首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Garcinol, a polyisoprenylated benzophenone, was purified from Garcinia indica fruit rind. The effects of garcinol and curcumin on cell viability in human leukemia HL-60 cells were investigated. Garcinol and curcumin displayed strong growth inhibitory effects against human leukemia HL-60 cells, with estimated IC(50) values of 9.42 and 19.5 microM, respectively. Garcinol was able to induce apoptosis in a concentration- and time-dependent manner; however, curcumin was less effective. Treatment with garcinol caused induction of caspase-3/CPP32 activity in a dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly(ADP-ribose) polymerase (PARP). Pretreatment with caspase-3 inhibitor inhibited garcinol-induced DNA fragmentation. Treatment with garcinol (20 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. The cleavage of D4-GDI, an abundant hematopoietic cell GDP dissociation inhibitor for the Ras-related Rho family GTPases, occurred simultaneously with the activation of caspase-3 but preceded DNA fragmentation and the morphological changes associated with apoptotic cell death. Of these, Bcl-2, Bad, and Bax were studied. The level of expression of Bcl-2 slightly decreased, while the levels of Bad and Bax were dramatically increased in cells treated with garcinol. These results indicate that garcinol allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA and induces DFF-45 (DNA fragmentation factor) degradation. It is suggested that garcinol-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3 and caspase-2, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by garcinol may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

3.
Shikonin is a main constituent of the roots of Lithospermum erythrorhizon that has antimutagenic activity. However, its other biological activities are not well-known. Shikonin displayed a strong inhibitory effect against human colorectal carcinoma COLO 205 cells and human leukemia HL-60 cells, with estimated IC(50) values of 3.12 and 5.5 microM, respectively, but were less effective against human colorectal carcinoma HT-29 cells, with an estimated IC(50) value of 14.8 microM. Induce apoptosis was confirmed in COLO 205 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by loss of mitochondrial membrane potential, reactive oxygen species (ROS) generation, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor (DFF-45) were accompanied by activation of caspase-9 and -3 triggered by shikonin in COLO 205 cells. Here, we found that shikonin-induced apoptotic cell death was accompanied by upregulation of p27, p53, and Bad and down-regulation of Bcl-2 and Bcl-X(L), while shikonin had little effect on the levels of Bax protein. Taken together, we suggested that shikonin-induced apoptosis is triggered by the release of cytochrome c into cytosol, procaspase-9 processing, activation of caspase-3, degradation of PARP, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by shikonin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

4.
The inhibitory effects of five tea polyphenols, namely theaflavin (TF1), theaflavin-3-gallate (TF2), theaflavin-3,3'-digallate (TF3), (-)-epigallocatechin-3-gallate (EGCG), and gallic acid, and propyl gallate (PG) on xanthine oxidase (XO) were investigated. These six antioxidant compounds reduce oxidative stress. Theaflavins and EGCG inhibit XO to produce uric acid and also act as scanvengers of superoxide. TF3 acts as a competitive inhibitor and is the most potent inhibitor of XO among these compounds. Tea polyphenols and PG all have potent inhibitory effects (>50%) on PMA-stimulated superoxide production at 20 approximately 50 microM in HL-60 cells. Gallic acid (GA) showed no inhibition under the same conditions. At 10 microM, only EGCG, TF3, and PG showed significant inhibition with potency of PG > EGCG > TF3. The superoxide scavenging abilities of these six compunds are as follows: EGCG > TF2 > TF1 > GA > TF3 > PG. PG was the most potent inhibitor of PMA-stimulated H(2)O(2) production in HL-60 cells. The order of H(2)O(2) scavenging ability was TF2 > TF3 > TF1 > EGCG > PG > GA. Therefore, the antioxidative activity of tea polyphenols and PG is due not only to their ability to scavenge superoxides but also to their ability to block XO and related oxidative signal transducers.  相似文献   

5.
This study examined the growth inhibitory effects of the structurally related beta-diketones compounds in human cancer cells. Here, we report that 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB) induces growth inhibition of human cancer cells and induction of apoptosis in A431 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of HMDB-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that HMDB induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bad and p21; down-regulation of Bcl-2, Bcl-XL, Bid, p53, and fatty acid synthase; and cleavage of Bax were found in HMDB-treated A431 cells. Glutathione and N-acetylcysteine (NAC) suppress HMDB-induced apoptosis. HMDB markedly enhanced growth arrest DNA damage inducible gene 153 (GADD153) mRNA and protein in a time- and concentration-dependent manner. NAC prevented up-regulation of GADD153 mRNA expression caused by HMDB. These findings suggest that HMDB creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in A431 cells.  相似文献   

6.
Acacetin (5,7-dihydrocy-4'-methoxy flavone), which is a flavonoid compound, possesses anti-peroxidative and anti-inflammatory effects. The effects of acacetin on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that acacetin was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Acacetin-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of acacetin-induced apoptosis was also investigated. Treatment with acacetin caused induction of caspase-3 activity in a time-dependent manner, but not caspase-1 activity, and induced the degradation of DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Cell death was completely prevented by a pancaspase inhibitor, Z-Val-Ala-Asp-fluoromethyl ketone. Furthermore, treatment with acacetin caused a rapid loss of mitochondrial transmembrane potential, stimulation of reactive oxygen species (ROS), release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. Antioxidants such as N-acetylcysteine and catalase, but not superoxide dismutase, allopurinol, or pyrrolidine dithiocarbamate, significantly inhibited acacetin-induced cell death. In addition, it was found that acacetin promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in acacetin-induced apoptosis. On the other hand, the results showed that acacetin-induced apoptosis was accompanied by up-regulation of Bax and p53, down-regulation of Bcl-2, and cleavage of Bad. Taken together, these results suggest that ROS production and a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to acacetin-induced apoptosis in AGS cells. The induction of apoptosis by acacetin may provide a pivotal mechanism for its cancer chemopreventive action.  相似文献   

7.
Oolong tea theasinensins are a group of tea polyphenols different from green tea catechins and black tea theaflavins. The present study reports the inhibitory effects of oolong tea theasinensins on the expression of cyclooxygenase-2 (COX-2) and underlying molecular mechanisms in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. The structure-activity data revealed that the galloyl moiety of theasinensins played an important role in the inhibitory actions. Theasinensin A, a more potent inhibitor, caused a dose-dependent inhibition of mRNA, protein, and promoter activity of COX-2. An electrophoretic mobility shift assay (EMSA) revealed that theasinensin A reduced the complex of NF-κB- and AP-1-DNA in the promoter of COX-2. Signaling analysis demonstrated that theasinensin A attenuated IκB-α degradation, nuclear p65 accumulation, and c-Jun phosphorylation. Furthermore, theasinensin A suppressed the phosphorylation of MAPKs, IκB kinase α/β (IKKα/β), and TGF-β activated kinase (TAK1). These data demonstrated that the down-regulation of TAK1-mediated MAPKs and NF-κB signaling pathways might be involved in the inhibition of COX-2 expression by theasinensin A. These findings provide the first molecular basis for the anti-inflammatory properties of oolong tea theasinensins.  相似文献   

8.
This study demonstrated that ergocalciferol was able to inhibit leukemia cell growth in a concentration-dependent manner. Exploration of the acting mechanisms involved this event revealed that ergocalciferol induced DNA fragmentation and increased sub-G1 DNA contents in HL-60 cells, both of which are hallmarks of apoptosis. Analysis of the integrity of mitochondria demonstrated that ergocalciferol caused loss of mitochondrial membrane potential with release cytochrome c to cytosol, generation of reactive oxygen species (ROS), and depletion of glutathione (GSH), suggesting that ergocalciferol may induce apoptosis in HL-60 cells through a ROS-dependent pathway. Further results show that caspases-2, -3, -6, and -9 were all activated by ergocalciferol, together with cleavage of the downstream caspase-3 targets, DNA fragmentation factor (DFF-45), and poly(ADP-ribose) polymerase. In addition, ergocalciferol led to the increase in pro-apoptotic factor Bax accompanied with the decrease in anti-apoptotic member Mcl-1, and the reduced Mcl-1 to Bax ratio may be a critical event concerning mitochondrial decay by ergocalciferol. Furthermore, ergocalciferol also led to induction of Fas death receptor closely linked to caspase-2 activation, suggesting the involvement of a Fas-mediated pathway in ergocalciferol-induced apoptosis. Totally, these findings suggest that ergocalciferol causes HL-60 apoptosis via a modulation of mitochondria involving ROS production, GSH depletion, caspase activation, and Fas induction. On the basis of anticancer activity of ergocalciferol, it may be feasible to develop chemopreventive agents from edible mushrooms or hop.  相似文献   

9.
Polyphenol-rich apple extracts have been reported to suppress human colon cancer cell growth in vitro. The protein kinase C (PKC) is among the signaling elements known to play an important role in colon carcinogenesis. In the present study, we investigated whether apple polyphenols affect PKC activity and induce apoptosis in the human colon carcinoma cell line HT29. A polyphenol-rich apple juice extract (AE02) was shown to inhibit cytosolic PKC activity in a cell-free system. In contrast, incubation of HT29 cells for 1 or 3 h with AE02 up to 2 mg/mL did not affect the cytosolic PKC activity. After prolonged incubation (24 h), cytosolic PKC activity was modulated, albeit a u-shaped curve of effectiveness was observed, with an initial inhibitory effect followed by the recurrence and even induction of enzyme activity. Concomitantly, in the cytosol, a significant decrease of the protein levels of PKCalpha, PKCbetaII, and PKCgamma together with a significant increase of a proapoptotic PKCdelta fragment was observed. However, the effects on the protein levels of these PKC isoforms in the cytosol were not associated with translocation between the different cellular compartments but might instead result from the onset of apoptosis. Indeed, the treatment with AE02 was shown to induce apoptosis by the activation of caspase-3, DNA fragmentation, and cleavage of poly(ADP ribose) polymerase. So far, identified and available constituents of the apple extract did not contribute substantially to the observed effects on PKC and apoptosis induction. In summary, apple polyphenols were found to inhibit PKC activity in a cell-free system. However, our results indicate that within intact cells PKC does not represent the primary target of apple polyphenols but appears to be affected in the course of apoptosis induction.  相似文献   

10.
The effects of tea polyphenols on the invasion of highly metastatic human fibrosarcoma HT1080 cells through a monolayer of human umbilical vein endothelial cells (HUVECs) and the accompanying basal membrane were investigated. Among the tea polyphenols tested, epicatechin gallate (ECg), epigallocatechin gallate (EGCg), and theaflavin strongly suppressed the invasion of HT1080 cells into the monolayer of HUVECs/gelatin membrane, whereas epicatechin, epigallocatechin, tea flavonols, tea flavones, and gallate derivatives had no effect. Both theaflavin-digallate and theasinensin D showed a weak invasion inhibitory effect. ECg significantly inhibited the invasion without cytotoxicity against cancer cells and HUVECs. Ester-type catechins (ECg and EGCg) and theaflavin strongly suppressed the gelatin degradation mediated by matrix metalloproteinase (MMP) 2 and MMP-9, which were secreted into the conditioned medium of HT1080 cells. In conclusion, among the tea polyphenols tested, ECg was considered to be the agent with the most potential antimetastasis activity because it inhibited invasion in the absence of cytotoxicity.  相似文献   

11.
Anthocyanidins that are reddish pigments widely distributed in fruit and vegetables have been reported to possess antioxidant and anticancer activities. To understand the molecular basis of the putative anticancer activity of anthocyanidins, we investigated the antiproliferation effects of anthocyanidins in human hepatoma cell lines. Delphinidin, cyanidin, and malvidin exhibited strong growth inhibitory effects against human hepatoma HepG(2), but were less effective against Hep3B. According to the appearance of the caspase-3 fragments and stimulated proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) in time-dependent studies, delphinidin induced apoptotic cell death characterized by internucleosomal DNA fragmentation and caused a rapid induction of caspase-3 activity. RT-PCR and Western blot data revealed that delphinidin stimulated an increase in the c-Jun and JNK phosphorylation expression at mRNA and protein levels, respectively. Moreover, delphinidin-induced apoptotic cell death was accompanied by up-regulation of Bax and down-regulation of Bcl-2 protein. Dephinidin-induced DNA fragmentation was blocked by N-acetyl-l-cysteine and catalase, suggesting that the death signaling was triggered by oxidative stress. Our experiments provide evidence that delphinidin is an effective apoptosis inducer in HepG(2) cells through regulation of Bcl-2 family moleculars and activation of c-Jun N-terminal kinase cascade. The results suggest that induction of apoptosis by anthocyanidins is a pivotal mechanism of their cancer chemopreventive functions.  相似文献   

12.
This study examined the growth inhibitory effects of structurally related polymethoxylated flavones in human cancer cells. Here, we report that 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-OH-HxMF) induces growth inhibition of human cancer cells and induction of apoptosis in HL-60 cells through modulation of mitochondrial functions regulated by reactive oxygen species (ROS). ROS generation occurs in the early stages of 5-OH-HxMF-induced apoptosis, preceding cytochrome c release, caspase activation, and DNA fragmentation. The changes occurred after single breaks in DNA were detected, suggesting that 5-OH-HxMF induced irreparable DNA damage, which in turn triggered the process of apoptosis. Up-regulation of Bax was found in 5-OH-HxMF-treated HL-60 cells. In addition, a caspase-independent pathway indicated by endonuclease G also contributed to apoptosis caused by 5-OH-HxMF. Antioxidants suppress 5-OH-HxMF-induced apoptosis. 5-OH-HxMF markedly enhanced growth arrest DNA damage-inducible gene 153 (GADD153) protein in a time-dependent manner. N-acetylcysteine (NAC) and catalase prevented up-regulation of GADD153 expression caused by 5-OH-HxMF. These findings suggest that 5-OH-HxMF creates an oxidative cellular environment that induces DNA damage and GADD153 gene activation, which in turn helps trigger apoptosis in HL-60 cells. Meanwhile, ROS were proven an important inducer in this apoptotic process. The C-5 hydroxyl on the ring of 5-OH-HxMF was found to be essential for the antiproliferative and apoptosis-inducing activity. Our study identified the novel mechanisms of 5-OH-HxMF-induced apoptosis and indicated that these results have significant applications as potential chemopreventive and chemotherapeutic agents.  相似文献   

13.
14.
The bitter acids of hops (Humulus lupulus L.) mainly consist of alpha-acids, beta-acids, and their oxidation products that contribute the unique aroma of the beer beverage. Hop bitter acids displayed a strong growth inhibitory effect against human leukemia HL-60 cells, with an estimated IC(50) value of 8.67 microg/mL, but were less effective against human histolytic lymphoma U937 cells. Induction of apoptosis was confirmed in HL-60 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by dissipation of mitochondrial membrane potential, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of PARP and DFF-45 were accompanied with activation of caspase-9 and -3 triggered by hop bitter acids in HL-60 cells. The change in the expression of Bcl-2, Bcl-X(L), and Bax in response to hop bitter acids was studied, and the Bcl-2 protein level slightly decreased; however, the Bcl-X(L) protein level was obviously decreased, whereas the Bax protein level was dramatically increased, indicating that the control of Bcl-2 family proteins by hop bitter acids might participate in the disruption of mitochondrial integrity. In addition, the results showed that hop bitter acids promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in hop bitter acids-induced cells. Taken together, these findings suggest that a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to cell death induced by hop bitter acids. The induction of apoptosis by hop bitter acids may offer a pivotal mechanism for their chemopreventive action.  相似文献   

15.
Pterostilbene, an active constituent of blueberries, is known to possess anti-inflammatory activity and also induces apoptosis in various types of cancer cells. Here, the effects of pterostilbene on cell viability in human gastric carcinoma AGS cells were investigated. This study demonstrated that pterostilbene was able to inhibit cell proliferation and induce apoptosis in a concentration- and time-dependent manner. Pterostilbene-induced cell death was characterized with changes in nuclear morphology, DNA fragmentation, and cell morphology. The molecular mechanism of pterostilbene-induced apoptosis was also investigated. The results show the caspase-2, -3, -8, and -9 are all activated by pterostilbene, together with cleavage of the downstream caspase-3 target DNA fragmentation factor (DFF-45) and poly(ADP-riobse) polymerase. Moreover, the results indicate that the Bcl-family of proteins, the mitochondrial pathway, and activation of the caspase cascade are responsible for pterostilbene-induced apoptosis. Pterostilbene markedly enhanced the expression of growth arrest DNA damage-inducible gene 45 and 153 (GADD45 and GADD153) in a time-dependent manner. Flow cytometric analysis indicated that pterostilbene blocked cell cycle progression at G1 phase in a dose- and time-dependent manner. Pterostilbene increased the p53, p21, p27, and p16 proteins and decreased levels of cyclin A, cyclin E, cyclin-dependent kinase 2 (Cdk2), Cdk4, and Cdk6, but the expression of cyclin D1 was not affected. Over a 24 h exposure to pterostilbene, the degree of phosphorylation of Rb was decreased after 6 h. In summary, pterostilbene induced apoptosis in AGS cells through activating the caspase cascade via the mitochondrial and Fas/FasL pathway, GADD expression, and by modifying cell cycle progress and changes in several cycle-regulating proteins. The induction of apoptosis by pterostilbene may provide a pivotal mechanism of the antitumor effects and for treatment of human gastric cancer.  相似文献   

16.
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.  相似文献   

17.
Benzyl isothiocyanates (BITC), a member of the isothiocyanate (ITC) family, inhibits cell growth and induces apoptosis in many types of human cancer cell lines. The present study investigated mechanisms underlying BITC-induced apoptosis in A375.S2 human melanoma cancer cells. To observe cell morphological changes and viability, flow cytometric assays, cell counting, and a contrast-phase microscopic examination were carried out in A375.S2 cells after BITC treatment. Cell cycle distribution and apoptosis were assessed with the analysis of cell cycle by flow cytometric assays, DAPI staining, propidium iodide (PI), and annexin V staining. Apoptosis-associated factors such as reactive oxygen species (ROS) formation, loss of mitochondrial membrane potential (ΔΨ(m)), intracellular Ca(2+) release, and caspase-3 activity were evaluated by flow cytometric assays. Abundance of cell cycle and apoptosis associated proteins was determined by Western blotting. AIF and Endo G expression was examined by confocal laser microscope. Results indicated that (1) BITC significantly reduced cell number and induced cell morphological changes in a dose-dependent manner in A375.S2 cells; (2) BITC induced arrest in cell cycle progression at G(2)/M phase through cyclin A, CDK1, CDC25C/Wee1-mediated pathways; (3) BITC induced apoptosis and increased sub-G(1) population; and (4) BITC promoted the production of ROS and Ca(2+) and loss of ΔΨ(m) and caspase-3 activity. Furthermore, BITC induced the down-regulation of Bcl-2 expression and induced up-regulation of Bax in A375.S2 cells. Moreover, BITC-induced cell death was decreased after pretreatment with N-acetyl-l-cysteine (NAC, a ROS scavenger) in A375.S2 cells. In conclusion, the results showed that BITC promoted the induction of G(2)/M phase arrest and apoptosis in A375.S2 human melanoma cells through ER stress- and mitochondria-dependent and death receptor-mediated multiple signaling pathways. These data suggest that BITC has potential as an agent for the treatment of melanoma.  相似文献   

18.
Muscadine grapes have unique aroma and flavor characteristics. Although a few studies reported high polyphenols content of muscadine grapes, little research has been conducted to evaluate the phenolic compounds bioactivities in any muscadine grape cultivar. The objective of this study was to evaluate the effect of phenolic compounds in muscadine grapes on cancer cell viability and apoptosis. Four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were assessed in this study. Phenolic compounds were extracted from muscadine skins and further separated into phenolic acids, tannins, flavonols, and anthocyanins using HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC. Anthocyanin fractions were more than 90% pure. The effect of different fractions on the viability and apoptosis of two colon cancer cell lines (HT-29 and Caco-2) was evaluated. A 50% inhibition of cancer cell population growth for the two cell lines was observed at concentrations of 1-7 mg/mL for crude extracts. The phenolic acid fractions showed a 50% inhibition at the level of 0.5-3 mg/mL. The greatest inhibitory activity was found in the anthocyanin fraction, with a 50% inhibition at concentrations of approximately 200 microg/mL in HT-29 and 100-300 microg/mL in Caco-2. Anthocyanin fractions also resulted in 2-4 times increase in DNA fragmentation, indicating the induction of apoptosis. These findings suggest that polyphenols from muscadine grapes may have anticancer properties.  相似文献   

19.
The triterpenoids methylantcinate B (MAB) and antcin B (AB), isolated from the medicinal mushroom Antrodia camphorata , have been identified as strong cytotoxic agents against various type of cancer cells; however, the mechanisms of MAB- and AB-induced cytotoxicity have not been adequately explored. This study investigated the roles of caspase cascades, reactive oxygen species (ROS), DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in MAB- and AB-induced apoptosis of hepatocellular carcinoma (HCC) HepG2 cells. Here, we showed that MAB and AB induced apoptosis in HepG2 cells, as characterized by increased DNA fragmentation, cleavage of PARP, sub-G1 population, chromatin condensation, loss of mitochondrial membrane potential, and release of cytochrome c. Increasing the levels of caspase-2, -3, -8, and -9 activities was involved in MAB- and AB-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that MAB and AB triggered the caspase-dependent apoptotic pathway. Additionally, the enhanced apoptotic effect correlates with high expression of Fas, Fas ligand, as well as Bax and decreased protein levels of Bcl-(XL) and Bcl-2, suggesting that both the extrinsic and intrinsic apoptosis pathways were involved in the apoptotic processes. Incubation of HepG2 cells with antioxidant enzymes superoxide dismutase and catalase and antioxidants N-acetylcysteine and ascorbic acid attenuated the ROS generation and apoptosis induced by MAB and AB, which indicate that ROS plays a pivotal role in cell death. NADPH oxidase activation was observed in MAB- and AB-stimulated HepG2 cells; however, inhibition of such activation by diphenylamine significantly blocked MAB- and AB-induced ROS production and increased cell viability. Taken together, our results provide the first evidence that triterpenoids MAB and AB induced a NADPH oxidase-provoked oxidative stress and extrinsic and intrinsic apoptosis as a critical mechanism of cause cell death in HCC cells.  相似文献   

20.
This study was designed to investigate the effect of green tea catechins, especially (-)-epigallocatechin gallate (EGCG), on the apoptosis of 3T3-L1 preadipocytes. Preadipocyte apoptosis as indicated by formation of DNA fragments was induced by EGCG in dose-dependent manners. While EGCG was demonstrated to decrease Cdk2 expression and activity and increase caspase-3 activity, overexpression of Cdk2 and treatment with the caspase-3 inhibitor respectively prevented preadipocytes from induction of DNA fragmentation and caspase-3 activity by doses of 100-400 muM of EGCG. This suggests the Cdk2- and caspase-3-dependent apoptotic effects of EGCG. Moreover, EGCG was more effective than EC, ECG, and EGC in changing the apoptotic signals. Results of this study may relate to the mechanism by which EGCG modulates body weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号