共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pharmacokinetics of norfloxacin after intravenous,intramuscular and subcutaneous administration to rabbits 下载免费PDF全文
P. Marín F. García‐Martínez V. Hernándis E. Escudero 《Journal of veterinary pharmacology and therapeutics》2018,41(1):137-141
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively. 相似文献
3.
Pharmacokinetics of ceftriaxone after intravenous, intramuscular and subcutaneous administration to domestic cats 总被引:2,自引:0,他引:2
Albarellos GA Kreil VE Landoni MF 《Journal of veterinary pharmacology and therapeutics》2007,30(4):345-352
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL). 相似文献
4.
The pharmacokinetics of chloramphenicol were studied in sheep after 3 single intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations (30 mg/kg). The two extravascular routes were studied during a crossover trial for a bioequivalence test. After IV and SC administrations, the plasma-concentration time graphs were characteristic of a two-compartment model, and after IM administration it was characteristic of a monocompartment model. The two routes of absorption were not bioequivalent. Using the kinetic values, multidose regimens to maintain the therapeutic chloramphenicol blood level (5 micrograms/ml) were proposed: 60 mg/kg every 12 hours for 72 hours for the IM administration and 45 mg/kg administered subcutaneously according to the same regimen. A study of the chloramphenicol residues in tissues was carried out. Chloramphenicol residues remained at the injection site, and 400 hours would be necessary to obtain the level of 10 micrograms/kg. Determination of the creatinine phosphokinase serum values showed that the subcutaneous route induced less damage to muscle than the intramuscular route. 相似文献
5.
The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration were determined in sheep at a single dose of 5mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental pharmacokinetics method (after IV, IM and SC administration). Plasma concentrations of difloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (V(ss)) and clearance (Cl) of difloxacin after IV administration were 1.68+/-0.21L/kg and 0.21+/-0.03L/hkg, respectively. Following IM and SC administration difloxacin achieved maximum plasma concentration of 1.89+/-0.55 and 1.39+/-0.14mg/L at 2.42+/-1.28 and 5.33+/-1.03h, respectively. The absolute bioavailabilities after IM and SC routes were 99.92+/-26.50 and 82.35+/-25.65%, respectively. Based on these kinetic parameters, difloxacin is likely to be effective in sheep. 相似文献
6.
Cárceles CM Escudero E Fernández-Varón E Marín P 《Veterinary journal (London, England : 1997)》2009,180(3):343-347
The disposition kinetics of moxifloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration was determined in sheep at a single dose of 5 mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental (after IV, IM and SC administration) pharmacokinetic methods. Plasma concentrations of moxifloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (Vss) and clearance (Cl) of moxifloxacin after IV administration were 2.03 ± 0.36 L/kg and 0.39 ± 0.04 L/h kg, respectively. Following IM and SC administration, moxifloxacin achieved maximum plasma concentration of 1.66 ± 0.62 mg/L and 0.90 ± 0.19 mg/L at 2.25 ± 0.88 h and 3.25 ± 1.17 h, respectively. The absolute bioavailabilities after IM and SC routes were 96.12 ± 32.70% and 102.20 ± 23.76%, respectively. From these data (kinetic parameters and absence of adverse reactions) moxifloxacin may be a potentially useful antibiotic in sheep. 相似文献
7.
Maria Fabiana Landoni Gabriela Alejandra Albarellos 《Journal of veterinary pharmacology and therapeutics》2019,42(2):171-178
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml. 相似文献
8.
P. SANDERS G. MOULIN P. GUILLOT M. DACORN P. PERJANT B. DELEPINE C. GAUDICHE D. MOUROT 《Journal of veterinary pharmacology and therapeutics》1992,15(1):53-61
Spiramycin is a macrolide antibiotic that is active against most of the microorganisms isolated from the milk of mastitic cows. This work investigated the disposition of spiramycin in plasma and milk after intravenous, intramuscular and subcutaneous administration. Twelve healthy cows were given a single injection of spiramycin at a dose of 30,000 IU/kg by each route. Plasma and milk were collected post injection. Spiramycin concentration in the plasma was determined by a high performance liquid chromatography method, and in the milk by a microbiological method. The mean residence time after intravenous administration was significantly longer (P less than 0.01) in the milk (20.7 +/- 2.7 h) than in plasma (4.0 +/- 1.6 h). An average milk-to-plasma ratio of 36.5 +/- 15 was calculated from the area concentration-time curves. Several pharmacokinetic parameters were examined to determine the bioequivalence of the two extravascular routes. The dose fraction adsorbed after intramuscular or subcutaneous administration was almost 100% and was bioequivalent for the extravascular routes, but the rates of absorption, the maximal concentrations and the time to obtain them differed significantly between the two routes. Spiramycin quantities excreted in milk did not differ between the two extravascular routes but the latter were not bioequivalent for maximal concentration in the milk. However, the two routes were bio-equivalent for the duration of time the milk concentration exceeded the minimal inhibitory concentration (MIC) of various pathogens causing infections in the mammary gland.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Calvo Wieland A Ehinger AM Kietzmann M Nolte I 《Berliner und Münchener tier?rztliche Wochenschrift》2001,114(1-2):57-60
Six beagle dogs were treated with kanamycin subcutaneously or intravenously in a dosage of 5 mg/kg. The plasma kanamycin concentration was measured over 24 hours by high pressure liquid chromatography with UV detection after derivatization and solid phase extraction. After subcutaneous application, kanamycin was absorbed quickly, and maximum plasma levels of 18.9 micrograms/ml in average after ca. 1 hour were measured. With complete systemic availability, the minimal inhibitory concentration of 4 micrograms/ml was maintained for 4 hours. After subcutaneous administration, kanamycin was terminally eliminated with a mean half life period of 2 hours. 相似文献
10.
Marín P Escudero E Fernández-Varón E Cárceles CM 《Journal of veterinary pharmacology and therapeutics》2007,30(1):74-79
The single-dose disposition kinetics of difloxacin were determined in clinically normal lactating goats (n = 6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg. Difloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of difloxacin after i.v. administration were estimated to be 1.16 +/- 0.26 L/kg and 0.32 +/- 0.05 L/h x kg respectively. Following s.c. and i.m. administration difloxacin achieved maximum plasma concentrations of 1.33 +/- 0.25 and 1.97 +/- 0.40 mg/L at 3.37 +/- 0.36 and 1.79 +/- 1.14 h respectively. The absolute bioavailabilities after s.c. and i.m. routes were 90.16 +/- 11.99% and 106.79 +/- 13.95% respectively. Difloxacin penetration from the blood into the milk was extensive and rapid, and the drug was detected for 36 h after i.v. and s.c. dosing, and for 72 h after i.m. administration. 相似文献
11.
Pharmacokinetics of cephalexin in dogs and cats after oral, subcutaneous and intramuscular administration 总被引:1,自引:0,他引:1
A three-way crossover study was carried out in 10 dogs and nine cats to establish the pharmacokinetic parameters of the semi-synthetic cephalosporin antibiotic, cephalexin sodium, when administered orally, subcutaneously or intramuscularly. Ten dogs received a subcutaneous or intramuscular injection of 10 mg/kg bodyweight cephalexin or an oral dose of three 50 mg cephalexin tablets; the peak serum concentrations achieved were 24.9, 31.9 and 18.6 micrograms/ml, respectively, and the times taken to reach these peak levels were 1.2, 0.9 and 1.8 hours. Nine cats received either a subcutaneous or intramuscular dose of 0.25 ml cephalexin suspension (approximately 20 mg/kg bodyweight) or an oral dose of one 50 mg tablet; the peak serum concentrations achieved were 54.0, 61.8 and 18.7 micrograms/ml for the subcutaneous, intramuscular and oral administrations respectively, with times to peak concentrations of 1.1, 0.7 and 2.6 hours. 相似文献
12.
Kim EY Gebru E Lee JS Kim JC Park SC 《The Journal of veterinary medical science / the Japanese Society of Veterinary Science》2011,73(4):463-466
A pharmacokinetic study of a commercial florfenicol-tylosin (2:1) combination product was conducted in six beagle dogs after intravenous (IV) and intramuscular (IM) administration at doses of 10 mg/kg (florfenicol) and 5 mg/kg (tylosin). Serum drug concentrations were determined by a validated high performance liquid chromatography (HPLC) using UV detection. A rapid and nearly complete absorption of both drugs with a mean IM bioavailability of 103.9% (florfenicol) and 92.6% (tylosin), prolonged elimination half-life, and high tissue penetration with steady state volume of distribution of 2.63 l/kg (florfenicol) and 1.98 l/kg (tylosin) were observed. Additional studies, including pharmacodynamic and toxicological evaluation are required before recommendations can be made regarding the clinical application of the product in dogs. 相似文献
13.
Elena Badillo Elisa Escudero Verónica Hernandis Juan Sebastián Galecio Pedro Marín 《Journal of veterinary pharmacology and therapeutics》2020,43(1):50-56
The single-dose disposition kinetics of cefonicid were determined in clinically normal lactating goats (n = 6) after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration of a conventional formulation, and after subcutaneous administration of a long-acting formulation (SC-LA). Cefonicid concentrations were determined by high performance liquid chromatography with ultraviolet detection. The concentration–time data were analysed by noncompartmental pharmacokinetic methods. Steady-state volume of distribution (Vss) and clearance (Cl) of cefonicid after IV administration were 0.14 ± 0.03 L/kg and 0.51 ± 0.07 L/h·kg, respectively. Following IM, SC and SC-LA administration, cefonicid achieved maximum plasma concentrations of 14.46 ± 0.82, 11.98 ± 1.92 and 17.17 ± 2.45 mg/L at 0.26 ± 0.13, 0.42 ± 0.13 and 0.83 ± 0.20 hr, respectively. The absolute bioavailabilities after IM, SC and SC-LA routes were 75.34 ± 11.28%, 71.03 ± 19.14% and 102.84 ± 15.155%, respectively. After cefonicid analysis from milk samples, no concentrations were found above LOQ at any sampling time. From these data, cefonicid administered at 20 mg/kg each 12 hr after SC-LA could be effective to treat bacterial infections in lactating animals not affected by mastitis problems. 相似文献
14.
15.
16.
Rebuelto M Albarellos G Ambros L Kreil V Montoya L Bonafine R Otero P Hallu R 《Journal of veterinary pharmacology and therapeutics》2002,25(1):73-76
The purpose of this study was to investigate the pharmacokinetics of ceftriaxone after single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) doses in healthy dogs. Six mongrel dogs received ceftriaxone (50 mg/kg) by each route in a three-way crossover design. Blood samples were collected in predetermined times after drug administration. Results are reported as mean +/- standard deviation (SD). Total body clearance (Cl(t)) and apparent volume of distribution (V(z)) for the i.v. route were 3.61 +/- 0.78 and 0.217 +/- 0.03 mL/kg, respectively. Terminal half-life harmonic mean (t(1/2 lambda)) was 0.88; 1.17 and 01.73 h for the i.v., i.m and s.c. routes, respectively. Mean peak serum concentration (C(max)) was 115.10 +/- 16.96 and 69.28 +/- 14.55 microg/mL for the i.m and s.c. routes, respectively. Time to reach C(max) (t(max)) was 0.54 +/- 0.24 and 1.29 +/- 00.64 h for the i.m and s.c. routes, respectively. Mean absorption time (MAT) was 1.02 +/- 0.64 and 2.23 +/- 00.73 h for the i.m and s.c. routes, respectively. Bioavailability was 102 +/- 27 and 106 +/- 14% for the i.m and s.c. routes, respectively. Statistically significant differences were determined in C(max), t(max), MAT and t(1/2 lambda) of s.c. administered ceftriaxone when compared with the i.v and i.m. routes. These findings suggest that once or twice s.c. or i.m. daily administered ceftriaxone should be adequate to treat most susceptible infections in dogs. 相似文献
17.
Cárceles CM Font A Espuny A Fernández-Varón E Serrano JM Escudero E 《Journal of veterinary pharmacology and therapeutics》2005,28(1):51-55
Azithromycin is the first of a class of antimicrobial agents designated azalides. The aim of the present study was to investigate the disposition pharmacokinetics of azithromycin in goats and determine its bioavailability. A cross-over study was carried out in two phases separated by 30 days. Azithromycin was administered at a single dose of 20 mg/kg body weight by i.v. and i.m. routes. Plasma concentrations of azithromycin were determined by a modified agar diffusion bioassay. After a single i.v. dose plasma concentrations were best fitted to a three-compartment open model. A two-compartment open model with first-order absorption fitted best after i.m. administration. The values of the pharmacokinetic parameters after i.v. administration were: half-life 32.5 h, apparent volume of distribution at the steady-state 34.5 L/kg, clearance 0.85 L/kg. and mean residence time (MRT) 40.1 h. After i.m. administration half-life of 45.2 h, a MRT of 60.3 h, maximum plasma concentration 0.64 mg/L and a bioavalability 92.2% were obtained. The pharmacokinetic parameters of azithromycin after i.m. administration, principally its long half-life and high bioavailability, could provide an alternative to the oral route of administration in goats, although more studies are needed to establish a suitable pharmaceutical formulation, propose optimun dosage regimens, investigate clinical efficacy and study the tolerability of repeated doses. 相似文献
18.
Pharmacokinetics of marbofloxacin after intravenous and intramuscular administration to ostriches 总被引:3,自引:0,他引:3
de Lucas JJ Rodríguez C Waxman S González F Uriarte I San Andrés MI 《Veterinary journal (London, England : 1997)》2005,170(3):364-368
The pharmacokinetics of marbofloxacin was investigated after intravenous (IV) and intramuscular (IM) administration, both at a dose rate of 5 mg/kg BW, in six clinically healthy domestic ostriches. Plasma concentrations of marbofloxacin was determined by a HPLC/UV method. The high volume of distribution (3.22+/-0.98 L/kg) suggests good tissue penetration. Marbofloxacin presented a high clearance value (2.19+/-0.27 L/kgh), explaining the low AUC values (2.32+/-0.30 microgh/mL and 2.25+/-0.70 microgh/mL, after IV and IM administration, respectively) and a short half life and mean residence time (t(1/2 beta)=1.47+/-0.31 h and 1.96+/-0.35 h; MRT=1.46+/-0.02 h and 2.11+/-0.30 h, IV and IM, respectively). The absorption of marbofloxacin after IM administration was rapid and complete (C(max)=1.13+/-0.29 microg/mL; T(max)=0.36+/-0.071 h; MAT=0.66+/-0.22 h and F (%)=95.03+/-16.89). 相似文献
19.
20.
G.A. Albarellos L. Montoya M.F. Landoni 《Veterinary journal (London, England : 1997)》2011,187(1):129-132
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy. 相似文献