首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   

2.
3.
4.
5.

Objectives

To compare propofol and alfaxalone, with or without midazolam, for induction of anesthesia in fentanyl-sedated dogs, and to assess recovery from total intravenous anesthesia (TIVA).

Study design

Prospective, incomplete, Latin-square study.

Animals

Ten dogs weighing 24.5 ± 3.1 kg (mean ± standard deviation).

Methods

Dogs were randomly assigned to four treatments: treatment P-M, propofol (1 mg kg?1) and midazolam (0.3 mg kg?1); treatment P-S, propofol and saline; treatment A-M, alfaxalone (0.5 mg kg?1) and midazolam; treatment A-S, alfaxalone and saline, administered intravenously (IV) 10 minutes after fentanyl (7 μg kg?1) IV. Additional propofol or alfaxalone were administered as necessary for endotracheal intubation. TIVA was maintained for 35–55 minutes by infusions of propofol or alfaxalone. Scores were assigned for quality of sedation, induction, extubation and recovery. The drug doses required for intubation and TIVA, times from sedation to end of TIVA, end anesthesia to extubation and to standing were recorded. Analysis included a general linear mixed model with post hoc analysis (p < 0.05).

Results

Significant differences were detected in the quality of induction, better in A-M than A-S and P-S, and in P-M than P-S; in total intubation dose, lower in P-M (1.5 mg kg?1) than P-S (2.1 mg kg?1), and A-M (0.62 mg kg?1) than A-S (0.98 mg kg?1); and lower TIVA rate in P-M (268 μg kg?1 minute?1) than P-S (310 μg kg?1 minute?1). TIVA rate was similar in A-M and A-S (83 and 87 μg kg?1 minute?1, respectively). Time to standing was longer after alfaxalone than propofol, but was not influenced by midazolam.

Conclusions and clinical relevance

Addition of midazolam reduced the induction doses of propofol and alfaxalone and improved the quality of induction in fentanyl-sedated dogs. The dose rate of propofol for TIVA was decreased.  相似文献   

6.

Objective

To compare the performance of an alfaxalone constant rate intravenous (IV) infusion versus a 3-step IV infusion, both following a loading dose, for the maintenance of a target plasma alfaxalone concentration of 7.6 mg L–1 (effective plasma alfaxalone concentration for immobility in 99% of the population) in cats.

Study design

Prospective randomized crossover study.

Animals

A group of six healthy, adult male neutered cats.

Methods

Catheters were placed in a jugular vein for blood sampling and in a medial saphenous vein for drug administration. An IV bolus of alfaxalone (2 mg kg–1) was administered, followed by either 0.2 mg kg?1 minute?1 for 240 minutes (single infusion; SI) or 0.4 mg kg?1 minute?1 for 10 minutes, then 0.3 mg kg?1 minute?1 for 30 minutes, and then 0.2 mg kg?1 minute?1 for 200 minutes (3-step infusion; 3-step). Plasma alfaxalone concentration was measured at six time points during the infusions. Measures of performance were calculated for each infusion regimen and compared using the paired Wilcoxon signed-rank test.

Results

Median (range) absolute performance error, divergence, median prediction error and wobble were 15 (8–19)%, ?8 (?12 to ?6)% hour?1, ?12 (?19 to ?7)% and 10 (8–19)%, respectively, in the SI treatment, and 6 (2–16)%, 0 (?13 to 2)% hour?1, 1 (?16 to 4)% and 4 (3–6)% respectively, in the 3-step treatment and were significantly smaller in the 3-step treatment than in the SI treatment.

Conclusion and clinical relevance

After IV administration of a bolus dose, a 3-step infusion regimen can better maintain stable plasma alfaxalone concentrations close to the target concentration than a single constant rate infusion.  相似文献   

7.
ObjectiveTo compare the incidence of pain during injection of three intravenous induction agents in dogs.Study designProspective, crossover, randomized, blinded, clinical study.AnimalsThirty dogs requiring anaesthesia for radiotherapy.MethodsDogs were anaesthetized on three occasions at weekly intervals. An IV cephalic catheter was placed, flushed with saline and alfentanil 0.01 mg kg?1 and atropine 0.02 mg kg?1 administered. After 30 seconds either: propofol lipid macroemulsion (DrugP), propofol lipid-free microemulsion (DrugPC) or alfaxalone (DrugA) was administered over 60 seconds. Each induction agent was administered once to each dog. Induction was recorded by video and reviewed by an assessor, unaware of treatment. Catheter placement (number of attempts, site, size and recent vein use) were recorded. Behavioural changes associated with pain or excitation, were recorded. Severity of pain on injection was recorded (mild, moderate or severe pain). Incidence of pain was analysed using logistic regression, excitation using McNemar's test (p < 0.05) and association of pain with induction agent and catheter placement using the Akaike Information Criterion (AIC).ResultsNo dogs reacted to saline or DrugA, thus DrugA was excluded from analysis. Pain on injection occurred in six dogs (20%) with DrugPC and one dog (3.3%) with DrugP. Pain was severe in four dogs with DrugPC. DrugP resulted in a trend for reduced risk of pain compared to DrugPC (p = 0.076, odds ratio [confidence intervals] 0.14 [0.027–0.86]). Both propofol formulations resulted in greater risk of excitation than DrugA (p = 0.0003, odds ratio 4.5 [1.86–10.90]). Induction agent was associated with pain, whilst catheter placement was not. One dog developed facial oedema and one other dog skin necrosis adjacent to the catheter site following DrugPC. The study was terminated early due to ethical concerns about the severity of reactions with DrugPC.Conclusions and Clinical relevanceDrugPC was associated with clinically relevant moderate to severe pain behaviour whilst DrugA and DrugP were not.  相似文献   

8.
9.
OBJECTIVE: To determine the effect of induction, a 30-minute, and a 150-minute infusion of propofol on the rate of recovery in cats. STUDY DESIGN: Randomized, cross-over, prospective experimental study. ANIMALS: Six healthy adult spayed female cats (mean 4.3, range 2-7 years old) weighing 3.9 +/- 0.5 kg. METHODS: Cats received each of three treatments: anesthetic induction with propofol (T1), induction followed by a 30-minute infusion (T30) and induction followed by a 150-minute infusion (T150). Propofol infusions were increased or decreased to maintain a sluggish pedal withdrawal reflex. Animals were monitored throughout the anesthetic period and during the recovery. Venous blood samples were collected from a central venous catheter before anesthesia and at 30 minutes for the 30-minute infusion and at 30, 60, 90, 120 and 150 minutes for the 150-minute infusion. The ability of the cat to lift its head, crawl, stand and walk without ataxia was recorded at 5, 10, 20, 40, 60, 80, 120, 160, 180, 210 and 240 minutes after the completion of propofol administration. Data from physiological values were analyzed using either a Student's t-test (30-minute infusion) or an anova (150-minute infusion). A nonparametric Friedman test (and post-hoc Tukey's Studentized range test) was used to determine whether there were differences in the time taken to recover. Results were considered significant if p < 0.05. RESULTS: Time taken to walk without ataxia was significantly greater in T150 (148 +/- 40 minutes) compared with T1 (80 +/- 15 minutes) and T30 (74 +/- 26 minutes). (No other recovery times were significantly different). Anesthesia with propofol was accompanied by a moderate but significant respiratory depression and a decrease in PCV and total protein. CONCLUSIONS AND CLINICAL RELEVANCE: Prolonged anesthesia with propofol in healthy cats may be associated with a delayed recovery.  相似文献   

10.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

11.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

12.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

13.
ObjectiveTo compare the physiological parameters, arterial blood gas values, induction quality, and recovery quality after IV injection of alfaxalone or propofol in dogs.Study designProspective, randomized, blinded crossover.AnimalsEight random-source adult female mixed-breed dogs weighing 18.7 ± 4.5 kg.MethodsDogs were assigned to receive up to 8 mg kg?1 propofol or 4 mg kg?1 alfaxalone, administered to effect, at 10% of the calculated dose every 10 seconds. They then received the alternate drug after a 6-day washout. Temperature, pulse rate, respiratory rate, direct blood pressure, and arterial blood gases were measured before induction, immediately post-induction, and at 5-minute intervals until extubation. Quality of induction, recovery, and ataxia were scored by a single blinded investigator. Duration of anesthesia and recovery, and adverse events were recorded.ResultsThe mean doses required for induction were 2.6 ± 0.4 mg kg?1 alfaxalone and 5.2 ± 0.8 mg kg?1 propofol. After alfaxalone, temperature, respiration, and pH were significantly lower, and PaCO2 significantly higher post-induction compared to baseline (p < 0.03). After propofol, pH, PaO2, and SaO2 were significantly lower, and PaCO2, HCO3, and PA-aO2 gradient significantly higher post-induction compared to baseline (p < 0.03). Post-induction and 5-minute physiologic and blood gas values were not significantly different between alfaxalone and propofol. Alfaxalone resulted in significantly longer times to achieve sternal recumbency (p = 0.0003) and standing (p = 0.0004) compared to propofol. Subjective scores for induction, recovery, and ataxia were not significantly different between treatments; however, dogs undergoing alfaxalone anesthesia were more likely to have ≥1 adverse event (p = 0.041). There were no serious adverse events in either treatment.Conclusions and clinical relevanceThere were no clinically significant differences in cardiopulmonary effects between propofol and alfaxalone. A single bolus of propofol resulted in shorter recovery times and fewer adverse events than a single bolus of alfaxalone.  相似文献   

14.

Objective

To compare incidence and duration of postinduction apnoea in dogs after premedication with methadone and acepromazine (MA) or methadone and dexmedetomidine (MD) followed by induction with propofol (P) or alfaxalone (A).

Study design

Prospective, randomized clinical trial.

Animals

A total of 32 American Society of Anesthesiologists class I dogs (15 females, 17 males), aged between 4 months and 4 years, weighing between 3 and 46 kg.

Methods

Dogs were randomly allocated to be administered MA+P, MA+A, MD+P or MD+A (methadone 0.5 mg kg?1 and acepromazine 0.05 mg kg?1 or dexmedetomidine 5 μg kg?1). Induction agents were administered intravenously via syringe driver (P at 4 mg kg?1 minute?1 or A at 2 mg kg?1 minute?1) until successful endotracheal intubation and the endotracheal tube connected to a circle system with oxygen flow at 2 L minute?1. Oxygen saturation of haemoglobin (SpO2), end tidal partial pressure of carbon dioxide and respiratory rate were monitored continuously. If apnoea (≥ 30 seconds without breathing) occurred, the duration until first spontaneous breath was measured. If SpO2 decreased below 90% the experiment was stopped and manual ventilation initiated. Data were analysed with general linear models with significance set at p ≤ 0.05.

Results

There was no statistical difference in the incidence (11 of 16 dogs in A groups and 12 of 16 dogs in P groups), or mean ± standard deviation duration (A groups 125 ± 113 seconds, P groups 119 ± 109 seconds) of apnoea. The SpO2 of one dog in the MD+P group decreased below 90% during the apnoeic period.

Conclusions and clinical relevance

Propofol and alfaxalone both cause postinduction apnoea and the incidence and duration of apnoea is not influenced by the use of acepromazine or dexmedetomidine in premedication. Monitoring of respiration is recommended when using these premedication and induction agent combinations.  相似文献   

15.

Objective

To determine the effective plasma alfaxalone concentration for the production of immobility in cats.

Study design

Prospective up-and-down study.

Animals

Sixteen 1–2 year old male castrated research cats.

Methods

Cats were instrumented with catheters in a jugular and a medial saphenous vein. Alfaxalone was administered via the medial saphenous catheter, using a target-controlled infusion system. The infusion lasted for approximately 32 minutes. A noxious stimulus (tail clamp) was applied 30 minutes after starting the alfaxalone infusion, until the cat moved or 60 seconds had elapsed, whichever occurred first. The target alfaxalone concentration was set at 5 mg L?1 in the first cat and increased or decreased by 1 mg L?1 in subsequent cats, if the previous cat had moved or not moved in response to stimulation, respectively. This was continued until six independent crossovers (different responses in pairs of subsequent cats) had been observed. Blood samples were collected before alfaxalone administration, and 15 and 31 minutes after starting the administration, for the determination of plasma alfaxalone concentration using liquid chromatography/tandem mass spectrometry. The alfaxalone concentration yielding a probability of immobility in 50% (EC50), 95% (EC95) and 99% (EC99) of the population, and their respective 95% Wald confidence intervals were calculated.

Results

The EC50, EC95 and EC99 for alfaxalone-induced immobility were 3.7 (2.4–4.9), 6.2 (4.7–) and 7.6 (5.5–) mg L?1, respectively.

Conclusions and clinical relevance

The effective plasma alfaxalone concentration for immobility in cats was determined. This value will help in the design of pharmacokinetic-based dosing regimens.  相似文献   

16.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

17.

Objectives

To determine the context-sensitive half-time of alfaxalone following intravenous infusions of various durations. To estimate the time necessary for plasma concentration to decrease by up to 95%.

Study design

Prospective randomized and simulation studies.

Animals

A group of six 1-year-old male castrated research cats.

Methods

Cats were instrumented with catheters in a jugular and a medial saphenous vein. Alfaxalone was administered using a target-controlled infusion system, to target a plasma alfaxalone concentration of 7.6 mg L–1. The infusion lasted 30 (n = 2), 60 (n = 2) or 240 (n = 2) minutes. Blood samples were collected prior to drug administration, and at several times during and up to 8 hours after the infusion, for the determination of plasma alfaxalone concentration using liquid chromatography/tandem mass spectrometry. Compartment models were fitted to each time–concentration profile, and a population model was fitted to data from all individuals. The context-sensitive half-time was determined from each individual model. In addition, times for plasma alfaxalone concentration to decrease by 50–95% following bolus administration and target-controlled infusions or continuous rate infusions of 0.5–8 hours were estimated by simulation using the population model.

Results

Context-sensitive half-times were 2 and 8, 6 and 9, and 18 and 20 minutes for the 30, 60 and 240 minutes, respectively. Time for plasma alfaxalone concentration to decrease by 90% was predicted to range from 7 to 120 or 113 minutes following a bolus to an 8 hour target-controlled or continuous rate infusion, respectively.

Conclusion and clinical relevance

Recovery time from alfaxalone anesthesia in cats is predicted to be influenced by the duration of target-controlled infusion.  相似文献   

18.
ObjectiveTo compare the effect of alfaxalone and propofol on heart rate (HR) and blood pressure (BP) after fentanyl administration in healthy dogs.Study designProspective, randomised clinical study.AnimalsFifty healthy client owned dogs (ASA I/II) requiring general anaesthesia for elective magnetic resonance imaging for neurological conditions.MethodsAll dogs received fentanyl 7 μg kg−1 IV and were allocated randomly to receive either alfaxalone (n = 25) or propofol (n = 25) to effect until endotracheal (ET) intubation was possible. Heart rate and oscillometric BP were measured before fentanyl (baseline), after fentanyl (Time F) and after ET intubation (Time GA). Post-induction apnoea were recorded. Data were analysed using Fisher’s exact test, Mann Whitney U test and one-way anova for repeated measures as appropriate; p value <0.05 was considered significant.ResultsDogs receiving propofol showed a greater decrease in HR (-14 beat minute−1, range -47 to 10) compared to alfaxalone (1 beat minute−1, range -33 to 26) (p = 0.0116). Blood pressure decreased over the three time periods with no difference between groups. Incidence of post-induction apnoea was not different between groups.ConclusionFollowing fentanyl administration, anaesthetic induction with propofol resulted in a greater negative chronotropic effect while alfaxalone preserved or increased HR.Clinical relevanceFollowing fentanyl administration, HR decreases more frequently when propofol rather than alfaxalone is used as induction agent. However, given the high individual variability and the small change in predicted HR (-7.7 beats per minute after propofol), the clinical impact arising from choosing propofol or alfaxalone is likely to be small in healthy animals. Further studies in dogs with myocardial disease and altered haemodynamics are warranted.  相似文献   

19.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   

20.

Objective

To compare the effects of alfaxalone and propofol, with and without acepromazine and butorphanol followed by doxapram, on laryngeal motion and quality of laryngeal examination in dogs.

Study design

Randomized, crossover, blinded study.

Animals

Ten female Beagle dogs, aged 11–13 months and weighing 7.2–8.6 kg.

Methods

The dogs were administered four intravenous (IV) treatments: alfaxalone (ALF), alfaxalone + acepromazine and butorphanol (ALF–AB), propofol (PRO) and propofol + AB (PRO–AB). AB doses were standardized. Dogs were anesthetized 5 minutes later by administration of alfaxalone or propofol IV to effect. Arytenoid motion during maximal inspiration and expiration was captured on video before and after IV doxapram (0.25 mg kg?1). The change in rima glottidis surface area (RGSA) was calculated to measure arytenoid motion. An investigator blinded to the treatment scored laryngeal examination quality.

Results

A 20% increase in RGSA was the minimal arytenoid motion that was detectable. RGSA was significantly less in ALF before doxapram compared with all other treatments. A <20% increase in RGSA was measured in eight of 10 dogs in PRO and in all dogs in ALF before doxapram. After doxapram, RGSA was significantly increased for PRO and ALF; however, 20% of dogs in PRO and 50% of dogs in ALF still had <20% increase in RGSA. A <20% increase in RGSA was measured in five of 10 dogs in PRO–AB and ALF–AB before doxapram. All dogs in PRO–AB and ALF–AB with <20% increase in RGSA before doxapram had ≥20% increase in RGSA after doxapram. Examination quality was significantly better in PRO–AB and ALF–AB.

Conclusions and clinical relevance

The use of acepromazine and butorphanol improved the quality of laryngeal examination. Any negative impact on arytenoid motion caused by these premedications was overcome with doxapram. Using either propofol or alfaxalone alone is not recommended for the evaluation of arytenoid motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号