首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
福建冷浸田的低产因素及其改良利用   总被引:8,自引:0,他引:8  
阐述了福建省冷浸类水稻土分布与低产原因,并针对冷、烂、渍、毒和缺素等障碍因素,提出以石彻工程改造为中心,辅以科学管水,改进耕作制度、合理施肥等综合改良措施,挖掘土壤潜力,协调自然环境、土壤条件与作物生长关系,变低产为高产。  相似文献   

2.
3.
水旱轮作改良利用潜育化水稻土的研究   总被引:2,自引:0,他引:2  
  相似文献   

4.
东江流域低产耕地的低产原因及改良利用对策   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
8.
9.
安徽省低产茶园土壤主要限制因子及其改良措施   总被引:1,自引:0,他引:1  
何方  廖万有 《土壤》1998,30(4):218-221
中低产茶园改造是安徽省发展茶生产的关键,土壤不良是茶园低产的首要原因。安徽茶园低产土壤可分为硬塥和侵二大类型,重点分布于下蜀黄土发育的第四纪红土发育的黄红壤及山地黄棕壤上,其主要限制因子是质地过于粘重,心土层存在障碍层次,排水不良,土壤水湿,土层浅薄,养分严重缺乏。  相似文献   

10.
水稻土镉污染与水稻镉含量相关性研究   总被引:1,自引:0,他引:1  
采用盆栽试验的方法,考察了水稻土中重金属镉(Cd)的浓度对水稻生长及Cd富集的影响以及Cd在水稻植株的分布情况,并进一步研究了糙米(可食部位)对Cd的富集量与土壤中Cd总量的关系。结果表明,在各个浓度Cd胁迫下,根、茎叶、稻壳、糙米相比,2个品种水稻都是根累积的Cd含量要高于茎叶和稻壳、糙米,即根〉茎叶〉稻壳〉糙米;在水稻的茎叶细胞中,Cd主要分布在细胞壁,细胞可溶性成分,细胞器Cd的分布量较少,即细胞壁〉可溶性部分〉细胞器及膜部分;随Cd浓度增加,茎叶中的Cd积累量极显著增加,各细胞组分中的Cd含量均显著增加;根据国标GB 2762—2005对大米中Cd的限量标准(≤0.2 mg.kg^-1),水稻土土壤总Cd临界值分别为2.0 mg.kg^-(1博优225)、3.1 mg.kg^-(1矮糯)。因此,在污染土壤上宜选种食用部位重金属积累低的水稻品种,以减少人类吸收重金属的风险。  相似文献   

11.
围海造田是沿海地区拓展土地面积的主要途径。土壤氮矿化参数是揭示围海造田土壤肥力演变和土壤氮供应的重要指标,但是我国沿海造田土壤的相关研究少有报道。本研究以杭州湾南岸海积平原上慈溪市1000年和520年筑塘造田区为对象,选择4个代表性采样点,每个点从低洼稻田采集1个表层混合水稻土,在其相邻高地采集1个表层混合旱地土壤,共8个样品。采用间隙淋洗法研究了土壤样品氮矿化动力学特征。结果如下: 119 d培养试验证实水稻土和旱地土壤有机氮矿化动力学符合一级反应动力学方程Nt=N0(1-e-kt); 水稻土有机氮矿化势(N0)为82.7~161.9 mg/kg(平均114 mg/kg),占有机氮的7.3%,旱地土壤N0为63.9~104.4 mg/kg(平均83.4 mg/kg),占有机氮的7.3%; 水稻土有机氮矿化速率(k)为0.033~0.114/d(平均0.064/d),旱地土壤k为0.007~0.023/d(平均0.020/d)。土壤综合供氮指标(N0k),水稻土为3.8418.46 mg/(kgd)[平均8.0 mg/(kgd)],旱地土壤为0.54~2.66 mg/(kgd)[平均1.6 mg/(kgd)]。水稻土总氮含量为1.4~2.0 g/kg (平均1.6 g/kg),旱地为0.87~2.0 g/kg(平均1.3 g/kg)。可见,水稻土氮库、供氮潜力和速率均大于相邻旱地土壤。因此,从土壤氮肥力来讲,相对于旱地,围海形成的水稻田更具有可持续利用性。  相似文献   

12.
刘辉  刘忠珍  杨少海  胡正义  赵言文 《土壤》2011,43(2):197-202
沿海农田N、P排放是沿海湿地和近海水质污染源之一.研究围海造田土壤P化学行为对评价其水质污染风险,制定兼顾农业生产和环境保护P肥管理措施具有实际意义.本研究以浙江省慈溪市3个代表性时期(宋代,明代,现代)围海造田水稻田土壤为研究对象,研究了3种温度条件下(15℃,25℃,35℃)土壤P吸附动力学,并获得了其热力学参数....  相似文献   

13.
土地管理方式对盐化水稻土生物地球化学机能的影响   总被引:1,自引:0,他引:1  
Most lowlands in Northeast Thailand (Isaan region) are cultivated with rice and large areas are affected by salinity, which drastically limits rice production. A field experiment was conducted during the 2003 rainy season to explore the interactions between salinity and land management in two fields representative of two farming practices: an intensively managed plot with organic inputs and efficient water management, and one without organic matter addition. Field measurements, including pH, Eh, electrical conductivity (EC), and soil solution chemistry, were performed at three depths, with a particular focus on Fe dynamics, inside and outside saline patches.
High reducing conditions appeared after flooding particularly in plots receiving organic matter and reduction processes leading to oxide reduction and to the release of Fe and, to a lesser extend, Mn to the soil solution. Oxide reduction led to the consumption of H^+ and the more the Fe reduction was, the higher the pH was, up to 6.5. Formation of hydroxy-green rust were likely to be at the origin of the pH stabilization. In the absence of organic amendments, high salinity prevented the establishment of the reduction processes and pH value remained around 4. Even under high reduction conditions, the Fe concentrations in the soil solution were below commonly observed toxic values and the amended plot had better rice production yield.  相似文献   

14.
黑土开垦后水稳性团聚体与土壤养分的关系   总被引:3,自引:0,他引:3  
Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.  相似文献   

15.
This paper deals with characteristics of organo-mineral complexing of microaggregates in the paddy soils developed from purple soils in Sichuan, China. Results show that the contents of organic matter in microaggregates are in the order of 1-0.25 mm > smaller than 0.05 mm > 0.05-0.25 mm. But the organic matter in 1-0.01 mm microaggregates accounts for 68.1%-78.7% of that in soil. The organic matter in < 0.05 mm microaggregates is complexed humus on the whole, of which the degree of organo-mineral complexing varies between 96.1% and 99.5%, which is higher than that of the soil or > 0.05 mm microaggregates. The contents of loosely combined humus and the ratios of loosely and tightly combined humus markedly decline with the size of microaggregates. Flesh soil humus formed from semi-decomposed organic material or organic manure added is combined first with < 0.001 mm clay, and then aggregated with other organic and mineral particles to form larger microaggregates, in which the aging of humus happens at the same time; whereas organic matter of the light fraction is mainly involved in the formation of > 0.05 mm microaggregates.  相似文献   

16.
封闭系统水稻土甲烷氧化的模拟   总被引:1,自引:0,他引:1  
Methane oxidation by paddy soils in a closed system could be simulated by the equation x=k1xo/(k1 k2x0)exp(k2t)-k2x0 where x0 and x are the CH4 concentrations at time zero and t,respectively;k1 and k2 are constants related to the constant of first-order-kinetics.According to the equation the change of soil ability to oxidize CH4 could be estimated by the equation Ac=k2/k1(x0-x)x0k2/k1-1.The results showed that the soil ability to oxidize CH4 varied,depending on the initial CH4 concentration.High initial CH4 concentration stimulated soil ability to consume CH4,while low concentration depressed the ablility.This characteristic of paddy soil seemed to be of considerable significance to self-adjusting CH4 emission from flooded rice fields if there exist oxic microsites in the soil.  相似文献   

17.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

18.
19.
To prove the hypothesis that paddy rice utilizes soil nonexchangeable potassium (neK) and causes associated structural changes in clay minerals, K status and clay mineralogy of 22 surface soils from three paddy fields under long-term fertilizer management for 51–93 years were investigated. Soil neK content was determined as the difference between 1 mol L−1 hot HNO3 extractable K and 1 mol L−1 ammonium acetate exchangeable K. Clay mineralogy was identified by X-ray diffraction (XRD). The radiocesium interception potential (RIP), an index of frayed edge sites in the interlayer sites of 2:1 type clay minerals, was also determined. The neK contents under the -K and NPK treatments were considerably lower than those under the unfertilized treatment in all the fields, indicating the exploitation of soil neK by rice. XRD analysis of the clay samples revealed 7% shift from the 1.0 peak to 1.4 nm one under the -K treatment compared with the unfertilized one, and the amounts of neK were negatively correlated with those of RIP (p < .01), suggesting the expansion of interlayer spaces of the 2:1 type phyllosilicates such as mica due to the release of neK. In addition, the neK content positively correlated with K balance of the long-term experiments (p < .05). The differences of neK between unfertilized K and -K treatments corresponded to 22–157 kg K ha−1, or 0.42–1.68 kg K ha−1 year−1. In conclusion, utilization of considerable amount of soil neK under K depleted conditions should be considered to establish sustainable K management for paddy rice.  相似文献   

20.
Attempts were made to evaluate correlations of total trace elements with various soil characters in the hope that such correlations would allow prediction of the trace element status of paddy soils in Tropical Asia.

Among the 11 trace elements studied, Ni and Cr showed by far the highest correlation, followed by the pairs of V and Zn, Ni and Zn, and Cr and Zn.

High positive correlations of trace elements with soil characters were found for the following pairs: total Fe2O3, and V and Zn, total K20 and Rb, total CaO and Sr, total TiO2, and V, total Al203 and Zn, 10 Å clay content and Rb, clay and V, and sand and Zr. Among the negative correlations, the highest was between total SiO2 and V, followed by those between total SiO2 and Zn and sand and Zn.

Soil material classes and inherent potentiality ratings previously established were found to have some value for the prediction of the status of certain trace elements in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号