was 25.8 μg/mL*h. An additional three koalas were treated with fluconazole 15 mg/kg twice daily for at least 2 weeks, with the same subcutaneous amphotericin protocol co‐administered to two of these koalas (Cmax: 5.0 μg/mL; mean AUC0‐8 h: 18.1 μg/mL*h). For all koalas, the fluconazole plasma Cmax failed to reach the MIC90 (16 μg/mL) to inhibit C. gattii. Fluconazole administered orally at either 10 or 15 mg/kg twice daily in conjunction with amphotericin is unlikely to attain therapeutic plasma concentrations. Suggestions to improve treatment of systemic cryptococcosis include testing pathogen susceptibility to fluconazole, monitoring plasma fluconazole concentrations, and administration of 20–25 mg/kg fluconazole orally, twice daily, with an amphotericin subcutaneous infusion twice weekly.  相似文献   

14.
The objective of this study was to evaluate the plasma and serum concentrations of cytarabine (CA) administered via constant rate infusion (CRI) in dogs with meningoencephalomyelitis of unknown etiology (MUE). Nineteen client‐owned dogs received a CRI of CA at a dose of 25 mg/m2/h for 8 h as treatment for MUE. Dogs were divided into four groups, those receiving CA alone and those receiving CA in conjunction with other drugs. Blood samples were collected at 0, 1, 8, and 12 h after initiating the CRI. Plasma (n = 13) and serum (n = 11) cytarabine concentrations were measured by high‐pressure liquid chromatography. The mean peak concentration (CMAX) and area under the curve (AUC) after CRI administration were 1.70 ± 0.66 μg/mL and 11.39 ± 3.37 h·μg/mL, respectively, for dogs receiving cytarabine alone, 2.36 ± 0.35 μg/mL and 16.91 + 3.60 h·μg/mL for dogs administered cytarabine and concurrently on other drugs. Mean concentrations for all dogs were above 1.0 μg/mL at both the 1‐ and 8‐h time points. The steady‐state achieved with cytarabine CRI produces a consistent and prolonged exposure in plasma and serum, which is likely to produce equilibrium between blood and the central nervous system in dogs with a clinical diagnosis of MUE. Other medications commonly used to treat MUE do not appear to alter CA concentrations in serum and plasma.  相似文献   

15.
The objective of this study was to evaluate the pharmacokinetic characteristics of enrofloxacin (ENR) injectable in situ gel we developed in dogs following a single intramuscular (i.m.) administration. Twelve healthy dogs were randomly divided into two groups (six dogs per group), then administrated a single 20 mg/kg body weight (b.w.) ENR injectable in situ gel and a single 5 mg/kg b.w. ENR conventional injection, respectively. High‐performance liquid chromatography (HPLC) was used to determine ENR plasma concentrations. The pharmacokinetic parameters of ENR injectable in situ gel and conventional injection in dogs are as follows: MRT (mean residence time) (45.59 ± 14.05) h verse (11.40 ± 1.64) h, AUC (area under the blood concentration vs. time curve) (28.66 ± 15.41) μg·h/mL verse (11.06 ± 3.90) μg·h/mL, cmax (maximal concentration) (1.59 ± 0.35) μg/mL verse (1.46 ± 0.07) μg/mL, tmax (time needed to reach cmax) (1.25 ± 1.37) h verse (1.40 ± 0.55) h, t1/2λz (terminal elimination half‐life) (40.27 ± 17.79) h verse (10.32 ± 0.97) h. The results demonstrated that the in situ forming gel system could increase dosing interval of ENR and thus reduced dosing frequency during long‐term treatment. Therefore, the ENR injectable in situ gel seems to be worth popularizing in veterinary clinical application.  相似文献   

16.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

17.
[Correction added on 23 March 2015, after first online publication: Terminal half‐life values of enrofloxacin is corrected in the fourth sentence of the abstract] Clinically healthy common ringtail possums (= 5) received single doses of 10 mg/kg enrofloxacin orally and then 2 weeks later subcutaneously. Serial plasma samples were collected over 24 h for each treatment phase, and enrofloxacin concentrations were determined using a validated HPLC assay. Pharmacokinetic parameters were determined by noncompartmental analysis. Following oral administration, plasma concentrations were of therapeutic relevance (Cmax median 5.45 μg/mL, range 2.98–6.9 μg/mL), with terminal‐phase half‐life (t½) shorter than in other species (median 3.09 h, range 1.79–5.30 h). In contrast, subcutaneous administration of enrofloxacin did not achieve effective plasma concentrations, with plasma concentrations too erratic to fit the noncompartmental model except in one animal. On the basis of the AUC:MIC, enrofloxacin administered at 10 mg/kg orally, but not subcutaneously, is likely to be effective against a range of bacterial species that have been reported in common ringtail possums.  相似文献   

18.
Six dogs were used to determine single and multiple oral dose pharmacokinetics of ABT‐116. Blood was collected for subsequent analysis prior to and at 15, 30 min and 1, 2, 4, 6, 12, 18, and 24 h after administration of a single 30 mg/kg dose of ABT‐116. Results showed a half‐life of 6.9 h, kel of 0.1/h, AUC of 56.5 μg·h/mL, Tmax of 3.7 h, and Cmax of 3.8 μg/mL. Based on data from this initial phase, a dose of 10 mg/kg of ABT‐116 (no placebo control) was selected and administered to the same six dogs once daily for five consecutive days. Behavioral observations, heart rate, respiratory rate, temperature, thermal and mechanical (proximal and distal limb) nociceptive thresholds, and blood collection were performed prior to and 4, 8, and 16 h after drug administration each day. The majority of plasma concentrations were above the efficacious concentration (0.23 μg/mL previously determined for rodents) for analgesia during the 24‐h sampling period. Thermal and distal limb mechanical thresholds were increased at 4 and 8 h, and at 4, 8, and 16 h respectively, postdosing. Body temperature increased on the first day of dosing. Results suggest adequate exposure and antinociceptive effects of 10 mg/kg ABT‐116 following oral delivery in dogs.  相似文献   

19.
The pharmacokinetics of doxycycline was studied in plasma after a single dose (20 mg/kg) of intravenous or oral administration to tilapia (Oreochromis aureus × Oreochromis niloticus) reared in fresh water at 24 °C. Plasma samples were collected from six fish per sampling point. Doxycycline concentrations were determined by high‐performance liquid chromatography with a 0.005 μg/mL limit of detection, then were subjected to noncompartmental analysis. Following oral administration, the double‐peak phenomenon was observed, and the first (Cmax1) and second (Cmax2) peaks were 1.99 ± 0.43 μg/mL at 2.0 h and 2.27 ± 0.38 μg/mL at 24.0 h, respectively. After the intravenous injection, a Cmax2 (12.12 ± 1.97 μg/mL) was also observed, and initial concentration of 45.76 μg/mL, apparent elimination rate constant (λz) of 0.018 per h, apparent elimination half‐life (t1/2λz) of 39.0 h, systemic total body clearance (Cl) of 41.28 mL/h/kg, volume of distribution (Vz) of 2323.21 mL/kg, and volume of distribution at steady‐state (Vss) of 1356.69 mL/kg were determined, respectively. While after oral administration, the λz, t1/2λz, and bioavailability of doxycycline were 0.009 per h, 77.2 h, and 23.41%, respectively. It was shown that doxycycline was relatively slowly and incompletely absorbed, extensively distributed, and slowly eliminated in tilapia, in addition, doxycycline might undergo enterohepatic recycling in tilapia.  相似文献   

20.
Meloxicam is a nonsteroidal anti‐inflammatory drug commonly used in avian species. In this study, the pharmacokinetic parameters for meloxicam were determined following single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of the drug (1 mg/kg·b.w.) in adult African grey parrots (Psittacus erithacus; n = 6). Serial plasma samples were collected and meloxicam concentrations were determined using a validated high‐performance liquid chromatography assay. A noncompartmental pharmacokinetic analysis was performed. No undesirable side effects were observed during the study. After i.v. administration, the volume of distribution, clearance and elimination half‐life were 90.6 ± 4.1 mL/kg, 2.18 ± 0.25 mL/h/kg and 31.4 ± 4.6 h, respectively. The peak mean ± SD plasma concentration was 8.32 ± 0.95 μg/mL at 30 min after i.m. administration. Oral administration resulted in a slower absorption (tmax = 13.2 ± 3.5 h; Cmax = 4.69 ± 0.75 μg/mL) and a lower bioavailability (38.1 ± 3.6%) than for i.m. (78.4 ± 5.5%) route. At 24 h, concentrations were 5.90 ± 0.28 μg/mL for i.v., 4.59 ± 0.36 μg/mL for i.m. and 3.21 ± 0.34 μg/mL for p.o. administrations and were higher than those published for Hispaniolan Amazon parrots at 12 h with predicted analgesic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号