首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indigenous soil macroinvertebrates (moth larvae, weevil larvae, earthworms) are cardinal agents of nutrient release from litter on sub-Antarctic Marion Island (47°S, 38°′E). Their populations are threatened through predation by introduced house mice, which do not prey on an introduced slug Deroceras panormitanum. A microcosm study was carried out to explore whether slugs affect rates of carbon and inorganic nutrient mineralisation from plant litter differently to an indigenous caterpillar (larva of a flightless moth Pringelophaga marioni). Caterpillars stimulated N, Ca, Mg and K mineralisation from plant litter two to five times more than slugs did, whereas the two invertebrate types stimulated C and P mineralisation to the same degree. Consequently, ratios of C:N and N:P released from the litter were different for slugs and caterpillars. Such differences might affect peat nutrient quality and ultimately the peat accumulation-decomposition balance, an important driver of ecological succession. This suggests that slugs cannot simply replace caterpillars without consequences for ecosystem structure and functioning on the island.  相似文献   

2.
Soils are the central organizing entities in terrestrial ecosystems and possess extremely diverse prokaryotic and eukaryotic biota. They are physically and chemically complex, with micro- and macro-aggregates embedded within a solid, liquid and gaseous matrix that is continually changing in response to natural and human-induced perturbations. Recent advances in molecular techniques in systematics have provided opportunities for the study of biodiversity and biocomplexity of soil biota. A symposium and workshop on soil biogeochemistry and biodiversity International Symposium on Impacts of Soil Biodiversity on Biogeochemical Processes in Ecosystems, Taiwan Forestry Research Institute, Taipei, Taiwan April 18-24, 2004. Convened an international array of participants working in biomes on virtually every continent on the planet (ranging from polar to tropical regions). This special issue reports on the theoretical bases and applications of molecular methods for the measurement of soil biodiversity.

Themes addressed include a melding of classical taxonomic investigations with biochemical fingerprinting and molecular probing of organism identities. Several papers highlight new advances in identifications of prokaryotic and eukaryotic organisms. Examples include new developments in “fingerprinting” of microbes active in “mycorrhizospheres” using immunocapture and other innovative techniques. Developments in the study of impacts of invasive plant and animal species on ecosystem function and subsequent microbial community composition and function have been very great in the last 2-3 years. Soils are major repositories of legacies, including fine and coarse woody debris and other organic products, which have feedbacks on soil diversity. The ways in which species diversity and function of microbial and faunal communities interact and their importance to ecosystem function are examined in biological and biochemical detail. This paper provides an overview of soil biodiversity and its feedbacks on soil biogeochemical processes in ecosystems.  相似文献   


3.
土壤容重对土壤物理性状和小麦生长的影响   总被引:45,自引:3,他引:45  
以黑土和白浆土为试材 ,进行筒栽试验 .结果表明 ,适宜小麦生长的容重范围分别为 1 .1 5~1 .3 0 g/cm3和 0 .9~ 1 .0 5g/cm3.  相似文献   

4.
In this paper, we show that fine-scale data on seed plant diversity exhibit exponential scaling behaviour across the taxonomic hierarchy. One practical implication of this result is that the scaling behaviour of higher taxonomic levels can be used to predict species richness in a given area with reasonable accuracy.  相似文献   

5.
Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter.Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.  相似文献   

6.
施肥模式对茶叶产量、营养累积及土壤肥力的影响   总被引:12,自引:0,他引:12  
施肥是提高茶叶产量、品质、土壤质量及促进茶园可持续利用最重要的农业措施之一。为了筛选出合理的茶树施肥模式,采用连续4周年的田间定位试验方法,研究了6种不同施肥模式(不施肥、茶树配方化肥、1/2茶树配方化肥+1/2有机肥、有机肥、茶树配方化肥+豆科绿肥、1/2茶树配方化肥+1/2有机肥+豆科绿肥)对茶叶产量,茶叶中氮、磷、钾、茶多酚和水浸出物的累积量及茶园土壤肥力状况的影响。结果表明:与对照(不施肥)模式相比,其他几种不同施肥模式均在一定程度上增加了茶叶产量,促进了茶叶营养物质的累积,并提高了茶园土壤的基本肥力状况;其中,1/2茶树配方化肥+1/2有机肥+豆科绿肥的试验效果最佳,其3年茶叶总产量最高,为5 929 kg.hm?2,比对照提高106.17%;茶叶氮、磷和钾累积量最高,分别为4.962 kg.hm?2、0.48 kg.hm?2和5.966 kg.hm?2,比对照分别提高88.6%、57.41%和98.87%;茶叶茶多酚和水浸出物累积量最高,分别为23.39 kg.hm?2和119.41 kg.hm?2,比对照分别提高73.29%和85.56%;并比对照分别提高茶园土壤有机质1.29倍、全氮1.7倍、全磷2.98倍、速效氮1.59倍、速效磷34.3倍和速效钾3.3倍。1/2茶树配方化肥+1/2有机肥+豆科绿肥施肥模式值得在茶园施肥上进一步推广应用。  相似文献   

7.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

8.
不同养分配比对高粱根系生长及养分吸收的影响   总被引:2,自引:0,他引:2  
为探明高粱养分吸收和根系生长对氮、磷、钾胁迫的响应,通过长期定位试验,在高粱/玉米轮作条件下研究了不同养分配比NPK、PK、NK、NP、CK对高粱根系生长及养分吸收的影响。结果表明:与NPK相比,长期不施氮肥(PK)条件下高粱总根长增加18.29%,总根体积降低26.52%,且根系主要分布在0~10 cm土层,直径小于0.5 mm细根所占比例显著增加。不施磷肥(NK)显著抑制了高粱根系生长,总根长、总根表面积和总根体积分别降低24.03%、27.48%和41.29%。不施钾肥(NP)对细根生长有明显抑制作用。不施氮、磷、钾均降低高粱对相应养分的吸收和累积,不施氮促进了营养器官中氮和钾素向籽粒转运,不施磷或钾肥抑制了氮、磷及钾的转运。高粱对养分的吸收、积累和转运与根系形态有关,不同养分积累与运转与根系形态关系表现不尽相同:氮素、钾素积累和转运与根系形态具有较好的相关性,氮素的积累和转运与植株生物量和产量的相关性大于磷素和钾素。综上,高粱根系形态及养分吸收对氮、磷及钾胁迫响应不同,该研究可为不同养分瘠薄地高粱高效栽培提供理论依据。  相似文献   

9.
A fraction of the C of residues incorporated into soil diffuses into the adjacent soil where it is eventually mineralised by microorganisms. Our aim was to quantify the contribution of this adjacent soil to the overall mineralisation of residue-C. For this, we incorporated two different residues labelled with 13C, with contrasting biochemical characteristics, namely mature wheat straw and young rye leaves, in soil cores. When 15% mineralisation of residue-C was measured for both residues, we separated a particulate fraction (the residues), the adjacent soil (4-5 mm thick) and a distant soil fraction, and incubated them separately for 5 h. We found that 76% of the mineralised wheat straw-C came from the particulate fraction and 23% from the soil adjacent to the residues. For rye leaves, 67% of the evolved CO2 came from the particulate fraction and 33% from the adjacent soil. It showed that the adjacent soil had a significant role in the mineralisation of carbon from the residues, even if the main source of residue-derived CO2 was the particulate fraction itself. The functional importance of the soil adjacent to the residues increased with the amount of soluble organic compounds that had been leached from the residue into the adjacent soil, suggesting a strong interaction between the initial quality of the crop residue and the resulting spatial heterogeneity of the decomposing microorganisms and C within the soil.  相似文献   

10.
根区温度对黄瓜生长和土壤养分利用的影响   总被引:9,自引:0,他引:9  
采用盆栽试验,研究了不同土壤温度(对照不加温10?2℃、加温到18?2℃、加温到26?2℃)和不同盐分含量土壤(1#>2#>3#)对黄瓜干物质积累、矿质元素吸收与分配特征的影响,并对土壤性状、酶活性的影响进行了研究。结果表明:与对照不加温10℃相比,加温到18℃和26℃可以克服冬季土壤低温对黄瓜生长的限制作用,促进黄瓜苗的正常生长,为黄瓜开花结果提供保障。随着土壤温度升高,黄瓜果实干物重增加;加温到26℃与加温到18℃相比,三种盐分含量土壤1#、2#、3#黄瓜果实干物重分别增加了41.84%、15.49%、3.59%,同时反映了盐分含量高的土壤加温对提高黄瓜产量更明显。与对照不加温相比,土壤加温使黄瓜单株N、P、K的总摄取量增加,促进黄瓜根系吸收的养分向地上部转移,使土壤中速效养分(碱解氮、速效磷、速效钾)含量降低。土壤加温使土壤脲酶活性明显升高,对磷酸酶和过氧化氢酶影响不大。因此,冬季升高土壤温度可增加黄瓜产量,促进土壤养分转化,提高土壤养分利用率。  相似文献   

11.
Biochar additions have been suggested to influence soil microbial communities that, through a cascade effect, may also impact soil fauna. In turn, any direct biochar effects on fauna can influence microbial communities through grazing, physical fragmentation of organic debris (and biochar) and modifying soil structure. If biochar creates a favorable environment for soil microorganisms, it is also plausible for fauna to be attracted to such microbially enriched habitats. However, how soil fauna respond to biochar addition to soil and what are the main factors that drive their behavior has rarely been experimentally addressed. Therefore, the behavior of two mesofauna species was assessed as a result of corn stover biochar (slow pyrolysis at 600 °C) additions to a loamy temperate soil, after preincubation for 2, 17, 31 and 61 d, and related to variations in microbial biomass and activity. Microbial biomass increased by 5–56% and activity by 6–156% with increasing biochar rates for the different preincubation times. Over the incubation time, microbial biomass did not change or increased at most 15% with the different biochar rates, while in turn microbial activity decreased steadily (around 70–80% at day 61). Enchytraeids generally did not show avoidance or preference to biochar when provided with an alternative unamended soil, while collembolans often showed avoidance responses. However, collembolan avoidance to biochar decreased or disappeared in biochar mixtures with higher microbial biomass and water extractable NH4-N content, agreeing with the plausible role of microorganisms to potentially attract soil fauna after biochar applications. Avoidance response was mainly explained by environmental preferences of the test species and not by any toxic effect of the biochar in this study. However, avoidance after the application of biochar may still need to be considered due to the potential negative impacts of individuals’ migration on soil ecosystem functioning.  相似文献   

12.
Soil fauna can significantly affect soil CO2 and N2O emissions, but little is known about interactions between faunal groups and their relative contribution to such emissions. Over a 64-day microcosm incubation, we studied the effects of an epigeic earthworm (Eisenia fetida), mesofauna (Collembola plus oribatid mites) and their combinations on soil CO2 and N2O emissions under two faunal densities. Earthworms significantly enhanced soil CO2 and N2O emissions, while mesofauna only increased N2O emissions. Soil CO2 and N2O emissions were significantly affected by earthworm density, but not by mesofauna density. No significant interactive effects between earthworms and mesofauna were found on soil CO2 and N2O emissions. Our results indicate that earthworms probably play the dominant roles in determining soil CO2 and N2O emissions where they coexist with soil mesofauna.  相似文献   

13.
藏北高寒草甸植物群落对土壤线虫群落的影响   总被引:3,自引:0,他引:3  
薛会英  胡锋  罗大庆 《土壤学报》2013,50(3):507-516
2011年5月—11月,对西藏北部高寒草甸3种典型植物群落下0~30 cm范围内不同深度土层的土壤线虫群落进行调查,浅盆法收集土壤线虫,应用个体密度、多样性指数等特征值来分析高寒环境下土壤线虫群落的组成、分布特征与多样性。调查共分离得到33 038条土壤线虫,隶属于2纲6目51科93属;线虫个体密度平均为847条100 g-1干土;表聚性明显。研究结果表明,不同植物群落间的土壤线虫群落组成存在一定差异,土壤线虫数量的大小顺序为委陵菜植物群落<藏北嵩草植物群落<高山嵩草植物群落,土壤线虫数量差异显著(p<0.05);土壤线虫数量随生长季变化发生明显波动,返青期最多,盛长期次之,枯草期最低;不同植物群落的优势属种类不同。生物多样性为委陵菜植物群落>高山嵩草植物群落>藏北嵩草植物群落,这可能是放牧干扰强度不同,以及植物群落影响下的土壤性质分异所导致的结果。总之,不同植物群落下土壤线虫群落特征的分异初步显示出线虫指示环境因子影响土壤生态系统的潜力。  相似文献   

14.
During the first few days after rewetting of an air-dried soil (AD-RW), microbial activity increases compared to that in the original moist soil, causing increased mineralisation (a flush) of soil organic carbon (C) and other nutrients. The AD-RW flush is believed to be derived from the enhanced mineralisation of both non-biomass soil organic matter (due to its physical release and enhanced availability) and microbial biomass killed during drying and rewetting. Our aim was to determine the effects of AD-RW on the mineralisation of soil organic matter and microbial biomass during and after repeated AD-RW cycles and to quantify their proportions in the CO2-C flushes that resulted. To do this, a UK grassland soil was amended with 14C-labelled glucose to label the biomass and then given five AD-RW cycles, each followed by 7 d incubation at 25 °C and 50% water holding capacity. Each AD-RW cycle increased the amount of CO2-C evolved (varying from 83 to 240 μg g−1 soil), compared to the control with, overall, less CO2-C being evolved as the number of AD-RW cycles increased. In the first cycle, the amount of biomass C decreased by 44% and microbial ATP by 70% while concentrations of extractable C nearly doubled. However, all rapidly recovered and within 1.3 d after rewetting, biomass C was 87% and ATP was 78% of the initial concentrations measured prior to air-drying. Similarly, by 2 d, extractable organic C had decreased to a similar concentration to the original. After the five AD-RW cycles, the amounts of total and 14C-labelled biomass C remaining in the soil accounted for 60 and 40% of those in the similarly incubated control soil, respectively. Soil biomass ATP concentrations following the first AD-RW cycle remained remarkably constant (ranging from about 10 to 14 μmol ATP g−1 biomass C) and very similar to the concentration in the fresh soil prior to air-drying. We developed a simple mathematical procedure to estimate the proportion of CO2-C derived from biomass C and non-biomass C during AD-RW. From it, we estimate that, over the five AD-RW cycles, about 60% of the CO2-C evolved came from mineralisation of non-biomass organic C and the remainder from the biomass C itself.  相似文献   

15.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   

16.
Past semi-natural grassland extent is thought to have a major influence on contemporary species richness in rural landscapes. The loss of grasslands over the last 300 years was reconstructed for 12 rural landscapes in Sweden, ranging from open modern agricultural landscapes to more forested landscapes. Old maps and aerial photographs from 1950s and today were used to reconstruct landscape patterns in four time-steps to investigate how present plant species richness relates to past grassland extent and decline in old and new grassland habitats. The relative importance of soil properties on the timing of grassland decline was assessed. Plant species occurrence was recorded in managed and abandoned grassland habitats in each landscape.Past and present grassland distribution was a major factor in determining plant species patterns found in grasslands today. All landscapes had an average of 80% grassland 300 years ago. Since then grassland has declined by 90% across all landscapes. Proportion of clay soils influenced the timing of grassland decline, where grasslands in landscapes dominated by clay soils were conversed to crop-fields more than 100 years ago. Grasslands on coarser soils declined later, primarily to forest. Landscapes with more than 10% semi-natural grassland left today had 50% higher species richness in all grasslands, including both abandoned and new grassland. Time since major grassland decline also seems to have an effect on the landscapes’ species richness. The results show that plant species patterns in grasslands at local scales are determined by broader landscape processes which may have occurred many centuries ago.  相似文献   

17.
Edaphic fauna contributes to important ecosystem functions in grassland soils such as decomposition and nutrient mineralization. Since this functional role is likely to be altered by global change and associated shifts in plant communities, a thorough understanding of large scale drivers on below-ground processes independent of regional differences in soil type or climate is essential. We investigated the relationship between abiotic (soil properties, management practices) and biotic (plant functional group composition, vegetation characteristics, soil fauna abundance) predictors and feeding activity of soil fauna after accounting for sample year and study region. Our study was carried out over a period of two consecutive years in 92 agricultural grasslands in three regions of Germany, spanning a latitudinal gradient of more than 500 km. A structural equation model suggests that feeding activity of soil fauna as measured by the bait-lamina test was positively related to legume and grass species richness in both years. Most probably, a diverse vegetation promotes feeding activity of soil fauna via alterations of both microclimate and resource availability. Feeding activity of soil fauna also increased with earthworm biomass via a pathway over Collembola abundance. The effect of earthworms on the feeding activity in soil may be attributed to their important role as ecosystem engineers. As no additional effects of agricultural management such as fertilization, livestock density or number of cuts on bait consumption were observed, our results suggest that the positive effect of legume and grass species richness on the feeding activity in soil fauna is a general one that will not be overruled by regional differences in management or environmental conditions. We thus suggest that agri-environment schemes aiming at the protection of belowground activity and associated ecosystem functions in temperate grasslands may generally focus on maintaining plant diversity, especially with regard to the potential effects of climate change on future vegetation structure.  相似文献   

18.
The effects of grazing on the richness of understorey plant communities are predicted to vary along gradients of resources and tree cover. In temperate Australia livestock management has involved phosphorus addition and tree removal but little research has examined how the effects of grazing on plant species richness may vary with these management regimes. Patterns of understorey plant species richness were examined in 519, 0.09 ha quadrats in grazed pastures and remnant grassy forests and woodlands in southern Australia. Sheep grazing was the primary land use and sites varied widely in grazing frequency and density, tree cover and phosphorus fertiliser history. Using an information theoretic approach the available data provides strong evidence that the effect of grazing on total species richness varies according to available phosphorus and tree cover. Intermittent grazing and no grazing were associated with high total and native plant richness, but only at low phosphorus concentrations. Phosphorus was strongly negatively correlated with richness, particularly at low grazing frequency. Total species richness was positively correlated with tree cover except under frequent grazing at high stocking rates, suggesting that heavy grazing eliminates spatial and temporal heterogeneity imposed by trees. Native plant species richness was negatively correlated with a history of cultivation, positively correlated with tree cover and varied according to landscape position and geological substrate. Frequent high density grazing, particularly when associated with clearing, cultivation and fertiliser addition, was associated with the persistence of very few native plant species. In contrast, the richness of exotic plant species was relatively invariant and performance of the best model was low. While several studies have highlighted the importance of the grazed and cleared matrix for the conservation of native plant species, this benefit may be limited in landscapes where intensive grazing management systems dominate. Strong evidence for interactions between grazing, phosphorus and tree cover suggest that failure to consider other land use practices associated with grazing management systems could lead to erroneous conclusions regarding vegetation responses to livestock grazing.  相似文献   

19.
利用中国稻-麦轮作O3FACE(Free-air O3 concentration enrichment)试验平台,研究了连续3年大气O3浓度升高(比周围大气高50%)对稻田表层(0~20 cm)土壤团聚体、土壤容重及孔隙度和氮磷钾养分含量的影响。结果表明,大气O3浓度升高显著增加耕层土壤0.25~0.053 mm团聚体23.5%和降低<0.053 mm团聚体24.6%。O3污染具有增大0~10 cm土层和降低10~20 cm土层土壤容重的趋势,0~10 cm土壤中气体孔隙度显著减小39.8%,10~20 cm土壤中毛管孔隙度显著增加9.1%和气体孔隙度显著减小32.4%,改变了固、液、气三相比。长期O3污染显著降低土壤全氮含量10.5%和速效钾13.3%,显著增加有效磷40.8%,但对有效氮未产生显著影响。结果表明,长期臭氧污染将改变土壤物理结构和养分物质的生物地球化学循环。  相似文献   

20.
Human activities are causing climatic changes and alter the composition and biodiversity of ecosystems. Climate change has been and will be increasing the frequency and severity of extreme climate events and natural disasters like floods in many ecosystems. Therefore, it is important to investigate the effects of disturbances on ecosystems and identify potential stabilizing features of ecological communities. In this study, soil microbial and nematode communities were investigated in a grassland biodiversity experiment after a natural flood to investigate if plant diversity is able to attenuate or reinforce the magnitude of effects of the disturbance on soil food webs. In addition to community analyses of soil microorganisms and nematodes, the stability indices proportional resilience, proportional recovery, and proportional resistance were calculated. Generally, soil microbial biomass decreased significantly due to the flood with the strongest reduction in gram-negative bacteria, while gram-positive bacteria were less affected by flooding. Fungal biomass increased significantly three months after the flood compared to few days before the flood, reflecting elevated availability of dead plant biomass in response to the flood. Similar to the soil microbial community, nematode community structure changed considerably due to the flood by favoring colonizers (in the broadest sense r-strategists; c–p 1, 2 nematodes), particularly so at high plant diversity. None of the soil microbial community stability indices and few of the nematode stability indices were significantly affected by plant diversity, indicating limited potential of plant diversity to buffer soil food webs against flooding disturbance. However, plant diversity destabilized colonizer populations, while persister populations (in the broadest sense K-strategists; c–p 4 nematodes) were stabilized, suggesting that plant diversity can stabilize and destabilize populations depending on the ecology of the focal taxa. The present study shows that changes in plant diversity and subsequent alterations in resource availability may significantly modify the compositional shifts of soil food webs in response to disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号