首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Topical application of ectoparasiticides for flea and tick control is a major focus for product development in animal health. The objective of this work was to develop a quantitative structure permeability relationship (QSPeR) model sensitive to formulation effects for predicting absorption and skin deposition of five topically applied drugs administered in six vehicle combinations to porcine and canine skin in vitro. Saturated solutions (20 μL) of 14C‐labeled demiditraz, fipronil, permethrin, imidacloprid, or sisapronil were administered in single or binary (50:50 v/v) combinations of water, ethanol, and transcutol (6 formulations, n = 4–5 replicates per treatment) nonoccluded to 0.64 cm2 disks of dermatomed pig or dog skin mounted in flow‐through diffusion cells. Perfusate flux over 24 h and skin deposition at termination were determined. Permeability (logKp), absorption, and penetration endpoints were modeled using a four‐term Abrahams and Martin (hydrogen‐bond donor acidity and basicity, dipolarity/polarizability, and excess molar refractivity) linear free energy QSPeR equation with a mixture factor added to compensate for formulation ingredient interactions. Goodness of fit was judged by r2, cross‐validation coefficient, coefficients (q2s), and Williams Plot to visualize the applicability domain. Formulation composition was the primary determinant of permeation. Compounds generally penetrated dog skin better than porcine skin. The vast majority of permeated penetrant was deposited within the dosed skin relative to transdermal flux, an attribute for ectoparasiticides. The best QSPeR logKp model for pig skin permeation (r2 = 0.86, q2s = 0.85) included log octanol/water partition coefficient as the mixture factor, while for dogs (r2 = 0.91, q2s = 0.90), it was log water solubility. These studies clearly showed that the permeation of topical ectoparasiticides could be well predicted using QSPeR models that account for both the physical–chemical properties of the penetrant and formulation components.  相似文献   

2.
The study objective was to determine the pharmacokinetics and clinical effects of an extended‐release 5% eprinomectin formulation (Longrange®) following subcutaneous (s.c.) injection in healthy (n = 6) and mange‐infected (n = 4) adult alpacas. High‐performance liquid chromatography was used to analyze plasma samples obtained at regular intervals for 161 days following a single 5 mg/kg injection s.c. in healthy alpacas, and for 5 days following each dose (3 treatments, 2 months apart) in mange‐affected animals. Skin scrapings and biopsies were performed pre‐ and post‐treatment at two comparable sites in alpacas with mange. Four alpacas served as healthy controls. Eprinomectin plasma concentrations showed a biphasic peak (CMAX‐1: 5.72 ± 3.25 ng/mL; CMAX‐2: 6.06 ± 2.47 ng/mL) in all animals at 3.88 ± 5.16 days and 77 ± 12.52 days, respectively. Eprinomectin plasma concentrations remained above 1.27 ± 0.96 ng/mL for up to 120 days. Hematocrit (35.8 vs. 31.3%, < 0.003) and albumin (3.5 vs. 2.8 g/dL P < 0.006) reduced significantly over 6 months in multidose animals, while fecal egg counts did not differ between groups. Self‐limiting injection site reactions occurred in 9 of 10 animals. Pre‐ and post‐treatment skin biopsies showed reduced hyperkeratosis, but increased fibrosis, with 1 of 4 alpacas remaining positive on skin scraping for mange. In conclusion, alpacas require a higher eprinomectin dose (5.0 mg/kg s.c.) than cattle, to reach comparable plasma concentrations.  相似文献   

3.
Ceftiofur, a third‐generation cephalosporin antibiotic, is being extensively used by pet doctors in China. In the current study, the detection method was developed for ceftiofur and its metabolites, desfuroylceftiofur (DCE) and desfuroylceftiofur conjugates (DCEC), in feline plasma. Then, the pharmacokinetics studies were performed following one single intravenous and subcutaneous injection of ceftiofur sodium in cats both at 5 mg/kg body weight (BW) (calculated as pure ceftiofur). Ceftiofur, DCE, and DCEC were extracted from plasma samples, then derivatized and further quantified by high‐performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetics parameters. The terminal half‐life (t1/2λz) was calculated as 11.29 ± 1.09 and 10.69 ± 1.31 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady‐state (VSS) were determined as 14.14 ± 1.09 ml hr‐1 kg‐1 and 241.71 ± 22.40 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 14.99 ± 2.29 μg/ml) was observed at 4.17 ± 0.41 hr, and the absorption half‐life (t1/2ka) and absolute bioavailability (F) were calculated as 2.83 ± 0.46 hr and 82.95%±9.59%, respectively. The pharmacokinetic profiles of ceftiofur sodium and its related metabolites demonstrated their relatively slow, however, good absorption after subcutaneous administration, poor distribution, and slow elimination in cats. Based on the time of drug concentration above the minimum inhibitory concentration (MIC) (T>MIC) calculated in the current study, an intravenous or subcutaneous dose at 5 mg/kg BW of ceftiofur sodium once daily is predicted to be effective for treating feline bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

4.
In this study, the pharmacokinetics of moxifloxacin (5 mg/kg) was determined following a single intravenous administration of moxifloxacin alone and co-administration with diclofenac (2.5 mg/kg) or flunixin meglumine (2.2 mg/kg) in sheep. Six healthy Akkaraman sheep (2 ± 0.3 years and 53.5 ± 5 kg of body weight) were used. A longitudinal design with a 15-day washout period was used in three periods. In the first period, moxifloxacin was administered by an intravenous (IV) injection. In the second and third periods, moxifloxacin was co-administered with IV administration of diclofenac and flunixin meglumine, respectively. The plasma concentration of moxifloxacin was assayed by high-performance liquid chromatography. The pharmacokinetic parameters were calculated using a two-compartment open pharmacokinetic model. Following IV administration of moxifloxacin alone, the mean elimination half-life (t1/2β), total body clearance (ClT), volume of distribution at steady state (Vdss) and area under the curve (AUC) of moxifloxacin were 2.27 hr, 0.56 L h−1 kg−1, 1.66 L/kg and 8.91 hr*µg/ml, respectively. While diclofenac and flunixin meglumine significantly increased the t1/2β and AUC of moxifloxacin, they significantly reduced the ClT and Vdss. These results suggest that anti-inflammatory drugs could increase the therapeutic efficacy of moxifloxacin by altering its pharmacokinetics.  相似文献   

5.
Phenylbutazone (PBZ) is a nonsteroidal anti‐inflammatory drug used in the treatment of chronic pain and arthritis. Topical and transdermal administration of PBZ would be beneficial in large animals in terms of minimizing gastro‐intestinal ulcerations and other side effects, easy administration to legs and joints and minimizing the dose to reduce systemic toxicity of the drug. A topical liposomal preparation with different concentrations of a mono‐substituted alkyl amide (MSA) and PBZ was formulated. The formulations were evaluated by in vitro skin‐permeation kinetics through deer skin using Franz diffusion cells. By increasing drug loading from 1% to 5% w/w, the steady‐state flux (μg/cm2/h) of PBZ was increased twofold (P < 0.001). Similarly, by increasing the MSA concentration from 0% to 4%, the steady‐state flux (μg/cm2/h) of PBZ was increased twofold (P < 0.001). Overall, by increasing the drug load and the use of an appropriate amount of the penetration enhancer, the steady‐state flux of PBZ through skin was increased fourfold (P < 0.001). MSA at both 2% and 4% w/w concentrations significantly increased the skin levels of PBZ as compared with control (P < 0.05). In conclusion, MSA served as an effective skin‐penetration enhancer in the liposomal gel of PBZ for deer.  相似文献   

6.
Eleven pregnant pony mares (D270‐326) were administered ceftiofur sodium intramuscularly at 2.2 mg/kg (n = 6) or 4.4 mg/kg (n = 5), once daily. Plasma was obtained prior to ceftiofur administration and at 0.5, 1, 2, 4, 8, 12, and 24 hr after administration. Eight pony mares were re‐enrolled in the study at least 3 days from expected foaling to ensure steady‐state concentrations of drug at the time of foaling. Mares were administered ceftiofur sodium (4.4 mg/kg, IM) daily until foaling. Parturition was induced using oxytocin 1 hr after ceftiofur sodium administration. Allantoic and amniotic fluid, plasma, and colostrum samples were collected at time of foaling. Serial foal plasma samples were obtained. Placental tissues were collected. Desfuroylceftiofur acetamide (DCA) concentrations were measured in samples by high‐performance liquid chromatography (HPLC). Mean (±SD) peak serum concentrations of DCA were 3.97 ± 0.50 μg/ml (low dose) and 7.45 ± 1.05 μg/ml (high dose). Terminal half‐life was significantly (p = .014) shorter after administration of the low dose (2.91 ± 0.59 hr) than after administration of the high dose (4.10 ± 0.72 hr). The mean serum concentration of DCA from mares at time of foaling was 7.96 ± 1.39 μg/ml. The mean DCA concentration in colostrum was 1.39 ± 0.70 μg/ml. DCA concentrations in allantoic fluid, amniotic fluid, placental tissues, and foal plasma were below the limit of quantification (<0.1 μg/ml) and below the minimum inhibitory concentration of ceftiofur against relevant pathogens. These results infer incomplete passage of DCA across fetal membranes after administration of ceftiofur sodium to normal pony mares.  相似文献   

7.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

8.
The aims of the present study were to evaluate the pharmacokinetic profile and efficacy of eprinomectin (EPM) against Rhipicephalus microplus in cattle of a new injectable form of EPM (Voss Performa®). The product was administered subcutaneously at a dose of 200 μg EPM/kg, in a single dose. The efficacy of EPM against R. microplus in cattle was evaluated through field and stall tests. Studies were performed to estimate the pharmacokinetic parameters of EPM with the purpose of better understanding the kinetics of the formulation. The formulation was effective in controlling R. microplus in both naturally and artificially infested cattle, providing efficacy greater than 95%. The results of pharmacokinetic study were Cmax of 47.15 ± 22.20 ng/ml, Tmax of 1.33 ± 0.492 days, T1/2 of 2.96 ± 1.212 days, AUC0–t of 228.08 ± 57.30 ng day ml−1, and AUC0-∞ of 240.50 ± 58.44 ng day ml−1. Therefore, the new injectable EPM formulation becomes an important alternative for the control of cattle tick in Brazil.  相似文献   

9.
Seven sea otters received a single subcutaneous dose of cefovecin at 8 mg/kg body weight. Plasma samples were collected at predetermined time points and assayed for total cefovecin concentrations using ultra‐performance liquid chromatography and tandem mass spectrometry. The mean (±SD) noncompartmental pharmacokinetic indices were as follows: CMax (obs) 70.6 ± 14.6 μg/mL, TMax (obs) 2.9 ± 1.5 h, elimination rate constant (kel) 0.017 ± 0.002/h, elimination half‐life (t1/2kel) 41.6 ± 4.7 h, area under the plasma concentration‐vs.‐time curve to last sample (AUClast) 3438.7 ± 437.7 h·μg/mL and AUC extrapolated to infinity (AUC0→∞) 3447.8 ± 439.0 h·μg/mL. The minimum inhibitory concentrations (MIC) for select isolates were determined and used to suggest possible dosing intervals of 10 days, 5 days, and 2.5 days for gram‐positive, gram‐negative, and Vibrio parahaemolyticus bacterial species, respectively. This study found a single subcutaneous dose of cefovecin sodium in sea otters to be clinically safe and a viable option for long‐acting antimicrobial therapy.  相似文献   

10.
This study aimed to assess the effects of incremental doses of dobutamine on diastolic function in healthy and rapid ventricular apical pacing (RVAP)‐induced cardiac dysfunction anesthetized dogs. Inotropic and lusitropic effects of dobutamine (2, 4, 8, and 12 μg kg?1 min?1) were assessed through left ventricle (LV) pressure–volume relation and Doppler echocardiography in six female dogs before and after 8 weeks of RVAP. Peak rate of LV pressure fall (?dP/dtmin) improved with doses >4 μg kg?1 min?1 in healthy (4,490 ± 970 vs. 3,265 ± 471 mmHg/s, p < 0.05) and >8 μg kg?1 min?1 in RVAP dogs (3,385 ± 1,122 vs. 1,864 ± 849 mmHg/s, p < 0.05) while the time constant of relaxation (tau) reduced with doses >4 μg kg?1 min?1 in both groups (healthy: 24.0 ± 3.7 vs. 28.2 ± 4.9 ms; RVAP: 32.6 ± 8.5 vs. 37.5 ± 11.4 ms, p < 0.05) comparing with baseline. Indices of relaxation (?dP/dtmin and tau) suggested preserved lusitropic response in contrast with markedly reduced indices of contractility in the RVAP group compared with healthy group at same infusion rates. Doppler echocardiography showed significant reduction of elastic recoil in failing hearts. The results of this study demonstrated maximal positive lusitropic effects of dobutamine at a dose of 8 μg kg?1 min?1 in ventricular pacing‐induced cardiac dysfunction without further impairment of ventricular filling.  相似文献   

11.
The present study aimed to determine the pharmacokinetic profiles of ceftiofur (as measured by ceftiofur and its active metabolites concentrations) in a small-size dog breed, Peekapoo, following a single intravenous or subcutaneous injection of ceftiofur sodium. The study population comprised of five clinically healthy Peekapoo dogs with an average body weight (BW) of 3.4 kg. Each dog received either intravenous or subcutaneous injection, both at 5 mg/kg BW (calculated as pure ceftiofur). Plasma samples were collected at different time points after the administration. Ceftiofur and its active metabolites were extracted from plasma samples, derivatized, and further quantified by high-performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetic parameters. The terminal half-life (t1/2λz) was calculated as 7.40 ± 0.79 and 7.91 ± 1.53 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady-state (VSS) were determined as 39.91 ± 4.04 ml hr−1 kg−1 and 345.71 ± 28.66 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 10.50 ± 0.22 μg/ml) was observed at 3.2 ± 1.1 hr, and the absorption half-life (t1/2ka) and absolute bioavailability (F) were calculated as 0.74 ± 0.23 hr and 91.70%±7.34%, respectively. The pharmacokinetic profiles of ceftiofur and its related metabolites demonstrated their quick and excellent absorption after subcutaneous administration, in addition to poor distribution and slow elimination in Peekapoo dogs. Based on the time of concentration above minimum inhibitory concentration (T > MIC) values calculated here, an intravenous or subcutaneous dose at 5 mg/kg of ceftiofur sodium once every 12 hr is predicted to be effective for treating canine bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

12.
This study determined the unbound fraction of the peripheral α2‐adrenoceptor antagonist MK‐467 alone and combined with medetomidine. MK‐467 (0.1, 1 and 10 μm ) was incubated in canine plasma with and without medetomidine (molar ratio 20:1), with human serum albumin (HSA) and with α1‐acid glycoprotein (AGP). Rapid equilibrium dialysis was used for the measurement of protein binding. All samples were analysed by liquid chromatography and tandem mass spectrometry to obtain the unbound fraction (fu) of MK‐467. Unbound fractions (fu) of MK‐467 in canine plasma (mean ± standard deviation) were 27.6 ± 3.5%, 26.6 ± 0.9% and 42.4 ± 1.2% at 0.1, 1.0 and 10 μm concentrations, respectively. In the presence of medetomidine, fu were 27.5 ± 0.4%, 26.6 ± 0.9% and 41.0 ± 2.4%. The fu of MK‐467 in HSA were 50.1 ± 2.5% at 0.1 μm , 49.4 ± 1.2% at 1.0 μm and 56.7 ± 0.5% at 10 μm . fu of MK‐467 in AGP was 56.3 ± 3.7% at 0.1 μm , 54.6 ± 5.6% at 1.0 μm and 65.3 ± 0.4% at 10 μm . Protein binding of MK‐467 was approximately 70% between 0.1 and 1.0 μm . Medetomidine had no apparent effect on the protein binding of MK‐467.  相似文献   

13.
Biotechnology applied for equine semen increases the levels of reactive oxygen species and reduces the natural antioxidant defence, by both dilution and removal of seminal plasma. Therefore, the aims of this study were to evaluate the effect of adding coenzyme Q10 (CoQ10) and α‐tocopherol (α‐TOH) to the cooling extender, singly or in combination, on sperm parameters, and their effectiveness in preventing lipid peroxidation (LPO) of equine semen during cooling at 5°C for 72 h. Ten adult stallions of proven fertility were used, using two ejaculates each, subjecting them to the treatments with the following concentrations: α‐TOH: 2 mm ; CoQ10: 40 μg/ml; and CoQ10 + α‐TOH: 40 μg/ml + 2 mm for control (C) without the addition of antioxidants and for vehicle control (EtOH) with 100 μl ethanol. The CoQ10 group had a higher percentage of total motility (69.1 ± 16.2%) compared to control (62.1 ± 16.2%) and EtOH (58.1 ± 18.6%). CoQ10 + α‐TOH and α‐TOH groups were most effective in preventing LPO compared to controls (1765.9 ± 695.9, 1890.8 ± 749.5, 2506.2 ± 769.4 ng malondialdehyde/108 sptz, respectively). In conclusion, CoQ10 and α‐TOH were effective during the cooling process of equine semen at 5°C for 72 h, providing increased levels of total motility, as well as lower LPO.  相似文献   

14.
The objective of this study was to evaluate the plasma and serum concentrations of cytarabine (CA) administered via constant rate infusion (CRI) in dogs with meningoencephalomyelitis of unknown etiology (MUE). Nineteen client‐owned dogs received a CRI of CA at a dose of 25 mg/m2/h for 8 h as treatment for MUE. Dogs were divided into four groups, those receiving CA alone and those receiving CA in conjunction with other drugs. Blood samples were collected at 0, 1, 8, and 12 h after initiating the CRI. Plasma (n = 13) and serum (n = 11) cytarabine concentrations were measured by high‐pressure liquid chromatography. The mean peak concentration (CMAX) and area under the curve (AUC) after CRI administration were 1.70 ± 0.66 μg/mL and 11.39 ± 3.37 h·μg/mL, respectively, for dogs receiving cytarabine alone, 2.36 ± 0.35 μg/mL and 16.91 + 3.60 h·μg/mL for dogs administered cytarabine and concurrently on other drugs. Mean concentrations for all dogs were above 1.0 μg/mL at both the 1‐ and 8‐h time points. The steady‐state achieved with cytarabine CRI produces a consistent and prolonged exposure in plasma and serum, which is likely to produce equilibrium between blood and the central nervous system in dogs with a clinical diagnosis of MUE. Other medications commonly used to treat MUE do not appear to alter CA concentrations in serum and plasma.  相似文献   

15.
Searching for new therapeutic options against septic arthritis in horses, this research was focused on the study of the kinetics and local side effects after the intra‐articular treatment of horses with cefovecin sodium. A single dose (240 mg) of the drug (Convenia®) was administered into the radiocarpal joint of adult healthy horses (n = 6), and drug concentrations in plasma and synovial fluid were determined by high‐performance liquid chromatography (HPLC). Local tolerance was also studied based on the modification of different joint physiopathological parameters (pH, cellular, and protein concentration in synovial fluid). Although no clinically relevant joint damage was noticed, significant increases in the protein concentrations at 5 min and in the cellular concentration at 30 min after cefovecin administration were observed in the treated radiocarpal joints. The duration of the cefovecin above the minimal inhibitory concentration (MIC) ≤1 μg/mL was 28.80 ± 2.58 h in the radiocarpal joint and 16.00 ± 2.86 h in plasma. The results of this study showed that intra‐articular administration of cefovecin sodium in horses could be considered in the future to manage septic arthritis in horses, as it offers a good pharmacokinetic behavior and good local tolerance.  相似文献   

16.
Mycophenolate mofetil (MMF) is recommended as an alternative/complementary immunosuppressant. Pharmacokinetic and dynamic effects of MMF are unknown in young‐aged dogs. We investigated the pharmacokinetics and pharmacodynamics of single oral dose MMF metabolite, mycophenolic acid (MPA), in healthy juvenile dogs purpose‐bred for the tripeptidyl peptidase 1 gene (TPP1) mutation. The dogs were heterozygous for the mutation (nonaffected carriers). Six dogs received 13 mg/kg oral MMF and two placebo. Pharmacokinetic parameters derived from plasma MPA were evaluated. Whole‐blood mitogen‐stimulated T‐cell proliferation was determined using a flow cytometric assay. Plasma MPA Cmax (mean ± SD, 9.33 ± 7.04 μg/ml) occurred at <1 hr. The AUC0–∞ (mean ± SD, 12.84±6.62 hr*μg/ml), MRTinf (mean ± SD, 11.09 ± 9.63 min), T1/2 (harmonic mean ± PseudoSD 5.50 ± 3.80 min), and k/d (mean ± SD, 0.002 ± 0.001 1/min). Significant differences could not be detected between % inhibition of proliferating CD5+ T lymphocytes at any time point (= .380). No relationship was observed between MPA concentration and % inhibition of proliferating CD5+ T lymphocytes (= .148, = .324). Pharmacodynamics do not support the use of MMF in juvenile dogs at the administered dose based on existing therapeutic targets.  相似文献   

17.
The purpose of this study was to evaluate the pharmacokinetics of morphine in combination with dexmedetomidine and maropitant injected intramuscularly in dogs under general anaesthesia. Eight healthy dogs weighing 25.76 ± 3.16 kg and 3.87 ± 1.64 years of age were used in a crossover study. Dogs were randomly allocated to four groups: (1) morphine 0.6 mg/kg; (2) morphine 0.3 mg/kg + dexmedetomidine 5 μg/kg; (3) morphine 0.3 mg/kg + maropitant 1 mg/kg; (4) morphine 0.2 mg/kg + dexmedetomidine 3 μg/kg + maropitant 0.7 mg/kg. Blood samples were collected before, 15 and 30 min, and 1, 2, 3 4, 6 and 8 hr after injection of the test drugs. Plasma concentration of the drugs was determined by liquid chromatography-mass spectrometry. The elimination half-life (T1/2) of morphine was higher and the clearance rate (CL) was lower when combined with dexmedetomidine (T1/2 = 77.72 ± 20.27 min, CL = 119.41 ± 23.34 ml kg−1 min−1) compared to maropitant (T1/2 = 52.73 min ± 13.823 ml kg−1 min−1, CL = 178.57 ± 70.55) or morphine alone at higher doses (T1/2 = 50.53 ± 12.55 min, CL = 187.24 ± 34.45 ml kg−1 min−1). Combining morphine with dexmedetomidine may increase the dosing interval of morphine and may have a clinical advantage.  相似文献   

18.
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co‐administered to dogs after oral treatment. Twelve healthy cross‐bred dogs (weighing 18–21 kg, aged 1–3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15‐day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high‐performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone‐administration were as follows: elimination half‐life (t1/2λz) 110 ± 11.06 hr, area under the plasma concentration–time curve (AUC0–∞) 7,805 ± 1,768 hr.ng/ml, maximum concentration (Cmax) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone‐administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0–∞ 4,301 ± 1,253 hr.ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.  相似文献   

19.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

20.
Alfaxalone (3α‐hydroxy‐5α‐pregnane‐11, 20‐dione) is a neuroactive steroid with anaesthetic properties and a wide margin of safety. The pharmacokinetic properties of alfaxalone administered intravenously and intraperitoneally in rats (n = 28) were investigated. Mean t1/2elim for 2 and 5 mg/kg i.v. was 16.2 and 17.6 min, respectively, but could not be estimated for IP dosing, due to sustained plasma levels for up to 60 min after injection. Clp for i.v. injection was calculated at 57.8 ± 23.6 and 54.3 ± 6.8 mL/min/kg, which were 24.5% and 23% of cardiac output, respectively. The observed Cmax was 3.0 mg/L for IP administration, and 2.2 ± 0.9 and 5.2 ± 1.3 mg/L for 2 and 5 mg/kg i.v. administration, respectively. AUC0–60 was 96.2 min·mg/L for IP dosing. The relative bioavailability for IP dosing was 26% and 28% compared to i.v. dosing. Differences in t1/2elim and Clp from previous pharmacokinetic studies in rats are likely due to variations in alfaxalone formulation rather than sex differences. Alfaxan® given IP caused sustained levels of alfaxalone, no apnoea and longer sleep times than i.v. dosing, although immobilization was not induced in 30% of rats given Alfaxan® IP. A pharmacodynamic study of the effects of combining IP injection of Alfaxan® with other premedication agents is worthwhile, to determine whether improved anaesthesia induction could ultimately provide an alternative anaesthetic regimen for rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号