首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于MOD16的澴河流域蒸散发时空分布特征   总被引:6,自引:5,他引:1  
【目的】研究流域尺度上的蒸散发分布规律,为流域水资源评价和农业生产提供依据。【方法】基于2000―2013年的MOD16蒸散发数据集,选取澴河花园站以上流域为研究区,对年际、年内以及不同土地利用类型下的流域实际蒸散发(ET)和潜在蒸散发(PET)进行了研究。【结果】针对本流域ET与PET计算,MOD16数据集的精度总体上符合要求,可用于蒸散发研究;2000―2013年,研究区多年平均ET为635 mm,总体上呈北高南低、东高西低的趋势。多年平均PET为1 536 mm,总体上北部丘陵地区最低,山区最高,其他区域分布较为均衡;ET呈逐年下降趋势,年际变化率5.53 mm/a,显著下降区域分布在平原地区。PET呈上升趋势,年际变化率16.13 mm/a,显著上升区域集中于丘陵地区;以ET和PET差值D反映流域的干旱程度,流域干旱情况呈现上升趋势,在3―6月和9―10月更易出现干旱现象,易旱区域主要为平原地区;不同土地利用类型下的ET在3―11月表现出差异性,从大到小依次为林地草地农田城镇。PET从大到小依次为城镇农田草地林地,林地PET峰值出现在6月,其他均出现在5月。【结论】由于气候条件和人类活动的影响,2000―2013年,澴河流域内ET有所下降,而PET有所上升,平原地区缺水情况最为明显。  相似文献   

2.
土地利用变化对蒸散发的影响是水文等相关领域研究的热点问题。选取淮河上游息县流域作为研究对象,基于1995年和2000年土地利用资料分析土地利用变化,应用分布式双源蒸散发模型计算基于网格的蒸散发能力,分析土地利用变化对不同典型年不同时间尺度蒸散发能力的影响。结果表明:从1995年到2000年,30%流域面积的土地利用发生了变化,其中水田转变为旱地占比最大;发生蒸散发能力变化的大部分网格的季尺度蒸散发能力在不同典型年均呈现不同程度的减小,且夏季最为显著;发生蒸散发能力变化的大部分网格的年尺度蒸散发能力在不同典型年也均呈现不同程度的减小,且减小幅度依枯水年、平水年、丰水年递减。研究成果可为变化环境下水循环演变研究提供支撑,对水土地资源的开发利用也具有参考价值。  相似文献   

3.
研究土地利用变化对横排头流域蒸散发的影响。以1980,1990,2000年土地利用专题地图和横排头流域1980-2009年30a资料,通过GIS技术与Matlab相结合的手段,首先检验了基于Budyko假设的傅抱璞公式在研究流域的适用性,而后应用它分析研究了土地利用变化时的蒸散发规律。研究表明:不同土地利用的傅抱璞公式的v从大到小依次为耕地未使用地林地城镇草地;研究流域砍林使得多年平均实际蒸散发平均增加193mm,而造林使得多年平均实际蒸散发变化平均减少290mm。  相似文献   

4.
探究区域作物生育期实际蒸散发及其空间分布特征,为区域节水潜力评价提供依据.研究结合多源数据(种植结构、遥感数据和气象数据等)和遥感陆面蒸散反演方法,得到作物实际蒸散发(ET),并根据作物不同生长阶段的变化特点结合气象资料估算遥感数据缺失时期的ET.①基于遥感数据和SEBAL模型能够准确反演流域空间尺度的日蒸散发量,其生育初期和中期平均误差分别为11.49%和6.22%.5-7月,日蒸散发逐渐增大,且在7月达到峰值,8-10月日蒸散发逐渐降低,9-10月降低趋势较大;②不同作物之间,生育期ET差异明显,甜菜>土豆>玉米>小麦,分别为619.72 mm、558.67 mm、492.51 mm、456.58 mm.作物生育期ET变化范围分别在476.02~795.73 mm、405.41~684.84 mm、345.11~683.35 mm和313.34~604.62 mm之间;③同种作物因灌溉制度不同,其作物生育期ET在空间上表现出差异性.受流域南北降雨不均影响,4种主要作物生育期ET呈现明显的由南向北递减趋势.北部湖泊附近的小麦,因土壤含水量较高,其生育期ET高于周边其他区域.针对内蒙古察汗淖尔流域内作物生育期ET空间分布差异明显,部分区域地下水超采严重等特点,调整流域内种植结构及灌溉制度尤为重要.  相似文献   

5.
基于遥感技术估算作物蒸散发(Evapotranspiration,ET)对农业用水效率评价和精量灌溉决策具有重要意义。结合Sentinel-2数据和农田连续地面观测资料,利用混合双源蒸散发模型(Hybrid dual-source scheme and trapezoid framework-based evapotranspiration model,HTEM)对宁夏回族自治区中卫市2019年两个试验田玉米主要生育期(5—8月)的蒸散发量进行估算,并用水量平衡法对遥感估算结果进行验证和评价。结果表明:Sentinel-2数据具有高时空分辨率,能够与研究区复杂的种植地块相匹配,减少了混合像元的数量;遥感反演参数与地面观测数据拟合度较高,研究区2019年遥感反演的玉米田净辐射量均方根误差为36.256 W/m2。利用HTEM模型估算可得,主要生育期内研究区两个玉米试验田的日均实际蒸散发量分别为4.269 mm/d和4.339 mm/d,实际蒸散发总量分别为525.114 mm和533.690 mm,其中植被蒸腾量分别为363.483 mm和358.196 mm,生育初期主要以土壤蒸发形式消耗水分,随着作物的生长,在生育中后期主要以植被蒸腾的形式消耗水分。ET遥感反演结果与水量平衡结果之间差别不显著,两个观测点绝对误差分别为13.533 mm和7.774 mm。因此,结合地面连续观测系统和Sentinel-2数据估算研究区玉米生育阶段蒸散发量具有较高的精度,可为作物耗水规律研究及区域农业水管理提供技术支撑。  相似文献   

6.
土地利用方式变化对水循环过程响应机制研究   总被引:2,自引:0,他引:2  
以挠力河流域为研究区,利用1990年和2013年土地利用类型,结合基于格子玻尔兹曼方法(LBM)的TOPMODEL模型定量评价了土地利用方式变化对水循环时空变化过程的影响。结果表明:基于LBM法的TOPMODEL模型可以很好模拟挠力河流域降雨径流水循环过程,对研究区具有较高的适用性;研究区林地、草地和建设用地面积变化不大,对于土地结构变化贡献比较小,而未利用地和旱田部分转为水田对土地结构变化贡献大;由于种植水田,导致5月到10月间的流域总蒸散发量增加、根系区缺水量减少、非饱和带缺水量减少、地表水量减少、地下水量增加;蒸散发增幅达8.9%,根系区缺水量降幅达10.5%,地表水量减少达43%;水田对水文情势影响的差异主要体现在水稻生育期的差异上,分蘖期对蒸散发量、根系区缺水量和非饱和带缺水量影响较大;水田灌溉对水循环过程的影响按变化幅度从大到小的顺序为非饱和带缺水量、根系缺水量、蒸散发量、入根系区水量、出根系区水量和地下径流量,其中入根系区水量差值和出根系区水量差值接近。  相似文献   

7.
蒸散发(Evapotranspiration,ET)是水循环的关键环节,在全球水循环和地表能量平衡中扮演着重要角色,对气候、生态系统和水资源管理等方面都有重要影响。因此,蒸散发数据的质量对全球水资源的精确管理至关重要。在北半球进行3种ET产品的精度验证和时空对比,选择更适用于北半球的ET产品,为加强遥感与地面观测相结合的研究提供建议。利用FluxNet2015通量站点月平均实测数据验证3种ET产品,结果发现PML_V2产品在北半球精度最高,其次是GLDAS,最后是MOD16A2,相关系数R分别是0.66、0.57、0.56;均方根误差RMSE分别是2.46、5.68、12.42 mm/月;平均偏差Bias分别是14.36%、16.86%、35.02%。其中GLDAS ET产品具备日尺度ET监测能力,日平均估计值与通量塔站点测量值的一致性较高,相关系数R为0.74,RMSE和Bias分别为1.62 mm/d和27.90%。总体来说,在时间尺度上,3种ET产品均可模拟出北半球季节变化的特征,即夏季蒸散发量较大,冬季蒸散发量较小。夏季3种ET产品在不同土地覆盖类型上均存在高估现象,其他季节的...  相似文献   

8.
根据内蒙古自治区河套灌区解放闸灌域多年遥感蒸散发数据(2000-2014年),分析了农田实际蒸散发年际变化、空间分布特征以及其与地下水埋深的相关性。结合水量平衡模型对灌域灌溉用水效率进行了评价,同时对大型灌区续建配套及节水改造以来灌域水循环要素年际变化进行了统计分析。结果表明:解放闸灌域农田蒸散发量年际变化呈增加趋势,多年平均蒸散发量为8.56亿m~3(597.30mm);2000、2003、2006、2009、2012和2014年农田蒸散在空间上表现为西部和东北部区域高于其他区域,其空间差异性并未随时间发生明显变化,与地下水埋深空间分布特征相似,蒸散发高值区域发生在地下水埋深较浅区域,潜水蒸发对农田蒸散发量影响不可忽视。节水改造实施以来,灌域净灌溉引水量有所减少,灌溉水利用系数得到提高,地下水位由1.76m降到2.16m,由此表明了节水改造对该地区生态环境改变的积极影响。  相似文献   

9.
传统的新安江模型在计算流域蒸散发能力时仅依据非常有限的几个蒸发站的蒸发皿实测水面蒸发乘以一个折算系数来获得,不能考虑土地利用/覆被、气候特征、植被叶面积指数等因子的时空差异性和土壤特性、流域地形的空间差异性对流域蒸散发量影响。通过将考虑植被叶面积指数动态变化对蒸散发影响的双源蒸散发模型与新安江模型集成,改进了新安江模型的蒸散发计算模块,并以淮河息县水文站以上流域为研究区,以日为时间尺度,基于地形、土地利用、气象及水文资料对息县以上流域2000~2008年降雨径流过程进行模拟,结果表明,基于双源蒸散发的新安江模型能有效地模拟淮河上游降雨径流过程,满足模拟精度要求。研究成果为改进新安江模型中蒸散发计算模块提供了依据,也可为改进的新安江模型在其他流域的应用提供参考。  相似文献   

10.
宁夏地处干旱半干旱地区,地表蒸散发较为强烈,目前对于区域尺度蒸散发的反演是一大难点,常见的蒸散发产品分辨率较低。基于SEBAL模型对宁夏地区地表蒸散发进行了反演,并采用现有数据集对其估算精度进行了验证,结果发现,利用P-M模型和气象站水面蒸发数据验证,相关系数R2的平均值都保持在0.80和0.79以上,利用MOD16蒸散量产品验证,得到R2的平均值保持在0.90以上,均方根误差的平均值为1.03,偏差的平均值为1.76;宁夏地表蒸散量时空变化特征,在空间上,基本呈现为北部平原向南部山区增加趋势特征,在时间上,2001-2021年蒸散量整体呈上升趋势;分析不同土地利用类型地表蒸散量的分布规律,不同土地利用类型地表蒸散量的能力大小依次为:林地>耕地>水域>草地>城市建设用地>裸地,蒸散量均值依次为10.18、8.18、8.12、7.83、7.70、7.48 mm/d。研究结果表明,基于SEBAL模型反演得到的地表蒸散量有较高的精确度,同时该结果具有较高的分辨率以及在干旱半干旱地区有更广的适用性。  相似文献   

11.
阿克苏河流域灌区土地利用变化对蒸散耗水的影响   总被引:2,自引:1,他引:1  
土地利用变化导致蒸散耗水过程和流域水资源供需关系发生变化。【目的】合理估算灌区蒸散耗水量。【方法】以新疆阿克苏河流域灌区为研究对象,结合对土地利用/覆被变化的遥感解译,分析了2000—2014年阿克苏河流域灌区土地利用/覆被变化及其对灌区蒸散耗水量的影响。【结果】(1)2000—2014年,阿克苏河流域灌区土地利用/覆被发生了明显变化,突出表现为耕地面积的显著增加。灌区耕地面积以159.8 km2/a的速度增加,其中,阿克苏河、库河、塔河、托河温宿及托河乌什灌区分别以37.3、37.2、66.1、4.9、20.0 km2/a的速度增加;(2)伴随绿洲耕地面积的扩张,灌区的蒸散发量表现出明显增加趋势。在2000—2014年,阿克苏河流域灌区蒸散耗水量以0.3×108m3/a的速率增加,年内表现为夏季增加最明显;(3)灌区耕地面积的变化直接影响地表蒸散过程。阿克苏河流域灌区的耕地多年平均蒸散发量约为244.3 mm/a,大于天然草地的多年平均蒸散发量150.1 mm/a。【结论】在全球变暖背景下,快速升温和灌区垦植面积的不断扩大,使灌溉引水、蒸散耗水和人类活动用水不断增加,是导致灌区蒸散耗水增加的主要原因。  相似文献   

12.
【目的】探索吉兰泰及周边地区蒸散发的时空变化规律。【方法】以吉兰泰为对象,利用MODIS数据通过SEBAL模型估算了研究区2017年植被生长季5—10月的日蒸散发,并分析了蒸散发与环境因子的相关性。【结果】①生长季日平均蒸散量整体趋势呈单峰型分布趋势,日均蒸散量最大值在7月(3.98 mm),最小值在10月(1.11 mm);②在空间分布上,研究区东南部蒸散发最高,东北部蒸散发最低;不同土地利用类型中蒸散发值由大到小分别为林地、耕地、草地、戈壁、沙漠;各土地利用类型蒸散发量的时间动态表现一致,呈生长期>生长初期>生长后期;③归一化植被指数、高程与蒸散发正相关,风速以及地表温度与蒸散发负相关。【结论】SEBAL模型估算的蒸散发与P-M作物系数法的蒸散发进行对比,相对误差在允许范围之内,表明SEBAL模型对本研究区蒸散发的估算是可靠的。研究区靠近山地的蒸散发大于荒漠区的蒸散发。在植被生长季中生长初期的蒸散发受温度和风速影响最大,生长期和生长后期的蒸散发受地表温度和高程影响最大。  相似文献   

13.
潜在蒸散发与气象因素间关系复杂,研究由多个气候区组成的甘肃省潜在蒸散的时空变化规律及影响因子,对探明气候变化对水文循环的影响具有重要意义。基于甘肃省及周边31个气象站点1961-2020年逐日气象资料,对甘肃省8个气候区通过Penman-Monteithm模型,应用Kriging插值法、Mann-Kendall检验和偏相关分析等分析方法,分析了研究区不同气候类型的潜在蒸散发时空变化特征及其影响因子。结果表明:(1)1961-2020年甘肃省各气候区气象因子变化差距明显,其中各气候区平均温度、最高温度、最低温度在60 a来均呈显著上升趋势;平均相对湿度除河西西部暖温带干旱区和祁连山高寒半干旱区以外,均呈下降趋势;平均风速除河西西部暖温带干旱区、河西冷温带干旱区和陇中北部冷温带半干旱区外,均呈上升趋势;年降水除陇中南部温带半湿润区外,均呈显著上升趋势,年日照时数差异微小。(2)在蒸散发空间分布格局上,年均潜在蒸散发在春季、夏季、秋季总体为西北高,东南低的特点,年均波动范围710~1 363 mm;而冬季略显不同,则呈现出东南高、西北低的特点。(3)1961-2020年各气候区73.42%的区域潜在蒸散发变化趋势在0.05水平上显著相关,变化趋势波动范围在-2.62 mm/a到3.01 mm/a之间。(4)甘肃省各气候区潜在蒸散发与气温、日照时数和风速呈正相关关系,其中对温度的相关程度最高,A、B、C、D干旱及半干旱区潜在蒸散发对风速的相关程度高于湿润气候区,而相较于干旱及半干旱区来说,日照时数对潜在蒸散发的相关程度在湿润区更高。所有气候区均与相对湿度呈负相关关系,降雨则对各气候区潜在蒸散发变化的作用最小。  相似文献   

14.
基于数据融合算法的灌区蒸散发空间降尺度研究   总被引:1,自引:0,他引:1  
采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结果进行评价。在融合蒸散发基础上,结合解放闸灌域2000—2015年间种植结构信息,提取不同作物各自生育期和非生育期内年际蒸散发量,并分析了大型灌区节水改造以来,作物蒸散发占比的年际变化。研究结果表明:融合蒸散发与水量平衡蒸散发变化过程较吻合,小麦耗水峰值出现在6月中下旬—7月初,玉米和向日葵峰值出现在7月份。在相关性分析中,玉米、小麦和向日葵的决定系数R2分别达到了0.85、0.79和0.82;生育期内玉米(5—10月份)、小麦(4—7月份)和向日葵(6—10月份)的均方根误差均不高于0.70 mm/d;平均绝对误差均不高于0.75 mm/d;相对误差均不高于16%。在农田蒸散发总量验证中,融合蒸散发与水量平衡蒸散发相关性较好,两者决定系数达到了0.64。基于ESTARFM融合算法生成的高分辨率蒸散发(ET)结果可靠,具有较好的融合精度。融合结果与Landsat蒸散发的空间分布和差异性一致,7月23日、8月24日和9月1日相关系数分别达到0.85、0.81和0.77;差值均值分别为0.24 mm、0.19 mm和0.22 mm;标准偏差分别为0.81 mm、0.72 mm和0.61 mm。ESTARFM融合算法在农田蒸散发空间降尺度得到较好的应用,可有效区分不同作物蒸散发之间的差异。不同作物在生育期和非生育期内耗水量差别较大;生育期内套种(4—10月份)耗水量最大,达到637 mm,玉米(5—10月份)和向日葵(6—10月份)次之,分别为598 mm和502 mm,小麦(4—7月份)最低为412 mm;非生育期内,小麦(8—10月份)耗水量最大,年均达到214 mm,玉米(4月份)和向日葵(4—5月份)分别为42 mm和128 mm。不同作物多年平均耗水量(4—10月份)差异较小,其年际耗水总量主要随作物种植面积的变化而变化。  相似文献   

15.
汾河灌区参考作物蒸散发量变化趋势及影响要素分析   总被引:1,自引:1,他引:0  
气候变化直接影响着区域的水循环和水资源管理,而研究潜在蒸散发的变化趋势及其影响要素对于灌区的水资源管理具有重要的作用。选择汾河灌区,利用灌区内气象站的长系列数据,分析了灌区内参考作物蒸散发(ET0)的变化趋势及主要影响要素。结果表明,1951―2014年,灌区ET0没有明显的变化趋势,这主要是由于温度升高和相对湿度降低引起的ET0增加与风速下降和日照时间减少引起的ET0下降相当。温度、相对湿度和风速变化主要影响4―6月ET0,而日照时间则主要影响了5―9月的ET0。  相似文献   

16.
以吉林省伊通河流域为研究区,基于土地利用变化贡献率、土地利用动态度、信息熵、优势度、均衡度等方法和模型,分析了伊通河流域土地利用结构特征及其动态变化。研究结果表明:1旱地、城镇、林地和水田为伊通河流域主要土地利用类型;21995-2008年,伊通河流域土地利用结构变化特征主要表现为草地和水域面积减少,城镇和旱地面积增加;各土地利用类型动态度由大到小的顺序为:其他用地草地城镇水域水田旱地林地;31995-2005年研究区土地利用结构由无序向有序方向发展,土地利用结构均衡度增强,优势度减少;2005-2008年研究区土地利用结构由有序向无序方向发展,土地利用结构均衡度减少,优势度增加。  相似文献   

17.
利用遥感技术计算区域尺度蒸散发是一种非常可行的手段。通过总结遥感蒸散发模型国内外研究现状,根据各模型建模理念、内在机理等,对基于遥感技术的区域蒸散发计算方法进行了梳理;另外,结合目前研究现状,对遥感蒸散发模型当前研究的热点问题进行了总结和归纳,认为时空尺度转换、下垫面特征参数反演、模型结果检验等仍是当前遥感蒸散发研究领域亟待突破的攻坚点。同时,以良好的物理基础为背景,模拟SPAC系统中能量、物质交换过程,利用遥感技术确定地表关键参数的区域蒸散数值模型建立将是今后的发展方向之一。  相似文献   

18.
江苏省参考作物蒸散量的时空变化及影响因素分析   总被引:1,自引:0,他引:1  
【目的】参考作物蒸散量是水分循环和能量循环的重要组成部分,研究其变化特征及影响因素可以为该地区合理利用水资源,高效水分管理及农业生产布局提供参考。【方法】利用1961-2018年江苏省60个站点的风速、温度、相对湿度和日照时数等逐日数据计算了逐日蒸散量(ET0),并采用气候倾向率、敏感性分析、通径分析、贡献率分析等方法对江苏省ET0的时空变化及影响因素进行分析。【结果】①江苏省1961-2018年平均ET0为976.8 mm,区域整体ET0的变化幅度为-0.44 mm/10 a,共有28个站点ET0呈增加趋势(47%),主要分布在无锡以及苏州等苏南区域,共有11个站点ET0增加趋势显著(p<0.05),其中无锡、太仓、靖江地区ET0气候倾向率较大,分别为18.6、19.0、30.0 mm/10 a。共有32个站点ET0呈减小趋势(53%),主要分布在连云港、徐州、宿迁等苏北地区,共有16个站点ET0减小趋势显著(p<0.05),其中新沂、泗洪、灌南地区ET0减小趋势较大,分别为-19.2、-23.1、-23.2 mm/10a;②丰县(1 007.4 mm)、徐州(1 041.1 mm)以及西连岛(1 130.3 mm)区域为ET0的高值中心;③ET0对平均温度、日照时间、风速为正敏感,对相对湿度为负敏感,且ET0对相对湿度最敏感。平均温度、日照时间、风速、相对湿度与ET0决策系数分别为0.09、0.33、-0.02、0.29。敏感系数空间分布上,ST与SWS纬向分布特征都较明显;④贡献率分析表明,主要影响因素为风速的有22个站点,均分布在苏北地区,其中沛县、泗阳、新沂站风速对ET0变化贡献较大,分别为-13.44%、-12.52%、-12.49%,主要影响因素为相对湿度的有38个站点,主要分布在苏南地区,其中丹阳、靖江、昆山站相对湿度对ET0变化贡献较大,分别为18.47%、18.57%、20.87%,全区平均温度和日照时间不对ET0变化产生主要影响。【结论】苏北地区ET0变化的主要影响因素是风速,且风速贡献率为负,苏南地区ET0变化的主要影响因素是相对湿度,相对湿度贡献率为正。  相似文献   

19.
为了研究非均匀地表的蒸散特征,结合地面气象资料,考虑地形效应增加了坡地辐射计算方法,结合Landsat 8波段特征构建双层蒸散发遥感模型。以北京市西北方位的水源上游区为例,进行了蒸散发的估算、验证与分析。估算结果与地表通量站实测值对比发现,感热通量和潜热通量的平均误差分别为4.12%和8.36%,确定系数为0.82和0.98,相关关系较强;与坡地日蒸散发观测数据对比,平均相对误差为8.12%,均方根误差为0.35mm/d,具有较好的估算精度。结合土地利用探讨了水热通量、蒸散发的空间分布情况,同时分析了蒸散发与坡面地形之间的关系:坡度小于35°时,随坡度上升,日蒸散发有较为明显的增加趋势;当坡度大于35°时,受植被覆盖率影响,各季节代表日的日蒸散发呈现不同的变化趋势。各季节代表日蒸散发与坡向同样存在较为显著的相关关系,趋势线呈反抛物线。  相似文献   

20.
寒区水文过程是寒区生态系统中的重要环节之一,水热状况将直接决定高寒地区的生态环境状况.用滑动趋势法和墨西哥帽状小波变化分别获取了研究区域近50年来气候变化的年际年代变化及其周期分析,基于青藏高原太阳辐射平衡已有成果,结合联合国粮农组织推荐的彭曼-蒙蒂斯模型,对于达日县可能蒸散发进行了数值模拟.得出以下主要结论:近50年来达日县降水年增加率为0.557 mm/a,而该县最大可能蒸散发量的年增加率为0.132 mm/a,气候总体趋势是由干旱向湿润方向发生转变;达日县年气温序列主要呈现20 a、15 a、7 a和5 a的周期振荡,年降水序列表现为15~20 a和7~8 a的周期振荡;近20年来可能蒸散发呈递减的趋势,汛期序列递减率为0.046 7 mm/a,冬春序列递减率为0.108 4 mm/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号