首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
ObjectiveTo evaluate the sedative and analgesic effects of intramuscular buprenorphine with either dexmedetomidine or acepromazine, administered as premedication to cats and dogs undergoing elective surgery.Study designProspective, randomized, blinded clinical study.AnimalsForty dogs and 48 cats.MethodsAnimals were assigned to one of four groups, according to anaesthetic premedication and induction agent: buprenorphine 20 μg kg?1 with either dexmedetomidine (dex) 250 μg m?2 or acepromazine (acp) 0.03 mg kg?1, followed by alfaxalone (ALF) or propofol (PRO). Meloxicam was administered preoperatively to all animals and anaesthesia was always maintained using isoflurane. Physiological measures and assessments of pain, sedation and mechanical nociceptive threshold (MNT) were made before and after premedication, intraoperatively, and for up to 24 hours after premedication. Data were analyzed with one-way, two-way and mixed between-within subjects anova, Kruskall–Wallis analyses and Chi squared tests. Results were deemed significant if p ≤ 0.05, except where multiple comparisons were performed (p ≤ 0.005).ResultsCats premedicated with dex were more sedated than cats premedicated with acp (p < 0.001) and ALF doses were lower in dex cats (1.2 ± 1.0 mg kg?1) than acp cats (2.5 ± 1.9 mg kg?1) (p = 0.041). There were no differences in sedation in dogs however PRO doses were lower in dex dogs (1.5 ± 0.8 mg kg?1) compared to acp dogs (3.3 ± 1.1 mg kg?1) (p < 0.001). There were no differences between groups with respect to pain scores or MNT for cats or dogs.ConclusionChoice of dex or acp, when given with buprenorphine, caused minor, clinically detectable, differences in various characteristics of anaesthesia, but not in the level of analgesia.Clinical relevanceA combination of buprenorphine with either acp or dex, followed by either PRO or ALF, and then isoflurane, accompanied by an NSAID, was suitable for anaesthesia in dogs and cats undergoing elective surgery. Choice of sedative agent may influence dose of anaesthetic induction agent.  相似文献   

3.
ObjectiveTo evaluate the clinical efficacy and cardiorespiratory effects of alfaxalone as an anaesthetic induction agent in dogs with moderate to severe systemic disease.Study designRandomized prospective clinical study.AnimalsForty dogs of physical status ASA III-V referred for various surgical procedures.MethodsDogs were pre-medicated with intramuscular methadone (0.2 mg kg?1) and allocated randomly to one of two treatment groups for induction of anaesthesia: alfaxalone (ALF) 1–2 mg kg?1 administered intravenously (IV) over 60 seconds or fentanyl 5 μg kg?1 with diazepam 0.2 mg kg?1± propofol 1–2 mg kg?1 (FDP) IV to allow endotracheal intubation. Anaesthesia was maintained with isoflurane in oxygen and fentanyl infusion following both treatments. All dogs were mechanically ventilated to maintain normocapnia. Systolic blood pressure (SAP) was measured by Doppler ultrasound before and immediately after anaesthetic induction, but before isoflurane administration. Parameters recorded every 5 minutes throughout subsequent anaesthesia were heart and respiratory rates, end-tidal partial pressure of carbon dioxide and isoflurane, oxygen saturation of haemoglobin and invasive systolic, diastolic and mean arterial blood pressure. Quality of anaesthetic induction and recovery were recorded. Continuous variables were assessed for normality and analyzed with the Mann Whitney U test. Repeated measures were log transformed and analyzed with repeated measures anova (p < 0.05).ResultsTreatment groups were similar for continuous and categorical data. Anaesthetic induction quality was good following both treatments. Pre-induction and post-induction systolic blood pressure did not differ between treatments and there was no significant change after induction. The parameters measured throughout the subsequent anaesthetic procedures did not differ between treatments. Quality of recovery was very, quite or moderately smooth.Conclusions and clinical relevanceInduction of anaesthesia with alfaxalone resulted in similar cardiorespiratory effects when compared to the fentanyl-diazepam-propofol combination and is a clinically acceptable induction agent in sick dogs.  相似文献   

4.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

5.
6.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

7.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   

8.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

9.
ObjectiveTo compare the effects of propofol and alfaxalone on respiration in cats.Study designRandomized, ‘blinded’, prospective clinical trial.AnimalsTwenty cats undergoing ovariohysterectomy.MethodsAfter premedication with medetomidine 0.01 mg kg−1 intramuscularly and meloxicam 0.3 mg kg−1 subcutaneously, the cats were assigned randomly into two groups: group A (n = 10) were administered alfaxalone 5 mg kg−1 minute−1 followed by 10 mg kg−1 hour−1 intravenously (IV) and group P (n = 10) were administered propofol 6 mg kg−1 minute−1 followed by 12 mg kg−1hour−1 IV for induction and maintenance of anaesthesia, respectively. After endotracheal intubation, the tube was connected to a non-rebreathing system delivering 100% oxygen. The anaesthetic maintenance drug rate was adjusted (± 0.5 mg kg−1 hour−1) every 5 minutes according to a scoring sheet based on physiologic variables and clinical signs. If apnoea > 30 seconds, end-tidal carbon dioxide (Pe′CO2) > 7.3 kPa (55 mmHg) or arterial haemoglobin oxygen saturation (SpO2) < 90% occurred, manual ventilation was provided. Methadone was administered postoperatively. Data were analyzed using independent-samples t-tests, Fisher's exact test, linear mixed-effects models and binomial test.ResultsManual ventilation was required in two and eight of the cats in group A and P, respectively (p = 0.02). Two cats in both groups showed apnoea. Pe′CO2 > 7.3 kPa was recorded in zero versus four and SpO2 < 90% in zero versus six cats in groups A and P respectively. Induction and maintenance dose rates (mean ± SD) were 11.6 ± 0.3 mg kg−1 and 10.7 ± 0.8 mg kg−1 hour−1 for alfaxalone and 11.7 ± 2.7 mg kg−1 and 12.4 ± 0.5 mg kg−1 hour−1 for propofol.Conclusion and clinical relevanceAlfaxalone had less adverse influence on respiration than propofol in cats premedicated with medetomidine. Alfaxalone might be better than propofol for induction and maintenance of anaesthesia when artificial ventilation cannot be provided.  相似文献   

10.
ObservationsA 12 year old cat was presented for anaesthesia to remove a mandibular squamous cell carcinoma. After intramuscular premedication with dexmedetomidine and methadone, anaesthesia was induced with alfaxalone, administered intravenously (IV) to effect, and maintained with isoflurane vaporized in oxygen, following oro-tracheal intubation. Approximately 5 minutes after performing a mandibular nerve block with 1.16 mg kg?1 of bupivacaine, the cat developed severe cardiovascular depression. Anaesthetic delivery was discontinued and cardiopulmonary resuscitation instituted. Drug administration consisted of atropine (0.02 mg kg?1 IV, repeated three times), followed by atipamezole (0.08 mg kg?1 IV). Dobutamine was subsequently administered (1 μg kg?1 minute?1 IV) until cardiovascular performance was considered satisfactory. During recovery from anaesthesia the cat exhibited seizure-like activity, which was controlled by a variable rate infusion of propofol. The cat made an uneventful recovery following discontinuation of propofol infusion, without residual neurological signs, and the surgical procedure was postponed.ConclusionsThis clinical report describes successful management of cardiovascular and neurological complications following a mandibular nerve block with bupivacaine in a cat. Although treatment was successful, the role played by the drugs administered during resuscitation remains uncertain.  相似文献   

11.
12.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

13.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

14.
ObjectiveTo evaluate effects of repeated alfaxalone or propofol administration on haematological and serum biochemical variables in cats undergoing radiotherapy.Study designProspective, block-randomized, clinical trial.AnimalsA group of 39 client-owned cats.MethodsAfter butorphanol (0.2 mg kg–1) and midazolam (0.1 mg kg–1) sedation, cats were randomly assigned to receive either alfaxalone or propofol for induction of anaesthesia and sevoflurane maintenance. Cats were anaesthetized daily with the same induction agent for 10–12 days. Complete blood counts, reticulocytes, Heinz body score and serum biochemistry were performed before the first treatment (T1), at T6, T10 and 3 weeks after the final treatment (T21). Cumulative induction agent dose for each cat at each time point was evaluated for an effect on Heinz body score. Data are shown as mean ± standard deviation; p < 0.05.ResultsAt baseline there were no significant differences in signalment or blood variables between groups. A significant decrease in haematocrit of 2.3% ± 0.77 (p = 0.02) between T1-T6 and T1-T10 [mean 4.1% (± 0.78, p < 0.0001)] was detected, with a significant increase in haematocrit of 2.1% ± 0.80 (p = 0.046) between T6-T21 and 4.0% ± 0.8 (p < 0.001) between T10-T21. Heinz body score significantly increased by 1.86 ± 0.616 (p = 0.013) between T1-T10. In the propofol group, reticulocytes increased significantly between T1-T6 [mean 23,090 μL–1 ± 7670 (p = 0.02)] and T1-T10 [mean 27,440 μL–1 ± 7990 (p = 0.007)]. Mean cumulative dose at T10 was 19.65 mg kg–1 ± 5.3 and 43.4 mg kg–1 ± 14.4 for alfaxalone and propofol, respectively, with no significant effect on Heinz body formation at any time point.Conclusions and Clinical relevanceHaematocrit decreased in both groups with recovery after 3 weeks. Repeated alfaxalone and propofol administration was not associated with marked haematological or serum biochemistry changes.  相似文献   

15.
16.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroid anaesthetic, alfaxalone, in neonatal foals after a single intravenous (IV) injection of alfaxalone following premedication with butorphanol tartrate.Study designProspective experimental study.AnimalsFive clinically healthy Australian Stock Horse foals of mean ± SD age of 12 ± 3 days and weighing 67.3 ± 12.4 kg.MethodsFoals were premedicated with butorphanol (0.05 mg kg?1 IV) and anaesthesia was induced 10 minutes later by IV injection with alfaxalone 3 mg kg?1. Cardiorespiratory variables (pulse rate, respiratory rate, direct arterial blood pressure, arterial blood gases) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and alfaxalone plasma concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis.ResultsThe harmonic, mean ± SD plasma elimination half life (t½) for alfaxalone was 22.8 ± 5.2 minutes. The observed mean plasma clearance (Clp) and volume of distribution (Vd) were 19.9 ± 5.9 mL minute kg?1 and 0.6 ± 0.2 L kg?1, respectively. Overall, the quality of the anaesthetic inductions and recoveries was good and most monitored physiological variables were clinically acceptable in all foals, although some foals became hypoxaemic for a short period following recumbency. The mean durations of anaesthesia from induction to first movement and from induction to standing were 18.7 ± 7 and 37.2 ± 4.7 minutes, respectively.ConclusionsThe anaesthetic protocol used provided a predictable and consistent plane of anaesthesia in the five foals studied, with minimal cardiovascular depression. In foals, as in the adult horse, alfaxalone has a short elimination half life.Clinical relevanceAlfaxalone appears to be an adequate anaesthetic induction agent in foals and the pharmacokinetics suggest that, with continuous infusion, it might be suitable to provide more prolonged anaesthesia. Oxygen supplementation is recommended.  相似文献   

17.
ObjectiveTo compare the ease of endoscopic duodenal intubation (EDI) in dogs during maintenance of general anaesthesia with isoflurane or propofol infusion.Study designProspective, randomized, partially blinded clinical trial.AnimalsA total of 22 dogs undergoing upper gastrointestinal tract endoscopy to include EDI were recruited.MethodsDogs were randomly assigned isoflurane (ISO; n = 10) or propofol (PROP; n = 11) for maintenance of general anaesthesia. Following anaesthetic premedication with intramuscular medetomidine (0.005 mg kg–1) and butorphanol (0.2 mg kg–1), general anaesthesia was induced with propofol, to effect, maintained with 1.5% (vaporizer setting) isoflurane in 100% oxygen or 0.2 mg kg–1 minute–1 propofol. The dose of both agents was adjusted to maintain general anaesthesia adequate for the procedure. Degree of sedation 20 minutes post-anaesthetic premedication, propofol induction dose, anaesthetist and endoscopist training grade, animal’s response to endoscopy, presence of gastro-oesophageal and duodenal-gastric reflux, spontaneous opening of the lower oesophageal and pyloric sphincters, antral movement and time to achieve EDI were recorded. EDI was scored 1 (immediate entry with minimal manoeuvring) to 4 (no entry after 120 seconds) by the endoscopist, blinded to the agent in use. Data were tested for normality (Shapiro-Wilk test) and differences between groups analysed using independent t test, Mann-Whitney U test and Fisher’s exact test as appropriate.ResultsThere were no significant differences between groups for EDI score [median (interquartile range): 2 (3) ISO, 2 (3) PROP] or time to achieve EDI [mean ± standard deviation: 52.50 ± 107.00 seconds (ISO), 70.00 ± 196.00 seconds (PROP)]. Significantly more dogs responded to passage of the endoscope into the oesophagus in group PROP compared with group ISO (p = 0.01).Conclusions and clinical relevanceMaintenance of general anaesthesia with either isoflurane or propofol did not affect EDI score or time to achieve EDI.  相似文献   

18.
ObjectiveTo compare the physiological parameters, arterial blood gas values, induction quality, and recovery quality after IV injection of alfaxalone or propofol in dogs.Study designProspective, randomized, blinded crossover.AnimalsEight random-source adult female mixed-breed dogs weighing 18.7 ± 4.5 kg.MethodsDogs were assigned to receive up to 8 mg kg?1 propofol or 4 mg kg?1 alfaxalone, administered to effect, at 10% of the calculated dose every 10 seconds. They then received the alternate drug after a 6-day washout. Temperature, pulse rate, respiratory rate, direct blood pressure, and arterial blood gases were measured before induction, immediately post-induction, and at 5-minute intervals until extubation. Quality of induction, recovery, and ataxia were scored by a single blinded investigator. Duration of anesthesia and recovery, and adverse events were recorded.ResultsThe mean doses required for induction were 2.6 ± 0.4 mg kg?1 alfaxalone and 5.2 ± 0.8 mg kg?1 propofol. After alfaxalone, temperature, respiration, and pH were significantly lower, and PaCO2 significantly higher post-induction compared to baseline (p < 0.03). After propofol, pH, PaO2, and SaO2 were significantly lower, and PaCO2, HCO3, and PA-aO2 gradient significantly higher post-induction compared to baseline (p < 0.03). Post-induction and 5-minute physiologic and blood gas values were not significantly different between alfaxalone and propofol. Alfaxalone resulted in significantly longer times to achieve sternal recumbency (p = 0.0003) and standing (p = 0.0004) compared to propofol. Subjective scores for induction, recovery, and ataxia were not significantly different between treatments; however, dogs undergoing alfaxalone anesthesia were more likely to have ≥1 adverse event (p = 0.041). There were no serious adverse events in either treatment.Conclusions and clinical relevanceThere were no clinically significant differences in cardiopulmonary effects between propofol and alfaxalone. A single bolus of propofol resulted in shorter recovery times and fewer adverse events than a single bolus of alfaxalone.  相似文献   

19.
ObjectiveTo compare the effect of propofol, alfaxalone and ketamine on intraocular pressure (IOP) in cats.Study designProspective, masked, randomized clinical trial.AnimalsA total of 43 ophthalmologically normal cats scheduled to undergo general anesthesia for various procedures.MethodsFollowing baseline IOP measurements using applanation tonometry, anesthesia was induced with propofol (n = 15), alfaxalone (n = 14) or ketamine (n = 14) administered intravenously to effect. Then, midazolam (0.3 mg kg?1) was administered intravenously and endotracheal intubation was performed without application of topical anesthesia. The IOP was measured following each intervention. Data was analyzed using one-way anova and repeated-measures mixed design with post hoc analysis. A p-value <0.05 was considered significant.ResultsMean ± standard error IOP at baseline was not different among groups (propofol, 18 ± 0.6; alfaxalone, 18 ± 0.7; ketamine, 17 ± 0.5 mmHg). Following induction of anesthesia, IOP increased significantly compared with baseline in the propofol (20 ± 0.7 mmHg), but not in the alfaxalone (19 ± 0.8 mmHg) or ketamine (16 ± 0.7 mmHg) groups. Midazolam administration resulted in significant decrease from the previous measurement in the alfaxalone group (16 ± 0.7 mmHg), but not in the propofol group (19 ± 0.7 mmHg) or the ketamine (16 ± 0.8 mmHg) group. A further decrease was measured after intubation in the alfaxalone group (15 ± 0.9 mmHg).Conclusions and clinical relevancePropofol should be used with caution in cats predisposed to perforation or glaucoma, as any increase in IOP should be avoided.  相似文献   

20.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号