首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rose, M, Menge, M, Bohland, C, Zschiesche, E, Wilhelm, C, Kilp, S, Metz, W, Allan, M, Röpke, R, Nürnberger, M Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae. J. vet. Pharmacol. Therap.  36 , 140–153. The pharmacokinetics of tildipirosin (Zuprevo® 40 mg/mL solution for injection for pigs), a novel 16‐membered‐ring macrolide for the treatment for swine respiratory disease (SRD), was investigated in studies collecting blood plasma and postmortem samples of lung tissue and bronchial fluid (BF) from swine. In view of factors influencing the in vitro activity of macrolides, and for the interpretation of tildipirosin pharmacokinetics in relation to minimum inhibitory concentrations (MIC), additional experiments were conducted to study the effects of pH, carbon dioxide‐enriched atmosphere, buffers, and serum on tildipirosin MICs for various reference strains and Actinobacillus (A.) pleuropneumoniae field isolates. After single intramuscular (i.m.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.9 μg/mL observed within 23 min (Tmax). Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half‐life (T1/2) both were about 4 days. A dose–response relationship with no significant sex effect is observed for area under the plasma concentration–time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. However, linear dose proportionality could not be proven with statistical methods. The time–concentration profile of tildipirosin in BF and lung far exceeded that in blood plasma. In lung, tildipirosin concentrations reached 3.1 μg/g at 2 h, peaked at 4.3 μg/g at day 1, and slowly declined to 0.8 μg/g at day 17. In BF, tildipirosin levels were 14.3, 7.0, and 6.5 μg/g at days 5, 10, and 14. T1/2 in lung was ~7 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination. Culture media pH and carbon dioxide‐enriched atmosphere (CO2‐EA) had a marked impact on in vitro activity of tildipirosin in reference strains of various rapidly growing aerobic and fastidious bacteria including Histophilus (H.) somni ATCC 700025 and A. pleuropneumoniae ATCC 27090. For A. pleuropneumoniae ATCC 27090 testing conditions without CO2‐EA resulted in reduced acidification of culture media pH and a reduction in the minimum inhibitory concentrations compared to standard in vitro test conditions by 2 log2 dilution steps (4‐fold) from 8 to 2 μg/mL. Supplementary buffering of standard culture media resulted in a reduction in the A. pleuropneumoniae (n = 8) MIC range by 4 log2 dilution steps (16‐fold) from 8–16 to 0.5–1 μg/mL. Incremental supplementation of culture media with 50% serum resulted in noticeable shifts to lower minimum or maximum MICs by at least 2 log2 dilution steps (≥4‐fold) in all aerobic and fastidious reference strains tested except for Pasteurella (P.) multocida. The MIC of A. pleuropneumoniae ATCC 27090 decreased by 2–4 log2 dilution steps (4 to 16‐fold) from 8 to 0.5–2 μg/mL when 50% serum was added to the standard assay. Considering a higher presence of serum and the rather neutral pH conditions maintained in vivo, it is suggested to take the influence of these factors on in vitro activity into account when interpreting tildipirosin MICs for A. pleuropneumoniae in relation to pharmacokinetics.  相似文献   

2.
Menge, M., Rose, M., Bohland, C., Zschiesche, E., Kilp, S., Metz, W., Allan, M., Röpke, R., Nürnberger, M. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J. vet. Pharmacol. Therap.  35 , 550–559. The pharmacokinetics of tildipirosin (Zuprevo® 180 mg/mL solution for injection for cattle), a novel 16‐membered macrolide for treatment, control, and prevention of bovine respiratory disease, were investigated in studies collecting blood plasma, lung tissue, and in vivo samples of bronchial fluid (BF) from cattle. After single subcutaneous (s.c.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.7 μg/mL. Tmax was 23 min. Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half‐life (T1/2) was 6 and 9 days, respectively. A strong dose–response relationship with no significant sex effect was shown for both Cmax and area under the plasma concentration–time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. Absolute bioavailability was 78.9%. The volume of distribution based on the terminal phase (Vz) was 49.4 L/kg, and the plasma clearance was 144 mL/h/kg. The time–concentration profile of tildipirosin in BF and lung far exceeded those in blood plasma. In lung, tildipirosin concentrations reached 9.2 μg/g at 4 h, peaked at 14.8 μg/g at day 1, and slowly declined to 2.0 μg/g at day 28. In BF, the concentration of tildipirosin reached 1.5 and 3.0 μg/g at 4 and 10 h, maintained a plateau of about 3.5 μg/g between day 1 and 3, and slowly declined to 1.0 at day 21. T1/2 in lung and BF was approximately 10 and 11 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination.  相似文献   

3.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

4.
Tildipirosin is a semi‐synthetic macrolide antibiotic commonly used in cattle and swine to treat bacterial pneumonia. The objective of this study was to investigate the pharmacokinetic profile of tildipirosin after a single intravenous (i.v.) and subcutaneous (s.c.) administration in healthy lambs. Eighteen lambs were randomly divided into three groups (n = 6 each). Lambs received a single s.c. dose of tildipirosin at 4 and 6 mg/kg b.w. in group 1 and 2, respectively. Lambs in group 3 received a single i.v. dose of tildipirosin at 4 mg/kg b.w. Blood samples were collected at 0, 0.5, 0.75, 1.5, 2, 3, 4, 6, 8, 10, 24, 36, 48 hr, and every 24 hr to day 21, and thereafter at day 28 posttildipirosin administration. The plasma concentrations of tildipirosin were determined using high‐performance liquid chromatography with tandem mass spectrometry detection (LC?MS?MS). All lambs appeared to tolerate both the intravenous and subcutaneous injection of tildipirosin. Following i.v. administration, the elimination half‐life (T1/2), mean residence time (MRT), volume of distribution (Vd/F), and total body clearance (Cl/F) were 119.6 ± 9.0 hr, 281.9 ± 25.7 hr, 521.1 ± 107.2 L, and 2.9 ± 0.5 L/hr, respectively. No significant differences in Cmax (657.0 ± 142.8 and 754.6 ± 227.1 ng/ml), Tmax (1.21 ± 0.38 and 1.35 ± 0.44 hr), T1/2 (144 ± 17.5, 156.5 ± 33.4 hr), and MRT (262.0 ± 30.2 and 250.6 ± 54.5 hr) were found in tildipirosin after s.c. dosing at 4 and 6 mg/kg b.w., respectively. The absolute bioavailability (F) of tildipirosin was 71.5% and 75.3% after s.c. administration of 4 and 6 mg/kg b.w., respectively. In conclusion, tildipirosin was rapidly absorbed and slowly eliminated after a single s.c. administration in healthy lambs. Tildipirosin could be used for the treatment and prevention of respiratory bacterial infections in sheep. However, further in vitro and in vivo studies to determine the efficacy and safety are warranted. To our knowledge, this is the first study to determine the tildipirosin pharmacokinetic parameters in sheep plasma.  相似文献   

5.
The objective of this study was to describe the pharmacokinetics (PK) of flunixin in 12 nonlactating sows following transdermal (TD) flunixin (3.33 mg/kg) and intravenous (IV; 2.20 mg/kg) flunixin meglumine (FM) administration using a crossover design with a 10‐day washout period. Blood samples were collected postadministration from sows receiving IV FM (3, 6, 10, 20, 40 min and 1, 3, 6, 12, 16, 24, 36, and 48 hr) and from sows receiving TD flunixin (10, 20, 40 min and 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60, and 72 hr). Liquid chromatography and mass spectrometry were used to determine plasma flunixin concentrations, and noncompartmental methods were used for PK analysis. The geometric mean ± SD area under the plasma concentration–time curve (AUC) following IV injection was 26,820.59 ± 9,033.88 and 511.83 ± 213.98 hr ng/ml for TD route. Mean initial plasma concentration (C0) was 26,279.70 ± 3,610.00 ng/ml, and peak concentration (Cmax) was 14.61 ± 7.85 ng/ml for IV and TD administration, respectively. The percent mean bioavailability of TD flunixin was 1.55 ± 1.00. Our results demonstrate that topical administration is not an efficient route for delivering flunixin in mature sows.  相似文献   

6.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

7.
Mebendazole is approved for use in aquatic animals and is widely used in Chinese aquaculture. We developed a pharmacokinetic and residue analysis for mebendazole levels in the goldfish (Carassius auratus). Plasma and muscle samples of C. auratus were taken after oral administration of 10 mg/kg mebendazole. The maximal drug plasma concentration of 0.55 mg/L was achieved at 48 hr and then declined with the elimination half‐life (T1/2β) of 7.99 hr. Administration of 10 mg/kg by oral gavage for 5 successive days resulted in a peak mebendazole concentration of 0.70 mg/kg in muscle at 96 hr after the last dose. The drug was then eliminated at a relatively slow rate from muscle with T1/2β of 68.41 hr. There was no detectable mebendazole in any muscle samples at 24 days postadministration. The AUClast in plasma and muscle was 19.42 and 105.33 mg hr/L, respectively. These data provide information for dosage recommendations and withdrawal time determinations for mebendazole use in aquariums.  相似文献   

8.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

9.
The plasma and synovial fluid pharmacokinetics and safety of cefquinome, a 2‐amino‐5‐thiazolyl cephalosporin, were determined after multiple intravenous administrations in sixteen healthy horses. Cefquinome was administered to each horse through a slow i.v. injection over 20 min at 1, 2, 4, and 6 mg/kg (= 4 horses per dose) every 12 h for 7 days (a total of 13 injections). Serial blood and synovial fluid samples were collected during the 12 h after the administration of the first and last doses and were analyzed by a high‐performance liquid chromatography assay. The data were evaluated using noncompartmental pharmacokinetic analyses. The estimated plasma pharmacokinetic parameters were compared with the hypothetical minimum inhibitory concentration (MIC) values (0.125–2 μg/mL). The plasma and synovial fluid concentrations and area under the concentration–time curves (AUC) of cefquinome showed a dose‐dependent increase. After a first dose of cefquinome, the ranges for the mean plasma half‐life values (2.30–2.41 h), the mean residence time (1.77–2.25 h), the systemic clearance (158–241 mL/h/kg), and the volume of distribution at steady‐state (355–431 mL/kg) were consistent across dose levels and similar to those observed after multiple doses. Cefquinome did not accumulate after multiple doses. Cefquinome penetrated the synovial fluid with AUCsynovial fluid/AUCplasma ratios ranging from 0.57 to 1.37 after first and thirteenth doses, respectively. Cefquinome is well tolerated, with no adverse effects. The percentage of time for which the plasma concentrations were above the MIC was >45% for bacteria, with MIC values of ≤0.25, ≤0.5, and ≤1 μg/mL after the administration of 1, 2, and 4 or 6 mg/kg doses of CFQ at 12‐h intervals, respectively. Further studies are needed to determine the optimal dosage regimes in critically ill patients.  相似文献   

10.
The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)‐induced acute phase response (APR) on the pharmaco‐kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol‐amine (FFC‐a) were extracted from the plasma, and their concentrations were determined by high‐performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t‐test. The mean values of AUC0–∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS‐treated rabbits. A significant increase (< 0.05) in the half‐life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half‐life and mean residence time (MRT), but a significant decrease in CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC‐a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug‐metabolizing enzymes.  相似文献   

11.
Changes in ACTH challenge test characteristics in dairy cows changing their physiological status at different lactational stages and different feeding levels were not investigated in terms of repeatability yet. In 23 multiparous Holstein cows (10 cows fed a sole fresh herbage diet without concentrate, 13 cows fed with concentrate), three ACTH challenge tests were performed: once during pregnancy shortly prior to drying off ( T1 ), and in week 3 ( T2 ) and 8 ( T3 ) after parturition. Test characteristics were correlated to performance and metabolic parameters: DMI, BW, energy balance (EB), plasma concentrations of free fatty acids (NEFA) and beta‐hydroxybutyrate (BHB). Basal plasma cortisol concentrations were higher at T1 compared with T2 and T3 (p < .05). The adrenal cortex sensitivity (expressed as total AUC (AUCt) of cortisol response after ACTH application) was lowest at T2 compared with T1 and T3 (p < .05). Ranking of the individual animals’ responses was not repeatable between time points of the ACTH tests. Enhancing the energy deficiency during early lactation by omission of concentrate did not affect baseline cortisol concentrations in plasma, but decreased peak height at T2 (p < .05). Baseline plasma cortisol concentrations were positively correlated with cortisol peak values after ACTH application, previous lactation performance, milk yield and BW (p < .05). The AUCt was positively correlated with baseline cortisol concentrations, EB and DMI. Cortisol release after ACTH injection was lower in animals with high plasma concentrations of NEFA, BHB and with higher contents of fat and free fatty acids in milk (p < .05). Cortisol peak height after ACTH administration was higher in cows with a more positive EB, higher DMI and lower plasma concentrations of NEFA and BHB. In summary, cortisol responses to ACTH challenges in this study were not repeatable in dairy cows changing their physiological status.  相似文献   

12.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight adult female Boer goats. A dose of 2.2 mg/kg was administered intravenously (IV) and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after flunixin meglumine for both routes of administration. Mean λz‐HL after IV administration was 6.032 hr (range 4.735–9.244 hr) resulting from a mean Vz of 584.1 ml/kg (range, 357.1–1,092 ml/kg) and plasma clearance of 67.11 ml kg?1 hr?1 (range, 45.57–82.35 ml kg?1 hr?1). The mean Cmax, Tmax, and λz‐HL for flunixin following TD administration was 0.134 μg/ml (range, 0.050–0.188 μg/ml), 11.41 hr (range, 6.00–36.00 hr), and 43.12 hr (15.98–62.49 hr), respectively. The mean bioavailability for TD flunixin was calculated as 24.76%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.28 μg/ml (range, 0.08–0.69 μg/ml) and was only achieved with IV formulation of flunixin in this study. The PK results support clinical studies to examine the efficacy of TD flunixin in goats. Determining the systemic effects of flunixin‐mediated PGE2 suppression in goats is also warranted.  相似文献   

13.
Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS‐induced acute‐phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8 months old and 35.5 ± 2.2 kg in body weight (bw), were distributed through a crossover factorial 2 × 2 design, with 4 weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples (5 mL) were collected before drug administration and at different times between 0.05 and 48.0 h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann–Whitney U‐test. The mean values of AUC0–∞ in the endotoxaemic sheep (105.9 ± 14.3 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy sheep (78.4 ± 5.2 μg·h/mL). The total mean plasma clearance (CLT) decreased from 257.7 ± 16.9 mL·h/kg in the control group to 198.2 ± 24.1 mL·h/kg in LPS‐treated sheep. A significant increase (< 0.05) in the terminal half‐life was observed in the endotoxaemic sheep (16.9 ± 3.8 h) compared to the values observed in healthy sheep (10.4 ± 3.2 h). In conclusion, the APR induced by the intravenous administration of E. coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug.  相似文献   

14.
The aim of this work was developing effective treatments against Brucella suis biovar 2, responsible for swine brucellosis in Europe. MICs for antibiotics used classically in brucellosis and two new macrolides (tulathromycin and tildipirosin) were determined for 33 B. suis biovar 2 field and B. suis reference strains. MIC90 values ranged from 0.01 to 0.25 μg/mL. The best candidates, given alone or combined, were then evaluated in mice. Ten groups (n = 7) of BALB/c mice were inoculated (1 × 105 CFU/mouse) with a virulent B. suis biovar 2 field strain. All groups, excepting untreated control, were treated for 14 days with, respectively, doxycycline, dihydrostreptomycin, tulathromycin (one or two doses), or tildipirosin (one or two doses) given alone, and doxycycline combined with dihydrostreptomycin, tulathromycin, or tildipirosin. Combined tildipirosin treatment was the most effective, then selected for pig studies. Sixteen B. suis biovar 2 naturally infected sows were treated with oxytetracycline (20 mg/kg BW/daily) for 21 days. The half of these received also tildipirosin (4 mg/kg BW) in two doses with a 10‐day interval. An extensive bacteriological study conducted ten days after ceasing treatments proved the efficacy of this combined oxytetracycline/tildipirosin treatment.  相似文献   

15.
The pharmacokinetics of maropitant were evaluated in beagle dogs dosed orally with Cerenia® tablets (Pfizer Animal Health) once daily for 14 consecutive days at either 2 mg/kg or 8 mg/kg bodyweight. Noncompartmental pharmacokinetic analysis was performed on the plasma concentration data to measure the AUC0–24 (after first and last doses), Ct (trough concentration—measured 24 h after each dose), Cmax (after first and last doses), tmax (after first and last doses), λz (terminal disposition rate constant; after last dose), t1/2 (after last dose), and CL/F (oral clearance; after last dose). Maropitant accumulation in plasma was substantially greater after fourteen daily 8 mg/kg doses than after fourteen daily 2 mg/kg doses as reflected in the AUC0–24 accumulation ratio of 4.81 at 8 mg/kg and 2.46 at 2 mg/kg. This is most likely due to previously identified nonlinear pharmacokinetics of maropitant in which high doses (8 mg/kg) saturate the metabolic clearance mechanisms and delay drug elimination. To determine the time to reach steady‐state maropitant plasma levels, a nonlinear model was fit to the least squares (LS) means maropitant Ct values for each treatment group. Based on this model, 90% of steady‐state was determined to occur at approximately four doses for daily 2 mg/kg oral dosing and eight doses for daily 8 mg/kg oral dosing.  相似文献   

16.
The objectives of this study were to determine the pharmacokinetics of toltrazuril and its metabolites in pregnant and nonpregnant ewes following a single oral dose and to determine the plasma concentrations of these compounds in milk, allantoic fluid, and newborn plasma. Eighteen healthy ewes were randomly divided into three groups (n = 6 each): pregnant ewes at 12–13 weeks of gestation (group A), nonpregnant ewes (group B), and pregnant ewes at 1–2 weeks before expected lambing date (group C). Ewes in all groups received a single oral dose of toltrazuril at 20 mg/kg body weight. In groups A and B, blood samples were collected at 1, 3, 5, 7, 9, 12, 15, 18 hr, every 6 hr to day 3, every 12 hr to day 7 and thereafter every 24 hr to day 14 post-toltrazuril administration. In group C, parturition was induced 24–36 hr after toltrazuril administration then milk, allantoic fluid, and newborn plasma samples were collected immediately after birth. Drug metabolites were assayed using ultra high-performance liquid chromatography–ultraviolet detection method (UHPLC-UV). The maximum concentration (Cmax), area under the plasma concentration-time curve (AUC0–t), AUC to 24 and 48 hr (AUC0–24), and (AUC0–48) were significantly higher in pregnant ewes. Longer apparent half-life (T1/2), significantly higher apparent volume of distribution (Vd/F) and total clearance (Cl/F) were observed in nonpregnant ewes. The time to maximum plasma concentration (Tmax), mean residence time (MRT) and elimination rate constant (Kel) were similar in both groups. The AUC0–24 and AUC0–48 were significantly higher in nonpregnant ewes. The AUC0–t was significantly higher in pregnant ones. The ratio of plasma toltrazuril concentrations in ewes and toltrazuril concentrations in newborn lambs' plasma, allantoic fluid, and milk were 68%, 2.3%, and 5.3%, respectively. Results of this study showed that toltrazuril is well absorbed after a single oral dose in ewes with widespread distribution in different body tissues.  相似文献   

17.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

18.
The objective of this study was to investigate the pharmacokinetic profile of tildipirosin (TD) in 24 beagle dogs following intravenous (i.v.) and intramuscular (i.m.) administration, respectively, at 2, 4, and 6 mg/kg. Plasma samples at certain time points (0–14 days) were collected, and the concentrations of drug were quantified by UPLC‐MS/MS. Plasma concentration–time data and relevant parameters were described by noncompartmental through WinNonlin 6.4 software. After single i.m. injection at 2, 4, and 6 mg/kg body weight, mean maximum concentration (Cmax) was 412.73 ± 76.01, 1,051 ± 323, and 1,061 ± 352 ng/ml, respectively. Mean time to reach Cmax was 0.36 ± 0.2, 0.08 ± 0.00, and 0.13 ± 0.07 hr after i.m. injection at 2, 4, and 6 mg/kg, respectively. The mean value of T1/2λz for i.m. administration at doses of 2, 4, and 6 mg/kg was 71.39 ± 28.42, 91 .33 ± 50.02, and 96.43 ± 45.02 hr, respectively. The mean residence times were 63.81 ± 10.96, 35.83 ± 15.13, and 38.18 ± 16.77 hr for doses of 2, 4, and 6 mg/kg, respectively. These pharmacokinetic characteristics after i.m. administration indicated that TD could be rapidly distributed into tissues on account of the high lipid solubility and then released into plasma. In addition, the absolute bioavailability of 2 mg/kg after i.m. injection was 112%. No adverse effects were observed after i.v. and i.m. administration.  相似文献   

19.
Flunixin meglumine is commonly used in horses for the treatment of musculoskeletal injuries. The current ARCI threshold recommendation is 20 ng/mL when administered at least 24 h prior to race time. In light of samples exceeding the regulatory threshold at 24 h postadministration, the primary goal of the study reported here was to update the pharmacokinetics of flunixin following intravenous administration, utilizing a highly sensitive liquid chromatography–mass spectrometry (LC‐MS). An additional objective was to characterize the effects of flunixin on COX‐1 and COX‐2 inhibition when drug concentrations reached the recommended regulatory threshold. Sixteen exercised adult horses received a single intravenous dose of 1.1 mg/kg. Blood samples were collected up to 72 h postadministration and analyzed using LC‐MS. Blood samples were collected from 8 horses for determination of TxB2 and PGE2 concentrations prior to and up to 96 h postflunixin administration. Mean systemic clearance, steady‐state volume of distribution and terminal elimination half‐life was 0.767 ± 0.098 mL/min/kg, 0.137 ± 0.12 L/kg, and 4.8 ± 1.59 h, respectively. Four of the 16 horses had serum concentrations in excess of the current ARCI recommended regulatory threshold at 24 h postadministration. TxB2 suppression was significant for up to 24 h postadministration.  相似文献   

20.
Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4‐methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4‐aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC‐UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax), time to maximum concentration (Tmax) and AUMC0‐last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM/AUCIV ratio of MAA was 1.06. In contrast, AUC0‐last of AA was statistically different between the groups (< 0.05) with an AUCIM/AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号