首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提升温州蜜柑可溶性固形物近红外光谱无损检测的精确度,对适合温州蜜柑可溶性固形物无损检测的近红外光谱进行了研究。结果表明,利用间隔偏最小二乘法,建立了温州蜜柑可溶性固形物与近红外光谱模型之间的关系,选出可溶性固形物的显著特征波段为890~918 nm,备选特征波段为830~858 nm、860~888 nm、650~688 nm。组合这些波段再次建模,可大大提高模型的预测能力,模型的拟合优度高达0.904 0,交互验证均方根误差降到0.504 6° Birx。  相似文献   

2.
【目的】研究基于近红外漫反射光谱的多品种桃可溶性固形物含量的无损检测技术。【方法】在获得3个不同品种桃近红外漫反射光谱的基础上,采用多元散射校正(MSC)方法处理原始光谱,以SPXY算法划分样品集,分别建立了可溶性固形物含量的偏最小二乘回归(PLSR)、极限学习机(ELM)和最小二乘支持向量机(LSSVM)预测模型,并比较和评价了移动窗口偏最小二乘法(MWPLS)和连续投影算法(SPA)优选有效特征波长对于简化模型运算量、改善模型预测性能的影响。【结果】虽然全光谱可以获得较好的识别效果,但是模型比较复杂;MWPLS与SPA优选的有效特征波长均能有效地减少建模变量并简化模型,但MWPLS在提高建模效率和改善模型预测精度方面有更明显的优势;PLSR、ELM与LSSVM模型都取得了较理想的预测结果,其中PLSR方法较适用于全光谱建模分析;MWPLS-ELM模型对样品集中桃可溶性固形物含量的预测性能最好,其校正相关系数、校正均方根误差、预测相关系数和预测均方根误差分别为0.991,0.397,0.983和0.497。【结论】近红外漫反射技术可用于多品种桃可溶性固形物含量的准确、无损检测,也为其他品种果品的内部品质指标快速、无损检测提供了技术借鉴。  相似文献   

3.
针对厚皮水果内部品质检测存在的问题,采用基本水果中密度与含糖量的函数关系,以质量和体积关系检测水果密度,结合偏最小二乘法对水果密度和含糖度进行曲线拟合得出水果含糖量,进而研制了一种以单片机为控制核心的厚皮水果糖度无损检测装置。实验(以蜜柚为例)表明,蜜柚的密度和含糖量相关系数高达0.984 6,因此利用蜜柚密度来检测蜜柚的含糖量具有可行性。  相似文献   

4.
以晚熟脐橙为试材,采用近红外光谱技术与常规检测分析相结合的方法,对比和评价了基于果面和果汁光 谱信息的脐橙可溶性固形物(TSS)含量预测模型精度,并筛选了可溶性固形物预测特征光谱.通过对果面和果汁原 始光谱的多元散射校正(MSC)预处理,利用偏最小二乘法(PLS)分别建立了TSS预测模型,其中,当果面光谱主因 子为5时,其对于可溶性固形物预测相关系数为最大(R=0.8367)、预测均方根误差(RMSEP)为最小(RMSEP= 0.4903);而当果汁光谱主因子为8时,其对果汁可溶性固形物的预测相关系数为最大(R=0.9058)、预测均方根 误差为最小(RMSEP=0.5236).采用联合区间偏最小二乘法(siPLS)对果面和果汁光谱特征波段组合进行筛选, 获得果面光谱建模特征波段组合为1000~1107,1750~1857,2071~2177和2178~2284nm,建立的校正集和 预测集模型相关系数分别为0.9462和0.9020,RMSECV为0.3596,RMSEP为0.4309;获得用于果汁光谱建模 的特征波段组合为1000~1125,1251~1375,1376~1500和1626~1750nm,校正和预测模型相关系数分别为 0.9894和0.9596,RMSECV为0.1631,RMSEP为0.3128.结果表明:试验所筛选出的果面和果汁近红外光谱 特征波段组合建立的校正模型,均可用于晚熟脐橙TSS含量的无损检测,果汁光谱对于甜橙果实固形物含量预测 精度高于果面光谱,近红外光谱技术用于橙汁固形物检测是可行的.  相似文献   

5.
近红外光谱法无损检测番茄可溶性固形物含量的研究   总被引:2,自引:0,他引:2  
应用近红外漫反射光谱技术对番茄可溶性固形物含量进行了非破坏性检测分析,比较了10种不同的光谱预处理方法对偏最小二乘法(PLS)模型的影响.结果表明,常数偏移消除是适合建立近红外光谱法无损检测番茄可溶性固形物含量PLS模型的最优光谱预处理方法,最能反映番茄可溶性固形物含量信息的光谱波段为11998.9-5449.8cm-1和4601.3~4246.5 cm-1.用偏最小二乘法建立的定量分析模型,其预测值和实测值的相关系数为0.954,校正标准差为0.321%,预测标准差为0.475%.近红外漫反射光谱法可非破坏性分析番茄中可溶性固形物的含量.  相似文献   

6.
基于便携式近红外光谱仪检测梨可溶性固形物   总被引:1,自引:0,他引:1  
探索采用便携式近红外光谱仪,利用不同光谱预处理算法及波长优选法建立检测模型检测梨可溶性固形物含量(SSC)的可行性。比较了一阶导数(1st)、二阶导数(2nd)、多元散射校正(MSC)、标准正态变量变换(SNV)等9种预处理方法进行PLS建模的效果,确定最佳预处理方法。用相关系数法、无信息变量消除法(UVE)、向后区间偏最小二乘法(biPLS)和向后区间偏最小二乘法结合遗传算法(biPLS+GA)优选波长,用偏最小二乘法(PLS)建立梨SSC的定标模型,根据各个模型的校正集和预测集的相关系数(r)和交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)评价定标模型的精度和稳定性。结果表明:经过SNV预处理后的建模效果最好,校正集和预测集的相关系数r分别为0.890 8和0.868 9,RMSECV和RMSEP分别为0.592 5和0.630 8;相较于其他3种波长优选法,biPLS+GA方法不仅优选的波长数少,而且所建模型的预测效果更好,校正集和预测集的相关系数分别为0.887 9和0.891 0,RMSECV和RMSEP分别为0.599 9和0.571 3。  相似文献   

7.
【目的】研究成熟期梨可溶性固形物含量的近红外漫反射光谱无损检测技术,为及时、准确地掌握成熟期梨果实的内部品质特性及田间管理、适时采收、合理储藏提供依据。【方法】基于近红外漫反射光谱检测技术分别建立了成熟期砀山酥梨可溶性固形物含量的偏最小二乘(PLS)、广义回归神经网络(GRNN)和偏最小二乘支持向量机动态预测模型(LSSVM),并综合评价了无信息变量消除法(UVE)优选有效特征波数对于简化模型、提高预测性能的影响。【结果】UVE算法能够很好地提高建模效率、有效改善GRNN和LSSVM模型预测精度,而对PLS分析模型效果不明显。3种模型中,LSSVM模型比GRNN和PLS模型具有明显优势,其中UVE-LSSVM模型具有最佳预测精度和适用性,其校正相关系数(Rc)为0.988,校正均方根误差(RMSEC)为0.074,预测相关系数(Rp)为0.922,预测均方根误差(RMSEP)为0.162。【结论】基于近红外光谱技术的UVE-LSSVM模型可用于成熟期梨可溶性固形物含量的无损检测。  相似文献   

8.
赣南脐橙可溶性固形物近红外光谱在线无损检测   总被引:1,自引:0,他引:1  
通过应用近红外漫透射光谱技术结合最小二乘支持向量机等算法,探索脐橙可溶性固形物含量在线无损检测的可行性。139个样本被分成建模集和预测集(103∶36),分别用于建立检测模型和验证检测模型的预测能力。漫透射近红外光谱,经过一阶微分、多元散射校正和移动窗口平滑组合预处理后,分别建立了偏最小二乘、偏最小二乘支持向量机模型,经比较发现,偏最小二乘支持向量机模型的预测能力更强,模型预测的均方根误差和相关系数分别为0.6423%、0.9059。通过对比发现,主成分分析和径向基函数有利于提高最小二乘支持向量机模型的预测能力。结果表明:采用近红外漫透射光谱技术结合最小二乘支持向量机算法能够很好地实现脐橙可溶性固形物含量的在线无损检测。  相似文献   

9.
为准确预测苹果糖度,基于傅里叶变换近红外光谱、偏最小二乘法和深度学习技术,建立了不同的苹果糖度预测模型.使用傅里叶变换近红外光谱仪和折光仪采集160个苹果的光谱与糖度信息,建立不同光谱预处理方法的偏最小二乘法(Partial least square,PLS)模型,通过常用的竞争性自适应重加权算法减少PLS模型计算量,...  相似文献   

10.
为了实现对草莓内部可溶性固形物含量(soluble solids content,SSC)客观、准确、快速和无损检测,采用近红外光谱结合竞争性自适应重加权算法采样(CARS)变量选择以及多变量校正分析的测定方法。164个草莓样本被分成校正集(123个)和预测集(41个)。基于全光谱数据,通过CARS算法获得了可以表征原始光谱信息的117个特征光谱变量。全光谱变量和特征光谱变量分别作为输入构建了偏最小二乘回归PLS和多元线性回归MLR模型,通过比较3类模型发现,基于特征光谱的PLS模型(即CARS-PLS模型)对草莓内部可溶性固形物含量测定性能最优,针对预测集样本,模型预测相关系数rP和均方跟误差RMSEP分别为0.950 9和0.335 2。  相似文献   

11.
【目的】应用近红外光谱漫反射技术在线检测脐橙内部的可溶性固形物含量(SSC)。【方法】以0.3m/s的速度、400W的光照强度获取脐橙(脐橙样品为97个,其中74个为校正集,23个样品为预测集)的漫反射光谱;对比不同光谱预处理方法(平滑、一阶微分、二阶微分等)对偏最小二乘回归(PLSR)所建预测模型性能的影响,建立PLSR、主成分回归(PCR)和多元线性回归(MLR)在线检测脐橙可溶性固形物含量的预测模型。【结果】在520~1 000nm光谱范围,卷积平滑(S-G)能有效提高光谱的信噪比,改善模型预测精度;基于PLSR所建立的预测模型较PCR和MLR更为理想,其预测相关系数(RP)为0.90,预测均方根误差(RMSEP)为0.61。【结论】利用在线近红外光谱技术检测脐橙可溶性固形物含量是可行的。  相似文献   

12.
以10 000~4 000 cm-1波段的近红外光谱响应数据和常规生化方法检测的玉米蛋白质含量为样本数据,先对光谱响应数据进行小波去噪处理,并利用平滑技术对其降维,构建基于以光谱响应数据为输入、蛋白质含量为输出的偏最小二乘回归模型.仿真计算结果表明,利用偏最小二乘回归模型,可以较准确地预测玉米蛋白质含量,结合预测表达式回归系数和变量投影重要性指标VIP得到与蛋白质含量相关性较大的若干波段对应的光谱响应数据,模型在一定程度上揭示了蛋白质含量和光谱响应数据之间的数量关系.  相似文献   

13.
陈素彬  杨华  罗蓉  胡振 《安徽农业科学》2021,49(20):205-209
[目的]为了检测马铃薯的饲用品质,用近红外光谱法建立马铃薯可溶性固形物含量(SSC)快速测定模型.[方法]以偏最小二乘法(PLS)建立原始光谱的校正模型为基础,用蒙特卡洛交互验证法剔除异常样本,经比较选择标准正态变量和均值中心化算法进行光谱预处理、光谱-参考值共生距离法划分样本集,然后对所得数据分别以PLS和最小二乘支持向量机(LS-SVM)建立定量校正模型,并用竞争性自适应重加权采样法和风驱动-差分进化混合算法完成相应模型的特征波长和参数优化.[结果]优化的PLS模型和LS-SVM模型波长变量分别减至全光谱的8.67%、67.80%,二者的Rc 2、Rp 2、RMSEC、RMSEP、RPD分别为0.9708、0.9542、0.2586、0.2628、5.91和0.9873、0.9830、0.1705、0.1734、8.96,LS-SVM模型的各项性能指标全面优于PLS模型.[结论]2种定量模型均可用于马铃薯SSC的实际检测工作.  相似文献   

14.
提出一种应用高光谱成像技术检测葡萄可溶性固形物含量的方法。使用高光谱成像系统采集葡萄漫反射光谱,在500~1 000 nm光谱,采用多元散射校正(MSC)、标准正态变换(SNV)进行光程校正,结合一阶微分(1-Der)、二阶微分(2-Der)、Savitzky-Golay(S-G)平滑方法及其组合对原始光谱进行预处理,建立可溶性固形物含量的偏最小二乘法(PLS)和逐步多元线性回归(SMLR)模型。结果表明:采用PLS和SMLR建模方法均取得较好的预测效果。采用经过MSC、1-Der和S-G平滑相结合预处理后的光谱建立PLS预测模型,校正集的相关系数Rc为0.979 1,RMSEC为0.265,预测集的相关系数Rp为0.962 0,RMSEP为0.372;采用原始光谱、1-Der和SG平滑相结合预处理后的光谱建立SMLR预测模型,校正集的相关系数Rc为0.967 8,RMSEC为0.327,预测集的相关系数Rp为0.947 2,RMSEP为0.394。以上表明,基于高光谱成像技术可以实现采后葡萄可溶性固形物含量的准确无损检测。  相似文献   

15.
为探索近红外漫反射光谱技术快速无损检测草莓酸度的新方法,共采集了100颗草莓漫反射近红外光谱数据(波长范围1 000~1 800 nm).通过采用标准正交变换(SNV)对原始光谱进行预处理后,将全光谱分为10个子区间,通过样本交互验证法优化每个子区间的最佳主成分数并计算区间对应的交互验证均方根误差(RMSECV),得到第4个子区间(共 80个特征波长)对应的预测均方根误差最小.采用遗传算法对第4子区间内的波数点进一步优选出1 483,1 482,1 485,1 460 nm 4个波数点,用这4个波长的光谱信息建立的草莓近红外酸度模型预测集相关系数为 0.937 5,预测集均方根误差为 0.072.结果表明:间隔偏最小二乘法结合遗传算法能筛选出最优波长并能减少建模所用变量,提高检测精度,保证模型的稳健性.  相似文献   

16.
为了探索适合近红外光谱无损检测番茄可溶性固形物含量的光谱预处理方法,比较了平均光谱和10种光谱预处理方法对偏最小二乘法建模效果的影响,常数偏移消除预处理后的光谱,所建偏最小二乘法校正模型的预测值和实测值的相关系数为0.954,校正标准差为0.321%,最能代表番茄可溶性固形物含量信息的光谱区为11998.9~5449.8cm-1和4601.3~4246.5cm-1.结果表明常数偏移消除是近红外光谱无损检测番茄可溶性同形物含量的有效预处理方法.  相似文献   

17.
目的 为监测甜柚Citrus maxima果树生长健康状况及预测甜柚产量,以赣州南康地区一片甜柚果园为研究对象,建立甜柚叶片叶绿素含量检测模型。方法 使用Field Spec4便携式地物光谱仪和SPAD-502叶绿素仪测定甜柚叶片光谱及SPAD值,分别采用单变量回归、逐步回归及偏最小二乘法(PLS)构建其叶绿素含量高光谱无损检测模型并进行精度检验。结果 原始光谱在553 nm处、一阶光谱在692和752 nm处的反射率与叶绿素含量相关性最高,这3个波段为甜柚叶片光谱反射率敏感波段;当主成分个数为4时,PLS具有最高的精度,且基于PLS技术所建立的模型较单变量、逐步回归模型精度更好,模型拟合度较高,其决定系数(r2)最高,为0.869,均方根误差(RMSE)和相对误差(RE)最小,分别为3.013和6.82%。对原始光谱、一阶导数光谱及PLS拟合的估测模型进行对比分析显示,PLS模型无论是从建模样本精度还是模型预测能力方面均优于前2种传统模型。结论 PLS模型适合于利用高光谱数据进行叶绿素含量的估测,可作为甜柚叶绿素含量的最佳无损检测模型。  相似文献   

18.
选取表征社会经济发展的重要指标建立了社会经济系统指标,在对武汉市1990~2012年生态足迹计算结果基础上,应用偏最小二乘法构建了武汉市生态足迹回归模型,并分阶段对其生态足迹驱动力进行了分析。结果表明,1990~2010年间武汉市生态足迹呈上升趋势,主要驱动力为城市化率、人口规模及经济水平的提高;2010年武汉市生态足迹达到高峰值,为2 335.537 hm2,人均生态足迹为2.8 hm2/人,随后生态足迹与GDP及人均可支配收入于2011年开始呈现负相关性,生态足迹与GDP开始呈现倒“U”型转折点,人均生态足迹于2012年下降为2.43 hm2/人;“十二五”期间,武汉市高新技术产业所占比例及第三产业所占比例的增加,能源消耗总量及万元工业能耗的下降,对减缓人口对自然资源的依赖发挥了重要的作用。  相似文献   

19.
伏乃林  黄飞 《安徽农业科学》2011,39(36):22571-22573
[目的]获得精度高、鲁棒性强的玉米近红外光谱淀粉组分检测模型。[方法]用一阶导数和Savitzky.Golay平滑对玉米1300~2298nlTl近红外光谱进行预处理,而后分别以RS(random sampling)、KS(Kennard Stone)、Duplex、SPXY(sample set partitioning based on joint x-y distance)方法选取最佳校正集样本集合,最后分别用PLS(Partial Least Squares)、iPLS(intervalPLS)和siPLS(synergy interval PLS)方法建立校正模型。[结果]采用sPXY方法选取有代表性的校正集合样本,以siPLS方法所建立的近红外光谱玉米淀粉组分校正模型最优,校正样本集合中r为0.9917,RMSECV为n1073,预测样本集合中r达到了0.9944,RMSEP为0.0814。[结论]SPXY-siPLS方法建立的近红外光谱玉米淀粉组分校正模型,不但可以减小参与建模的数据规模.而且缩短了运算时间.预测能力和精度也均得到提高。  相似文献   

20.
用主成分回归和偏最小二乘法定量测定谷物成分   总被引:1,自引:0,他引:1  
用主成分回归和偏最小二乘方法分别处理谷物的付立叶变换近红外漫反射光谱,对谷物中含量分别为 10~(-1)的蛋白质、10~(-2)的脂肪、10~(-3)的赖氨酸进行了定量测定。表明这2种方法与经典化学方法没有系统偏差,结果优于逐步回归分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号