首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tramadol is a centrally acting analgesic drug that has been used clinically for the last two decades to treat moderate to moderately severe pain in humans. The present study investigated tramadol administration in horses by intravenous, intramuscular, oral as immediate-release and oral as sustained-release dosage-form routes. Seven horses were used in a four-way crossover study design in which racemic tramadol was administered at 2 mg/kg by each route of administration. Altogether, 23 blood samples were collected between 0 and 2880 min. The concentration of tramadol and its M1 metabolite were determined in the obtained plasma samples by use of an LC/MS/MS method and were used for pharmacokinetic calculations. Tramadol clearance, apparent volume of distribution at steady-state, mean residence time (MRT) and half-life after intravenous administration were 26+/-3 mL/min/kg, 2.17+/-0.52 L/kg, 83+/-10 min, and 82+/-10 min, respectively. The MRT and half-life after intramuscular administration were 155+/-23 and 92+/-14 min. The mean absorption time was 72+/-22 min and the bioavailability 111+/-39%. Tramadol was poorly absorbed after oral administration and only 3% of the administered dose was found in systemic circulation. The fate of the tramadol M1 metabolite was also investigated. M1 appeared to be a minor metabolite in horses, which could hardly be detected in plasma samples. The poor bioavailability after oral administration and the short half-life of tramadol may restrict its usefulness in clinical applications.  相似文献   

2.
The pharmacokinetics of ketorolac (Toradol), a human non-narcotic, nonsteroidal anti-inflammatory drug (NSAID) of the pyrrolo-pyrrole group, was studied in six mixed breed dogs of varying ages (1-5 years). The study was performed using a randomized crossover design, with each dog initially assigned to one of two groups (intravenous (i.v.) or oral (p.o.)). Each group of three dogs received either the injectable or oral formulation of ketorolac tromethamine at 0.5 mg/kg. Serial blood samples were collected before and over 96 h following treatment. Samples were analysed by reverse phase HPLC. Individual ketorolac plasma concentration-time curves were initially evaluated by computerized curve stripping techniques followed by nonlinear least squares regression. Following i.v. administration mean (+/- SD) pharmacokinetic parameters were: elimination half-life (t1/2 beta) = 4.55 h, plasma clearance (Clp) = 1.25 (1.13) mL/kg/min, and volume of distribution at steady state (Vss) = 0.33 (0.10) L/kg. Mean (+/- SD) p.o. pharmacokinetic values were: t1/2 beta = 4.07 h, time to reach maximum concentration (tmax) = 51.2 (40.6) min, and p.o. bioavailability (F) = 100.9 (46.7)%. These results suggest that the pharmacodisposition characteristics of a clinically effective 0.5 mg/kg i.v. or p.o. single dose of ketorolac tromethamine administered to dogs is fairly similar to that observed in humans.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

4.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

5.
ObjectiveTo compare the pharmacokinetics and pharmacodynamics of hydromorphone in horses after intravenous (IV) and intramuscular (IM) administration.Study designRandomized, masked, crossover design.AnimalsA total of six adult horses weighing [mean ± standard deviation (SD))] 447 ± 61 kg.MethodsHorses were administered three treatments with a 7 day washout. Treatments were hydromorphone 0.04 mg kg⁻1 IV with saline administered IM (H-IV), hydromorphone 0.04 mg kg⁻1 IM with saline IV (H-IM), or saline IV and IM (P). Blood was collected for hydromorphone plasma concentration at multiple time points for 24 hours after treatments. Pharmacodynamic data were collected for 24 hours after treatments. Variables included thermal nociceptive threshold, heart rate (HR), respiratory frequency (fR), rectal temperature, and fecal weight. Data were analyzed using mixed-effects linear models. A p value of less than 0.05 was considered statistically significant.ResultsThe mean ± SD hydromorphone terminal half-life (t1/2), clearance and volume of distribution of H-IV were 19 ± 8 minutes, 79 ± 12.9 mL minute⁻1 kg⁻1 and 1125 ± 309 mL kg⁻1. The t1/2 was 26.7 ± 9.25 minutes for H-IM. Area under the curve was 518 ± 87.5 and 1128 ± 810 minute ng mL⁻1 for H-IV and H-IM, respectively. The IM bioavailability was 217%. The overall thermal thresholds for both H-IV and H-IM were significantly greater than P (p < 0.0001 for both) and baseline (p = 0.006). There was no difference in thermal threshold between H-IV and H-IM. No difference was found in physical examination variables among groups or in comparison to baseline. Fecal weight was significantly less than P for H-IV and H-IM (p = 0.02).Conclusions and clinical relevanceIM hydromorphone has high bioavailability and provides a similar degree of antinociception to IV administration.IM hydromorphone in horses provides a similar degree and duration of antinociception to IV administration.  相似文献   

6.
The pharmacokinetic behaviour of marbofloxacin, a new fluoroquinolone antimicrobial agent developed exclusively for veterinary use, was studied in mature horses (n = 5) after single-dose i.v. and i.m. administrations of 2 mg/kg bwt. Drug concentrations in plasma were determined by high performance liquid chromatography (HPLC) and data obtained were subjected to compartmental and noncompartmental kinetic analysis. This compound presents a relatively high volume of distribution (V(SS) = 1.17 +/- 0.18 l/kg), which suggests good tissue penetration, and a total body clearance (Cl) of 0.19 +/- 0.042 l/kgh, which is related to a long elimination half-life (t(1/2beta) = 4.74 +/- 0.8 h and 5.47 +/- 1.33 h i.v. and i.m. respectively). Marbofloxacin was rapidly absorbed after i.m. administration (MAT = 33.8 +/- 14.2 min) and presented high bioavailability (F = 87.9 +/- 6.0%). Pharmacokinetic parameters are not significantly different between both routes of administration (P>0.05). After marbofloxacin i.m. administration, no adverse reactions at the site of injection were observed. Serum CK activity levels 12 h after administration increased over 8-fold (range 3-15) compared with pre-injection levels, but this activity decreased to 3-fold during the 24 h follow-up period. Based on the value of surrogate markers to predict clinical success, Cmax/MIC ratio or AUC/MIC ratio, single daily marbofloxacin dose of 2 mg/kg bwt may not be effective in treating infections in horses caused by pathogens with an MIC > or = 0.25 microg/ml. However, if we use a classical antimicrobial efficacy criteria, marbofloxacin can reach a high plasma peak concentration and maintain concentrations higher than MICs determined for marbofloxacin against most gram-negative veterinary pathogens throughout the administration period. Taking into account the fact that fluoroquinolones are considered to have a concentration-dependent effect and a long postantibiotic effect against gram-negative bacteria, a dose of 2 mg/kg bwt every 24 h could be adequate for marbofloxacin in horses.  相似文献   

7.
Mycophenolate mofetil (MMF) is recommended as an alternative/complementary immunosuppressant. Pharmacokinetic and dynamic effects of MMF are unknown in young‐aged dogs. We investigated the pharmacokinetics and pharmacodynamics of single oral dose MMF metabolite, mycophenolic acid (MPA), in healthy juvenile dogs purpose‐bred for the tripeptidyl peptidase 1 gene (TPP1) mutation. The dogs were heterozygous for the mutation (nonaffected carriers). Six dogs received 13 mg/kg oral MMF and two placebo. Pharmacokinetic parameters derived from plasma MPA were evaluated. Whole‐blood mitogen‐stimulated T‐cell proliferation was determined using a flow cytometric assay. Plasma MPA Cmax (mean ± SD, 9.33 ± 7.04 μg/ml) occurred at <1 hr. The AUC0–∞ (mean ± SD, 12.84±6.62 hr*μg/ml), MRTinf (mean ± SD, 11.09 ± 9.63 min), T1/2 (harmonic mean ± PseudoSD 5.50 ± 3.80 min), and k/d (mean ± SD, 0.002 ± 0.001 1/min). Significant differences could not be detected between % inhibition of proliferating CD5+ T lymphocytes at any time point (= .380). No relationship was observed between MPA concentration and % inhibition of proliferating CD5+ T lymphocytes (= .148, = .324). Pharmacodynamics do not support the use of MMF in juvenile dogs at the administered dose based on existing therapeutic targets.  相似文献   

8.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

9.
Metronidazole pharmacokinetics in horses was studied after intravenous (i.v.), rectal (p.r.) and oral (p.o.) administration at 20 mg/kg using a triple crossover study design. Metronidazole mean+/-SD half-life was 196+/-39, 212+/-30 and 240+/-65 min after i.v., p.r. and p.o. administration, respectively. The metronidazole clearance was 2.8 (mL/min/kg) and the volume of distribution at steady state was 0.68 L/kg. The pharmacokinetic parameters calculated for metronidazole after administration of the drug by the various routes showed that bioavailability (74+/-18 vs. 30+/-9%) and maximum serum concentration (22+/-8 vs. 9+/-2 microg /mL) were significantly higher after p.o. administration compared with p.r. administration. There were no significant differences in mean absorption time (45+/-69 vs. 66+/-18 min) and the time to reach maximum serum concentration (65+/-36 vs. 58+/-18 min). The results indicated that p.r. administration of metronidazole to horses, although inferior to p.o. administration in terms of bioavailability, provides an alternative route of administration when p.o. administration cannot be used.  相似文献   

10.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

11.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

12.
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.  相似文献   

13.
The pharmacokinetic characteristics of valnemulin in layer chickens were studied after single intravenous, intramuscular, and oral administration at a dose of 15 mg/kg body weight. Plasma samples at certain time points were collected and the drug concentrations in them by ultra high‐performance liquid chromatography tandem mass spectrometry (UHPLC‐MS). The concentration–time data for each individual were plotted by noncompartmental analysis for the whole three routes. Following intravenous administration, the plasma concentration showed tiny fluctuation. The elimination half‐life (), total body clearance (Cl), and area under the plasma concentration–time curve (AUC) were 1.85 ± 0.43 h, 2.2 ± 0.9 L/h, and 7.52 ± 2.46 μg·h/mL, respectively. Following intramuscular administration, the peak concentration (Cmax, 1.40 ± 0.43 μg/mL) was achieved at the time of 0.34 h. A multiple‐peak phenomenon existed after oral administration, and the first peak and secondary peak were at 10 min and during 2–4 h, respectively, while the tertiary peak appeared during 5–15 h. The bioavailability (F %) for intramuscular and oral administration was 68.60% and 52.64%, respectively. In present study, the detailed pharmacokinetic profiles showed that this drug is widely distributed and rapidly eliminated, however has a low bioavailability, indicating that valnemulin is likely to be a favorable choice in the clinical practice.  相似文献   

14.
Pioglitazone is a thiazolidinedione class of antidiabetic agent with proven efficacy in increasing insulin sensitivity in humans with noninsulin-dependent diabetes mellitus, a syndrome of insulin resistance sharing similarities with equine metabolic syndrome. The purpose of this study was to determine the pharmacokinetics of pioglitazone in adult horses following multiple oral dose administration. Pioglitazone hydrochloride (1 mg/kg) was administered orally for 11 doses at 24-h intervals, and plasma samples were collected. Initially, a pilot study was performed using one horse; and thereafter the drug was administered to six horses. Samples were analyzed by liquid chromatography with tandem mass spectrometry, and pharmacokinetic parameters were calculated using noncompartmental modeling. The maximum plasma concentration was 509.1 ± 413.5 ng/mL achieved at 1.88 ± 1.39 h following oral administration of the first dose, and 448.1 ± 303.5 ng/mL achieved at 2.83 ± 1.81 h (mean ± SD) following the eleventh dose. Apparent elimination half-life was 9.94 ± 4.57 and 9.63 ± 5.33 h after the first and eleventh dose, respectively. This study showed that in healthy horses, pioglitazone administered at a daily oral dose of 1 mg/kg results in plasma concentrations and total drug exposure approximating, but slightly below, those considered therapeutic in humans.  相似文献   

15.
16.
Soma, L. R., Uboh, C. E., Liu, Y., Li, X., Robinson, M .A., Boston, R. C., Colahan, P. T. Pharmacokinetics of dexamethasone following intra‐articular, intravenous, intramuscular, and oral administration in horses and its effects on endogenous hydrocortisone. J. vet. Pharmacol. Therap.  36 , 181–191. This study investigated and compared the pharmacokinetics of intra‐articular (IA) administration of dexamethasone sodium phosphate (DSP) into three equine joints, femoropatellar (IAS), radiocarpal (IAC), and metacarpophalangeal (IAF), and the intramuscular (IM), oral (PO) and intravenous (IV) administrations. No significant differences in the pharmacokinetic estimates between the three joints were observed with the exception of maximum concentration (Cmax) and time to maximum concentration (Tmax). Median (range) Cmax for the IAC, IAF, and IAS were 16.9 (14.6–35.4), 23.4 (13.5–73.0), and 46.9 (24.0–72.1) ng/mL, respectively. The Tmax for IAC, IAF, and IAS were 1.0 (0.75–4.0), 0.62 (0.5–1.0), and 0.25 (0.08–0.25) h, respectively. Median (range) elimination half‐lives for IA and IM administrations were 3.6 (3.0–4.6) h and 3.4 (2.9–3.7) h, respectively. A 3‐compartment model was fitted to the plasma dexamethasone concentration–time curve following the IV administration of DSP; alpha, beta, and gamma half‐lives were 0.03 (0.01–0.05), 1.8 (0.34–2.3), and 5.1 (3.3–5.6) h, respectively. Following the PO administration, the median absorption and elimination half‐lives were 0.34 (0.29–1.6) and 3.4 (3.1–4.7) h, respectively. Endogenous hydrocortisone plasma concentrations declined from a baseline of 103.8 ± 29.1–3.1 ± 1.3 ng/mL at 20.0 ± 2.7 h following the administration of DSP and recovered to baseline values between 96 and 120 h for IV, IA, and IM administrations and at 72 h for the PO.  相似文献   

17.
In the present study, the pharmacokinetic parameters of a trimethoprim/sulphachlorpyridazine preparation following intravenous administration, administration by nasogastric tube and administration with concentrate were determined in the horse. Eight adult horses were dosed at 1 week intervals in a sequentially designed study at a dose of 5 mg/kg trimethoprim (IMP) and 25 mg/kg sulphachlorpyridazine (SCP) on all occasions. Plasma concentrations of both drugs were measured serially for 48 h. Pharmacokinetic parameters of clinical importance (distribution and elimination half-lives, clearance, bioavail-ability, volume of distribution) were determined both for TMP and SCP. Following intravenous administration, the volume of distribution at steady-state (Vd(33) was significantly larger for TMP (1.51 ± 0.25 L/kg than for SCP (0.26 ± 0.05 L/kg. The clearance was 7.73 ± 2.26 mL/min-kg for TMP and 2.64 ± 0.48 mL/min·kg for SCP. For both TMP and SCP, mean peak plasma concentrations (Cmax) and the bioavailabilities (F) were reduced significantly when the drugs were mixed with concentrate (ct) as compared with those after nasogastric administration (ngt) (Fct= 44.3 ± 10.7% vs. Fngt= 68.3 ± 12.5% for TMP; Fct= 46.3 ± 8.9% vs. Fngt= 67.3 ±13.7% for SCP). Following the administration of TMP and SCP mixed with concentrate, the plasma concentration—time curves showed a biphasic absorption pattern in all horses. The first peak occurred 1–2 h and the second peak 8–10 h after administration of the combination preparation. Based on the pharmacokinetic data obtained and the published in vitro sensitivity data, it may be predicted that TMP and SCP given intravenously or by nasogastric tube at a dose of 5 mg/kg and 25 mg/kg respectively and a dosage interval of 8–12 h would result in sufficiently high plasma concentrations for effectiveness against susceptible bacteria. The single oral administration of TMP and SCP mixed with concentrate did not result in effective plasma concentrations. Further studies are needed to investigate whether higher plasma concentrations would be achieved by a multiple dosing scheme for several days.  相似文献   

18.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The pharmacokinetics of florfenicol (FF) and its metabolite, florfenicol amine (FFA), were studied in rice field eel (Monopterus albus) after a single dose (20 mg/kg) by intramuscular (i.m.) or oral gavage (p.o.) dose at 25 °C. The elimination half‐lives (t1/2β), peak concentration of FF (Cmax), and time to reach FF peak concentration (Tmax) in plasma were estimated as 18.39 h, 10.83 μg/mL, and 7.00 h, respectively, after i.m. injection and 13.46 h, 8.37 μg/mL, and 5 h, respectively, after p.o. administration. The Tmax values of FF in tissues (i.e., kidney, muscle, and liver) were larger for i.m. injection compared with those for p.o. administration. The t1/2β had the following order kidney > muscle > liver for i.m. administrated and kidney > liver > muscle for p.o. administrated. The largest area under the concentration–time curve (AUC) was calculated to be 384.29 mg · h/kg after i.m. dosing, and the mean residence time (MRT) was 42.46 h by oral administration in kidney. FFA was also found in all tissues with a lower concentration than FF for both i.m. and p.o. administrations throughout the study. The elimination of FFA was slow with a t1/2β between 18.19 and 47.80 h in plasma and tissues. The mean metabolic rate of FFA for i.m. and p.o. administrations was >23.30%.  相似文献   

20.
The purpose of the study reported here was to describe the bioavailability and pharmacokinetics of acyclovir after intravenous and oral administration to horses. Six healthy adult horses were used in a randomized cross-over study with a 3 x 3 Latin square design. Three treatments were administered to each horse: 10 mg of injectable acyclovir/kg of body weight in 1 L of normal saline delivered as an infusion over 15 minutes; 10 mg of acyclovir/kg in tablets by nasogastric intubation; and 20 mg of acyclovir/kg in tablets by nasogastric intubation. A 2-week washout period was provided between each treatment. Serum samples were obtained for acyclovir assay using reversed-phase, high-performance liquid chromatography with fluorescence detection. Deproteinated serum was injected onto a C18 column, and elution occurred under isocratic conditions. The limit of quantification was 0.04 microg/mL. The assay exhibited suitable accuracy, precision, and recovery. The IV data were analyzed by a 3-compartment model, and oral data were analyzed noncompartmentally. Intragastric acyclovir administration at either dose was associated with high variability in serum acyclovir-time profiles, low Cmax, and poor bioavailability. The dosage of 20 mg/kg was associated with mean (+/- SD) Cmax of 0.19 +/- 0.10 microg/mL, and bioavailability was 2.8%. Inhibition of equine herpesvirus has been reported to require significantly higher acyclovir concentrations than those obtained here. The results of this study do not support a therapeutic benefit for the oral administration of acyclovir up to doses of 20 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号