首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of biofloc production technology has generated significant commercial and research interest directed toward the inland culture of Pacific white shrimp, Litopenaeus vannamei. Most work to date has been conducted in greenhouses, where photoautotrophic organisms are significant contributors to system functionality. In more temperate locations, operations in insulated buildings would reduce heating costs. This experiment was designed to evaluate the effect of light on shrimp cultured in intensive biofloc systems. A 92‐d experiment was conducted in 3.8‐m3 tanks. There were five light treatments: (1) natural sunlight (SUN) as a control (midday: 718 lx); (2) one metal halide light (MHL) (1074 lx); (3) one fluorescent light (1FL) (214 lx); (4) two fluorescent lights (2FL) (428 lx); and (5) three fluorescent lights (3FL) (642 lx). Artificial light treatments operated on a 12:12 daily cycle. There were three replicate tanks per treatment and each was separated by black plastic to prevent light transmission between replicates. Each tank was stocked at 465 shrimp/m2 of tank bottom (initial mean weight = 0.4 g). Light treatment had a significant (P≤ 0.05) impact on average individual weight, survival, harvest yield (kg/m2), and feed conversion ratio (FCR). Harvest yield and survival among shrimp in the SUN, MHL, and 1FL treatments were not significantly different. However, there was an inverse linear relationship (P≤ 0.05; R2 = 0.76) between the number of fluorescent fixtures and survival, which was related to greater concentrations of filamentous bacteria as the intensity of fluorescent light increased, causing gill fouling. Natural light and MHL did not result in high concentrations of filamentous bacteria. These results indicate that natural light, metal halide lighting, and/or relatively low levels of fluorescent lighting are suitable for indoor production of Pacific white shrimp in biofloc systems. Light spectrum and intensity can affect bacterial community structure, which has a profound effect on shrimp survival and production.  相似文献   

2.
不同盐度对生物絮团、对虾生长以及酶活性的影响   总被引:1,自引:0,他引:1  
在不同盐度条件下进行凡纳滨对虾的生物絮团养殖试验,研究盐度对生物絮团养殖水质和对虾生长及其酶活性的影响。试验设5个盐度梯度(10、15、20、25、30),生物絮团初始量为20 mL/L,对虾密度为500尾/m^3,试验周期30 d。试验结果显示,15盐度组与20盐度组的对虾体质量增长率最大,达70.73%,10盐度组的体质量增长率最小,达50.24%。盐度越高生物絮团生长越快,30盐度组17 d生物絮团沉降量达200 mL/L,之后逐渐降至43 mL/L,其他组呈相同变化趋势。试验过程中水体总碱度与pH持续降低,但不同组间差异不显著(P>0.05)。盐度越高氨氮累积越快,30盐度组在第6 d达到最大质量浓度8.62 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。盐度越低亚硝态氮累积越快,10盐度组在第6 d达到最大质量浓度9.18 mg/L,之后降至0 mg/L,其他组呈相同趋势变化。硝态氮在不同盐度中呈前期上升的趋势,第16 d之后开始缓慢下降。15盐度组的淀粉酶活性显著高于其他组(P<0.05),其他各组之间无显著差异(P>0.05)。脂肪酶在25盐度组活性最高,盐度升高或者降低酶活性均降低。在10、15、20盐度组中,超氧化物歧化酶、碱性磷酸酶、酸性磷酸酶活性均维持在较高水平,在相同盐度下,肌肉酶活性低于肝胰脏。  相似文献   

3.
硒源对凡纳滨对虾生长、体组成和抗氧化能力的影响   总被引:1,自引:0,他引:1  
水温(29.0±1.3)℃,将初始体质量(0.41±0.01)g的凡纳滨对虾随机分为4组,每组3个重复,饲养在室内循环水养殖系统中,投喂基础饲料(对照组)及在此饲料中分别添加硒含量相等(0.30mg/kg)的亚硒酸钠、酵母硒和蛋氨酸硒的4种饲料,养殖56d,比较了不同硒源对凡纳滨对虾生长、体组成和抗氧化能力的影响。试验结果表明,蛋氨酸硒组对虾的生长性能显著高于对照组和亚硒酸钠组(P0.05)。外源硒可显著影响对虾体蛋白和脂肪含量(P0.05),蛋氨酸硒组对虾机体营养成分显著优于其他组(P0.05)。添加外源硒组对虾的血清总抗氧化能力和谷胱甘肽过氧化物酶活性显著高于对照组(P0.05)。蛋氨酸硒组对虾血清丙二醛含量显著低于其他组(P0.05)。由此得出,饲料添加0.3mg/kg的硒能在一定程度上提高凡纳滨对虾的生长和抗氧化能力,蛋氨酸硒优于酵母硒和亚硒酸钠。  相似文献   

4.
5.
6.
从雨生红球藻中提取虾青素,以不同质量浓度(0、20、40、60、80、100 mg/kg)添加到凡纳滨对虾的饲料中投喂7周,研究虾青素对凡纳滨对虾生长、存活和抗氧化能力的影响.结果显示,虾青素可提高凡纳滨对虾的存活率和特定生长率,其中添加量80 mg/kg组最高,80 mg/kg组特定生长率和对照组间差异显著(P<0.05),但试验组和对照组间存活率无显著差异(P>0.05).各试验组的总抗氧化能力与对照组相比显著升高(P<0.05),至第4周后逐步稳定;超氧化物歧化酶活力和过氧化氢酶活力与对照组相比均显著降低,且均表现出先降后升的变化趋势,第4周酶活力降至最低.以生长、存活和抗氧化能力为指标,虾青素的最适添加量为80 mg/kg,最佳投喂时间为4周.  相似文献   

7.
Abstract.— Five groups of juvenile white shrimp, Litopenaeus vannamei , in triplicate were separately fed a compound diet with additional short-chain fructooligosaccharides (ScFOS, Profeed® 95%) 0, 0.4, 0.8, 1.2, or 1.6 g/kg dried diet for 8 wk to investigate the effects of ScFOS on the intestinal microflora, survival, and growth performance of the shrimp. The juvenile shrimp with around 0.17 g of initial body weight were divided into 30 per tank and reared in a standard water recirculation system at 28 C. The shrimp were fed five times a day. At the end of experiment, the shrimp were weighed and their intestinal samples were analyzed for the amounts of Vibrio parahaemolyticus, Aeromonas hydrophila, Lactobacillus sp. , and Streptococcus faecalis using selective agar. The results showed that the shrimps' weight gain and specific growth rate increased with the increment of dietary ScFOS, while their feed conversion ratio decreased. The result was the best when an additional ScFOS 0.4 g/kg dried diet was used.  相似文献   

8.
嗜酸乳杆菌对凡纳滨对虾生长、免疫力和抗病力的影响   总被引:1,自引:0,他引:1  
水温(29±3)℃下,给体质量约0.5g的凡纳滨对虾投喂在基础饲料中分别添加0%、0.05%、0.10%、0.20%、0.30%、0.40%、1.00%的嗜酸乳杆菌的7种饲料8周。试验结果表明,嗜酸乳杆菌对凡纳滨对虾的存活率无显著影响(P0.05),而添加嗜酸乳杆菌组的凡纳滨对虾体质量增加率均高于对照组,0.10%组的质量增加率显著高于对照组,饲料系数明显低于对照组(P0.05)。0.05%、0.10%、0.20%、0.30%组凡纳滨对虾的血清超氧化物歧化酶活力高于对照组,0.10%组显著高于对照组(P0.05)。各试验组之间过氧化氢酶活力差异显著(P0.05),当嗜酸乳杆菌添加量为0.20%时活力最高。除1.00%添加组外,其他组酚氧化酶活力均高于对照组,当添加量为0.05%时活力明显高于对照组(P0.05)。攻毒试验结果表明,各处理96h对虾存活率无显著差异(P0.05),但嗜酸乳杆菌添加组对虾存活率皆高于对照组,表明添加嗜酸乳杆菌在一定程度上可以提高凡纳滨对虾的抗病力。  相似文献   

9.
为探究史氏鲟(Acipenser schrenckii)幼鱼的最低适宜投喂频率,将实验鱼的投喂频率分别设定为2、1、0.5、0.25、0.125次/d,养殖56 d后测定其生长、抗氧化和免疫指标。结果显示,随着投喂频率降低,史氏鲟幼鱼的增重率、特定生长率、肝体比和脏体比显著降低(P0.05),但存活率和肥满度无显著性变化(P0.05)。在抗氧化指标中,随着投喂频率降低,肝脏T-AOC、SOD活性呈逐渐降低的趋势,2次/d组T-AOC活性与0.5、0.25、0.125次/d组均存在显著差异(P0.05),但各组之间SOD活性差异不显著(P0.05);肝脏CAT活性和GSH含量呈先升高、后降低的趋势,0.5、0.25次/d组肝脏CAT活性显著高于0.125次/d组(P0.05),1次/d组GSH含量显著高于0.5、0.25和0.125次/d组(P0.05);肝脏MDA含量呈逐渐增加的趋势,0.5、0.25、0.125次/d组MDA含量显著高于2、1次/d组(P0.05)。免疫指标中,随着投喂频率降低,实验鱼肝脏LZM活性逐渐降低,2次/d组与0.125次/组差异显著(P0.05);而肝脏IgM含量呈先升高、后降低的趋势,0.25次/d组显著高于2、0.125次/d组(P0.05)。综合各项指标,建议史氏鲟幼鱼的最低适宜投喂频率为1次/d,以避免投喂频率过低对鱼体造成的胁迫氧化损伤。  相似文献   

10.
It is presumed that in hypo‐ and hypersaline environments, shrimp’s requirements for some specific nutrients, such as protein, may differ from those known in the marine habitat; however, few investigations have been conducted in this area of study. In the present investigation, the effects of salinity and dietary protein level on the biological performance, tissue protein, and water content of Pacific white shrimp, Litopenaeus vannamei, were evaluated. In a 3 × 4 factorial experiment, juvenile shrimp with an average initial weight of 0.36 ± 0.02 g were exposed for 32 d to salinities of 2, 35, and 50 ppt and fed experimental diets with crude protein contents of 25, 30, 35, and 40%. A significant effect of salinity on growth of shrimp was detected, with the growth responses (final weight, weight gain) ranked in the order 2 ppt (3.87, 3.50 g) > 35 ppt (3.40, 3.04 g) > 50 ppt (2.84, 2.47 g). No effects of dietary protein level or an interaction between salinity and protein on growth of shrimp were observed under the experimental conditions of this study. Percent survival of shrimp fed the highest protein content (40%, survival of 74%) was, however, significantly lower than those of shrimp fed the other feeds (25, 30 and 35% protein, survival of 99, 91, and 94%, respectively), a result likely associated with the concentration of total ammonia nitrogen, which increased significantly at increasing protein levels. Final water content of whole shrimp was significantly lower in animals exposed to 50 ppt (70.8%) than in shrimp held at 2 (73.7%) and 35 ppt (72.3%). No effect of salinity, protein, or their interaction was observed on the protein content of whole shrimp. The results of the present study are in agreement with reports of superior and inferior growth of L. vannamei reared in hypo‐ and hypersaline environments, respectively, as compared to what is generally observed in seawater.  相似文献   

11.
This study was carried out to investigate and compare the effects of various dietary lipid sources on growth performance, body composition, fatty acid profiles, and hepatic and plasma antioxidant enzyme activities of juvenile rockfish, Sebastes schlegeli. Three replicate groups of fish (initial mean weight, 1.7 ± 0.04 g) were fed four isonitrogenous and isolipidic diets containing either fish oil (FO), soybean oil (SO), linseed oil (LO), or a mixture of SO and LO (SO + LO) for 8 wk. There were no significant differences in survival, weight gain, feed efficiency, and protein efficiency ratios of fish fed the diets containing different lipid sources (P > 0.05). The fatty acids compositions of the liver and muscle tissues reflected the dietary fatty acid compositions. Liver and muscle of fish fed the SO diet had high concentration of linoleic acid, whereas those of fish fed the LO diet were rich in linolenic acid. Liver and muscle of fish fed the FO diet had significantly (P < 0.05) higher levels of eicosapentaenoic acid and docosahexaenoic acid than those of fish fed the SO and LO diets. Dietary lipid source had no significant effect on the hepatic and plasma enzyme activities of superoxide dismutase and glutathione peroxidase. The results of this study suggest that SO and LO can be used as a replacement for FO in the diets of juvenile rockfish without incurring any negative effects on growth, feed utilization, and antioxidant enzyme activity, when the dietary essential fatty acid requirements are satisfied for rockfish.  相似文献   

12.
The efficacy of hot‐water extract of tropical brown seaweed, Sargassum cristaefolium (SCE), supplemented in diets on immune response, stress tolerance, and disease resistance of Litopenaeus vannamei to Vibrio parahaemolyticus was evaluated. Shrimp were fed diets containing graded levels of SCE (0, 250, 500, 750, and 1000 mg/kg). The results showed that shrimp fed all diets containing SCE had significantly higher (P < 0.05) immune response in total hemocyte count (THC), differential hemocyte count (granular and hyaline cells), and phagocytic activity than those of shrimp fed the control diet. Similarly, in low dissolved oxygen stress tolerance test and the challenge test with V. parahaemolyticus, survival rates of shrimp fed all diets containing SCE were significantly higher (P < 0.05) (83–93% in stress test and 27–47% in challenge test) than those of shrimp fed the control diet (77 and 3.3%, respectively). These results suggest that oral administration of SCE at 500 and 750 mg/kg can be effectively used to enhance immune response, stress tolerance, and resistance of white shrimp, L. vannamei, against V. parahaemolyticus infection. These findings also confirm that using dietary SCE as immunostimulant is effective at increasing the nonspecific immune system in penaeid shrimp, L. vannamei.  相似文献   

13.
在水温23.5~28.5℃下,将体质量(6.76±0.1)g的中华绒螯蟹随机分为6组,置于24个100cm×50cm×50cm的玻璃缸中,每组4个平行,每个平行30只中华绒螯蟹,投喂含有0(对照组)、0.1%、0.5%、1.0%、1.5%、2.0%复方中草药的饲料60d。试验结果表明,除0.1%组与对照组差异不显著(P0.05)外,其他各试验组中华绒螯蟹的质量增加率和特定生长率均显著高于对照组(P0.05)。1.0%组中华绒螯蟹血细胞吞噬率和吞噬指数最高(P0.05);血清和肝胰脏组织中超氧化物歧化酶、过氧化物歧化酶、过氧化氢酶的活性最高,与对照组差异显著(P0.05)。血清中酸性磷酸酶活性,除0.1%和2.0%组(P0.05)外,其他各处理组酸性磷酸酶活性显著升高(P0.05)。0.5%、1.0%和1.5%组中华绒螯蟹的碱性磷酸酶活性与对照组差异显著(P0.05),其他各组与对照组差异不显著(P0.05)。血清和肝胰脏组织中溶菌酶活性均随饲料复方中草药添加量的增加先升后降,显著高于对照组(P0.05)。肝胰脏中丙二醛的含量随着复方中草药添加量的增加而显著下降。除0.1%组外,其他组的中华绒螯蟹死亡率显著降低(P0.05),免疫保护率显著性升高(P0.05)。在基础饲料中添加1.0%的复方中草药,中华绒螯蟹生长、非特异性免疫及抗病力较强。  相似文献   

14.
Although the use of artificial substrates can favor shrimp culture, some studies indicate that their presence in growth tanks does not improve water quality or the performance of the animals. One objective of this study was to evaluate whether the presence of artificial substrates modifies the microbial activity and the water quality of the culture of Litopenaeus vannamei with bioflocs. The substrate effects on the shrimp performance and the relationship between these effects and the stocking density/biomass of shrimp were also evaluated. The experiment consisted of four treatments: D238: 238 shrimp m−3; D238 + S: 238 shrimp m−3 + substrates; D473: 473 shrimp m−3; D473 + S: 473 shrimp m−3 + substrates. Twelve experimental units of 850 L were stocked with juvenile L. vannamei (2.6 g) that were grown for 34 days. The substrates did not appear to affect water quality since the concentrations of orthophosphate, ammonia and nitrite were not significantly different in tanks with or without substrates. The periphyton biomass was low and the biological activity on the substrates was not significant, indicating that the water quality variables were mainly controlled by the microbial community associated with the suspended bioflocs. The shrimp grown in the presence of the substrate exhibited greater weight gain (D238 + S = 1.40 ± 0.05 and D473 + S = 1.20 ± 0.04 g week−1) than those grown without substrates (D238 = 0.73 ± 0.04 and D473 = 0.44 ± 0.13 g week−1). The final biomass was 314% greater in the tanks with substrates. The shrimp survival was significantly higher in the tanks with substrates (93.9 ± 2.4%) than in the tanks without substrates (42.5 ± 35.9%). The results indicate that the substrates served to increase the surface area of the tank and to reduce the relative stocking density, which appears to reduce the stress levels of shrimp, indicated by higher shrimp performance. In tanks with higher biomass, where the negative effects of intensification were most severe, the presence of the substrates had a positive effect on the production indices.  相似文献   

15.
To identify ways to improve water quality and shrimp production in closed systems, two parallel experiments (one in tanks and one in ponds) were conducted using Pacific white shrimp, Litopenaeus vannamei, cultures. In both experiments, the effects of inorganic (Nutrilake®) and organic (molasses) fertilization on physicochemical parameters, bacterial concentrations, and shrimp performance under zero water exchange were evaluated. Fertilization with both molasses and Nutrilake enhanced the feed conversion rate, as well as shrimp survival and production. In tanks, the shrimp survival and production rates were highest in the molasses treatment, but this effect was not observed in ponds. In ponds, fertilization with Nutrilake increased nitrogen and phosphorus concentrations more than did the controls and molasses treatments toward the end of the experiment. In tanks, fertilization with molasses reduced ammonia concentrations toward the end of the experiment, but the same effect was not observed in ponds. In ponds, fertilization reduced the proportion of Vibrio spp. bacteria, which most likely reduced the incidence of disease from these potentially pathogenic organisms. In both culture systems, fertilization increased the proportion of Bacillus spp., which most likely enhanced food availability.  相似文献   

16.
将体质量(8.10±0.13)g的凡纳滨对虾放养在室内500L玻璃纤维水桶中,以不同剂量(0、0.5%、1.0%和2.0%)的植物乳酸杆菌菌液(密度109 cfu/mL)拌料投喂,观察凡纳滨对虾的生长、消化酶活性和肠道组织结构的变化。结果显示,投喂15d后,0.5%和1%菌液组对虾的平均体质量、质量增加率和特定生长率均显著高于对照组(P0.05),饲料系数显著降低(P0.05);0.5%菌液组对虾肝胰腺消化酶和肠道消化酶活性显著增强(P0.05),对虾肠上皮细胞高度显著增加(P0.05)。研究结果表明,投喂0.5%植物乳酸杆菌可显著提高凡纳滨对虾消化酶活性和肠上皮细胞高度,促进对虾生长。  相似文献   

17.
Superintensive shrimp culture in zero‐exchange, biofloc‐dominated production systems is more biosecure and sustainable than traditional shrimp farming practices. However, successful application of this technology depends upon optimizing dietary formulations, controlling Vibrio outbreaks, and managing accumulative changes in water quality and composition. A 49‐d study investigated the effect of two commercial feeds of differing protein content and an indoor limited‐exchange, biofloc‐dominated culture environment on Litopenaeus vannamei performance and tissue composition, water quality and ionic composition, and Vibrio dynamics. Juveniles (5.3 g) were stocked at 457/m3 into four 40 m3 shallow raceways containing biofloc‐dominated water and fed one of two commercial feeds with differing protein content, 35 or 40%. Shrimp performance, Vibrio populations, and changes in shrimp and culture water composition were monitored. There were no significant differences (P > 0.05) in shrimp performance (survival, weight, growth, specific growth rate, total biomass, yield, feed conversion ratio, and protein efficiency ratio) or proximate composition between feed types. The 40% protein feed resulted in higher culture water nitrate and phosphate concentrations, alkalinity consumption and bicarbonate use, and higher phytoplankton density. The presence of Vibrio, specifically Vibrio parahaemolyticus, reduced shrimp survival. This survival decrease corresponded with increased culture water Vibrio concentrations. Culture water K+ and Mg2+ increased significantly (P < 0.05), and Sr2+, Br?, and Cl? decreased significantly (P < 0.05) over time. While Cu2+ and Zn2+ did increase in shrimp tissue, no heavy metals accumulated to problematic levels in culture water or shrimp tissue. These results demonstrate the importance of monitoring Vibrio populations and ionic composition in limited‐exchange shrimp culture systems.  相似文献   

18.
Dietary acidifiers have been recognized as beneficial in animal production including aquacultural production of fish where they confer such benefits as improved feed utilization, growth, and resistance to bacterial pathogens. If improvements in growth and immune responses by acidifier supplementation can be confirmed in shrimp, then mortalities due to diseases could be minimized, limiting the emergence of disease‐resistant bacterial pathogens as a potential result of antibiotic misuse. With this in mind, a 35‐d feeding trial was conducted to evaluate growth, enteric microbiota populations, and nonspecific immune responses of Litopenaeus vannamei fed diets containing the commercial acidifier Vitoxal, based on acidic calcium sulfate in an indoor temperature‐controlled, recirculating culture system without any natural productivity. Experimental diets were formulated to contain 0 (basal), 0.4, 1.2, 1.6, or 2.0% acidic calcium sulfate (ACS) by weight. Shrimp fed in excess, 15 times a day using automatic feeders. Weight gain and survival among treatments were excellent, but not significantly different (P > 0.05). Denaturing gradient gel electrophoresis analysis revealed that the enteric microbial community of shrimp fed the basal diet differed markedly from those fed the acidifier on the basis of 64.9% similarity coefficient. Shrimp fed the commercial acidifier at 1.2 and 2.0% responded significantly (P < 0.05) better to reduced stress and displayed enhanced immune responses including hemocyte phagocytic capacity, hemolymph protein concentration, hyaline cell counts, and hemolymph glucose, compared with shrimp fed the basal diet. These results point to an enhanced performance in terms of positive shifts in the composition of enteric microbial communities as well as improved immune performance, with no changes in growth or survival.  相似文献   

19.
20.
在水温28~33℃、盐度27~31条件下,将体质量(0.340±0.001)g的凡纳滨对虾,随机分养到18个380L玻璃钢桶中,每桶放虾40尾,投喂在基础饲料中分别添加40mg/kg源于七水硫酸锌、蛋氨酸锌、甘氨酸锌、美多C-锌A型(结合型)和美多C-锌B型(包被型)锌的饲料(含锌量为78.28~86.18mg/kg),对照组不添加(含锌36.62mg/kg),喂养8周,每个处理3个重复。试验结果表明,锌添加组虾的质量增加率和特定生长率显著高于对照组(P0.05),其中蛋氨酸锌组最佳,饲料系数最低。锌添加组全虾粗脂肪和肝体比高于对照组,全虾粗蛋白及除美多C-锌B型组外的全虾粗灰分低于对照组(P0.05)。美多C-锌B型组凡纳滨对虾血清总蛋白含量最高,其次为蛋氨酸锌组;硫酸锌组虾血清甘油三酯和胆固醇均最高。蛋氨酸锌组虾血清总超氧化物歧化酶、碱性磷酸酯酶、酸性磷酸酶和酚氧化酶活性最高。锌添加组全虾锌含量显著高于对照组(P0.05),硫酸锌组虾肌肉锌含量显著高于对照组(P0.05),其他组与对照组和硫酸锌组无显著差异(P0.05)。综上所述,蛋氨酸锌促进凡纳滨对虾生长,提升免疫力的效果最佳,是饲料中适宜的锌源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号