首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探究蓄水坑灌不同坑深条件下苹果树根区土壤氧气分布特征,以7 a生矮砧苹果树为试验材料,设置坑深作为控制因子,采用土壤原位氧气测定仪对距离树干不同径向位置处和距离地表不同垂向位置处的土壤氧气含量进行了测定。结果表明:不同坑深处理下土壤氧饱和度均随土壤深度增加呈现指数型下降趋势,随径向距离增加均呈现先上升后下降的趋势。在同一垂向和径向位置处,60 cm坑深处理土壤氧饱和度均高于40 cm坑深处理,且60 cm坑深处理对土壤氧饱和度的影响范围更广。在此基础上,建立了不同坑深处理下土壤氧饱和度一维垂向、一维径向和二维空间指数型分布模型,模拟效果较好。研究结果可完善蓄水坑灌理论,并为蓄水坑灌坑深选取提供理论指导。  相似文献   

2.
为了揭示蓄水坑灌条件下土壤水分分布特征,提高蓄水坑灌水分利用效率,本文利用TRIME-PICO IPH土壤水分测量系统,进行了蓄水坑灌与普通地面灌溉条件下果园土壤含水率分布对比试验,分析了不同灌溉方法下土壤含水率随垂向、径向的变化。结果表明:蓄水坑灌条件下,土壤水分主要分布在垂向40-160cm内,土壤含水率增量随深度呈先增大后减小的趋势,含水率增量最大值出现在坑底附近,且距离蓄水坑近处,含水率增量较大,然后沿坑两侧依次递减;地面灌溉条件下,土壤水分主要分布在垂向0-80cm内,土壤含水率增量随深度增大而减小,含水率增量最大值出现在地表,且沿各个径向距离增长幅度较为一致。研究结果将为蓄水坑灌法的田间推广提供科学依据。  相似文献   

3.
蓄水坑灌是一种新型的果林节水灌溉方法,为了给合理确定蓄水坑坑深提供依据,在田间进行了不同坑深条件下蓄水坑灌土壤水分运动试验。试验设置2种不同蓄水坑深40cm和60cm,并对灌前和灌后土壤含水率增量在垂向和径向的分布特征进行分析研究。结果表明,在不同蓄水坑深40,60cm条件下,土壤含水率增量在垂向上的变化趋势一致,均是随着深度的增加,呈现先增大后减少的趋势,但随着坑深增大,土壤含水率增量的高值区的范围也越深;不同坑深条件下的土壤含水率增量在径向上的分布无明显的差异,均呈现以蓄水坑为中心,在蓄水坑附近的土壤含水率增量较大,距蓄水坑较远的地方,土壤含水率增量较低。通过对不同坑深条件下蓄水坑灌土壤水分运动的研究,可以为实际应用中,根据不同果树根系的水分吸收环境来选择坑深奠定理论依据。  相似文献   

4.
以蓄水坑灌冬季土壤温度实测资料为基础,建立了以距离蓄水坑壁径向5 cm处的分层土壤最低温度、坑内平均温度、地表温度和沿坑壁的径向距离输入,以距蓄水坑坑壁15、25和35 cm处分层土壤最低温度为输出,拓扑关系为11-13-8的BP-WSPI-T模型,对蓄水坑灌果园冬季土壤最低温度分布特征进行定量预测,并采用田间实测数据对模型进行率定和验证。结果表明:BP-WSPI-T模型在对距离蓄水坑壁径向15、25和35 cm处分层土壤最低温度预测时的平均相对误差分别为8.7%、9.4%、7.3%;土壤温度整体预测的平均相对误差为8.5%,模型预测精度较好。模型可以较好对蓄水坑灌冬季土壤温度分布进行预测。  相似文献   

5.
通过研究体系温度对蓄水坑灌施条件下土壤水分及氮素运移转化的影响,明确蓄水坑灌土壤水氮时空分布特征,探究土壤水氮运移迁移转化机理,以期为水肥合理灌施提供理论基础。通过模拟构建蓄水坑灌模型,以大型控温箱精确控制土壤温度,采用克里克空间插值法分析了蓄水坑灌条件不同体系温度下的水分、硝态氮、铵态氮时空分布特征,结果显示7 h左右土壤水分、养分完成入渗进入再分布阶段,土壤水分随着时间的推移其垂向和径向迁移距离均逐渐增大,同一时刻,温度越高其横向与径向迁移距离越大,且靠近蓄水坑壁区域的土壤含水率相对越低;土壤中铵态氮含量在不同温度下随时间推移均呈现先增后减的现象,低温下第15 d时土壤养分再分布核心区出现下降趋势,中、高温第10 d时已出现下降趋势,且其迁移距离远低于水分、硝态氮的迁移距离;土壤中硝态氮含量在10℃下第10 d时出现增高现象,而20、25、35℃下第5 d时已出现增高现象,由蓄水坑周边至湿润体边缘呈现"低-高-低"的分布态势。表明再分布阶段温度升高能提高水分的再分布速率,提高脲酶活性加快尿素水解转化为铵态氮,同时促进硝化反应进程抑制铵态氮在土壤中的积累,当土壤含水量过高时,会抑制土壤中氮素的硝化作用。  相似文献   

6.
为了探究蓄水坑灌下不同施肥管理方式下土壤矿质氮及肥料氮素的分布规律,并为苹果园氮肥管理方式的优选提供参考,本试验设置4个处理,包括两个施氮量水平(300; 600kg/hm~2),两个施肥次数(单次施肥;两次施肥)以及两种灌溉方式(地面灌溉;蓄水坑灌)。通过苹果园原位试验,检测不同土层中氨氮和硝氮的含量,同时利用~(15)N同位素示踪技术,检测不同土层中的肥料氮素的丰度,分析土壤中肥料氮素的分布规律,以及不同灌溉施肥管理方式下,苹果产量的响应。结果表明:①蓄水坑灌条件下,施肥量的增加明显提高0~60 cm土层氨氮含量和80~160 cm土层硝氮含量;而分次施用可以有效减少氨氮的大量累积,同时也可以在一定程度上增加硝氮含量。土壤氨氮和硝氮均主要集中于土壤中层,分别占比52.87%和56.06%。蓄水坑灌法促进土壤矿质氮集中于苹果根系吸收层。②地面灌溉条件下,肥料氮素主要集中于0~60 cm土层中。蓄水坑灌处理中,肥料氮素明显向下扩散,0~100 cm土壤中肥料氮素占比95.75%。蓄水坑灌可以有效促使肥料氮素扩散至中层土壤,并显著减少0~40 cm浅层土壤肥料氮素累积。③相较于地面灌溉,蓄水坑灌可以有效提高产量,约13.7%。同时,可以提高可溶性固形物含量,约29.8%。因此,在试验条件下,最优施肥管理方式为中施氮量(300 kg/hm~2)同时采用两次施肥的管理方式。  相似文献   

7.
蓄水坑灌是适用于北方山丘的一种新型节水灌溉方式,为了研究节水灌溉机理并提高水分利用效率,必先了解吸水根系的分布状况。采用根钻法对蓄水坑灌和普通地面灌条件下的苹果树吸水根系的分布特性进行对比研究,结果表明:1在垂向上果树根长密度随着深度的增加呈现出先增加后减少的趋势,主要分布在0~100cm范围内,占总根系的78.16%。在径向上,果树根系主要分布在距树干30cm处,达到根系总量的60.49%,距树干越远,果树的根长密度越小;2蓄水坑灌条件下,果树根长密度在垂向上与地面灌溉的分布规律相近,但是在地下60cm处根长密度明显增加,根系有下移的趋势。水平方向上,根系密度主要分布在30~60cm范围内。  相似文献   

8.
蓄水坑灌法是针对我国北方地区水资源紧缺和水土流失严重双重问题而提出的一种适用于山丘区果林的中深层立体灌溉。为了果树能够更好地吸收水分和养分,需对其根系和土壤酶活性方面进行研究。本试验在果实膨大期采用根钻法对地面灌溉和蓄水坑灌条件下的苹果树根系形态及活力和土壤酶活性进行对比研究,结果表明:在两种灌溉方式下,果树根系形态指标和根系活力均随土层深度的增加呈现出先增大后减小的趋势,蓄水坑灌条件下峰值出现在60~100cm土层深度内,较地面灌溉峰值下移,且均大于地面灌溉;脲酶、磷酸酶和硝酸还原酶活性随土层深度的增加表现出先增大后减小的趋势。在0~20cm表层土壤,蓄水坑灌条件下的土壤酶活性低于地面灌溉,而在中深层土壤,蓄水坑灌的要明显高于地面灌溉。过氧化氢酶活性则表现为随土层深度的增加先减小后增大,且蓄水坑灌条件下的酶活性在0~160cm全土层深度内均大于地面灌溉。  相似文献   

9.
蓄水坑灌水土温度变化对土壤水分再分布规律的影响   总被引:3,自引:3,他引:0  
【目的】探寻蓄水坑灌下土壤水分分布规律。【方法】通过构建蓄水单坑灌施条件下的物理模型,分别对恒定水温(15℃)不同土壤温度(15、20和30℃)和恒定土温(30℃)不同灌水温度(15、20和30℃)条件下的土体湿润锋和含水率进行了研究,并对恒定水温(15℃)不同土壤温度(15、20和30℃)条件下土体中水分的再分布进行了数值模拟。【结果】恒定水温时,在灌溉后的同一时刻,随着土壤温度的升高,湿润锋的径向和垂向推进距离的增量分别为18%和4.4%;恒定土温时,在灌溉后的同一时刻,随着灌水温度的升高,湿润锋的径向和垂向推进距离的增量分别为2%和1%,但在同一处理条件下,随着时间的推移,其平均推进速度在降低;在土壤水分的再分布过程中,土壤含水率的高值区域在临近水室的中下部位,随着土壤温度和灌水温度的增加,土壤含水率的高值区域呈现出扩大的趋势。在采用数值模拟的方法研究土壤水分再分布的运动规律时,土壤温度的变化对模拟计算的精度有较大的影响,尤其是土壤温度和灌水温度差异较大时,该影响更为明显,水土温度相差15℃时,模拟计算值和实测值之间的最大相对误差可达19.87%;文中给出了考虑不同土壤温度和灌水温度条件下的水分再分布修正因子,运用该修正模型,可将模拟计算值和实测值之间的最大相对误差减小至4.76%。【结论】蓄水坑灌下土壤水分再分布对土壤温度的变化较为敏感,文中修正模型可作为进一步精确模拟蓄水单坑灌施条件下土壤水分运动的有效工具。  相似文献   

10.
植物对Cd的吸收和运转能力较强,为了探明蓄水坑灌果园土壤和果实中重金属Cd的含量及其污染风险,以10年生红富士丹霞果树为供试材料,于2019年开展苹果树蓄水坑施灌试验。利用BCR法测定了果园土壤和果树各器官中重金属Cd的含量,并采用单因子法对土壤和果实中重金属Cd含量进行风险评价。结果表明:蓄水坑灌模式促进了果园土壤重金属Cd在土壤表层的累积和向土壤深层的迁移和转化,蓄水坑灌果园0~40 cm土层土壤重金属Cd含量在整个生长季的下降幅度较常规灌溉处理低7.59%~15.72%,而40~160 cm土层土壤重金属Cd含量下降幅度较常规灌溉处理高0.96%~20.95%;生育期末蓄水坑灌果园20~40 cm土壤Cd和传统灌溉果园在60~160 cm的土层范围内表现为不同程度的警戒级尚清洁状态;不同灌溉模式果树各器官对土壤Cd的富集量依次为根系枝梢叶片果实,蓄水坑灌果树各器官Cd含量与吸收富集系数均大于传统灌溉处理,但不同灌溉模式果实中重金属Cd含量均低于我国可安全食用标准。研究结果旨在丰富果园蓄水坑灌理论,亦可为果园土壤环境修复提供科学依据。  相似文献   

11.
【目的】构建蓄水坑灌条件下的土壤水-热-氧三维分布耦合模型,探究蓄水坑灌对土壤水、热、氧分布的影响,揭示蓄水坑灌下的土壤水、热、氧空间分布特征。【方法】基于土壤水分运动方程,土壤热量传输方程和土壤氧传输方程,建立蓄水坑灌下的土壤水-热-氧三维耦合模型,利用COMSOL Multiphysics软件进行数值求解,采用田间实测数据对模型进行验证,基于验证后的模型模拟增设蓄水坑和灌水对果园土壤水、热、氧分布状况的影响。【结果】三维耦合模型具有较高的精度,模型模拟土壤含水率、土壤温度和土壤氧浓度的RMSE分别为0.0367、1.6099和0.0138。增设蓄水坑后,坑壁土壤水、热、氧状况发生较大改变;随着时间的推移,蓄水坑周围的土壤含水率降低,土壤含氧量升高,坑壁与地表土壤温度呈相同的变化规律,均随着气温的降低而降低。蓄水坑灌水后,水分通过坑壁渗入土壤,形成以坑底为中心的椭球状含水率高值区和土壤温度、含氧量低值区,三者分布随着时间推移趋于均匀,但灌水对土壤温度的影响时间远低于对土壤含水率和含氧量的影响时间。灌水对土壤氧浓度影响较小,氧浓度在地表和坑壁处较高;距地表和坑壁处越远,土壤氧浓度越低。...  相似文献   

12.
为探讨蓄水坑灌条件下不同肥液浓度(施氮量)对果园土壤呼吸速率的影响,共设置0,0.749,1.248g/L3个不同的肥液浓度水平,分析不同肥液浓度水平下土壤呼吸速率动态变化规律及其与土壤温度和土壤水分之间的关系。结果表明:蓄水坑灌条件下果园果树生育期内土壤呼吸速率呈不对称单峰变化曲线,土壤呼吸速率会随肥液浓度的增加而增加,在7月左右达到最大值,成熟收获期时降到最低;肥液浓度为1.248g/L时,蓄水坑灌条件下坑壁的土壤呼吸速率比地面灌溉条件下的土壤呼吸速率高;土壤温度和土壤水分是土壤呼吸速率的主要影响因素,10cm处土壤温度与土壤呼吸速率呈显著正相关,在一定范围内,土壤呼吸速率随土壤温度升高呈指数增加;土壤呼吸是土壤温度和土壤水分共同作用的结果。  相似文献   

13.
利用磷酸甘油-双层海绵通气法,研究了在蓄水坑灌条件下不同肥液浓度对土壤氨挥发速率和氨挥发量的影响.结果表明:蓄水坑灌条件下,地面氨挥发速率在施肥后第2~3天达到最大峰值,蓄水坑内氨挥发速率达到峰值的时间则稍有滞后性,肥液浓度越大,达到峰值的时间越晚.在不同肥液浓度下,肥液浓度越大,氨挥发量占施肥量的比例越大,在5 556 mg/L、3 333 mg/L和0 mg/L肥液浓度条件下的比例分别是1.80%、0.56%、0%.同一肥液浓度不同灌溉方式下,地面灌溉的氨挥发量比蓄水坑灌大14倍左右,氨挥发量占施肥量的比例分别是7.71%、0.56%,体现了蓄水坑灌的节水保肥优势.  相似文献   

14.
蓄水坑灌条件下不同土温对土壤水氮运移规律的影响   总被引:1,自引:0,他引:1  
为了明确不同土壤温度对土壤中水氮分布的影响以及选择合理的灌施方式,通过室内模型试验,研究了在蓄水单坑肥灌条件下不同土壤温度(20,25,30℃)所对应单坑灌水量(7L)和灌后不同时间(灌后1,5,10,15d)对土壤水氮运移的影响。研究结果表明:在径向距离r=25cm处,土壤温度分别为20,25,30℃,含水率空间分布基本一致,变化幅度不大;土壤温度为20,25℃时,土壤铵态氮含量随分布时间的延长先增大后减小,20℃时第10d土壤铵态氮含量达到最大值,25℃时第5d土壤铵态氮含量达到最大值,土壤温度为30℃时,随着时间的延长,土壤铵态氮含量逐渐减小;在同一分布时刻,土壤硝态氮含量随土壤温度的升高而增大。  相似文献   

15.
为准确预测冬季果园土壤温度,建立了蓄水坑灌条件下BP神经网络土壤温度预测模型(BP-WSPI-T)、遗传算法优化的BP神经网络土壤温度预测模型(GA-WSPI-T)和增量逆传播学习算法优化的BP神经网络土壤温度预测模型(IBP-WSPI-T),采用坑内平均气温、地表温度、沿相邻两蓄水坑中心连线距坑壁的距离和距坑壁5cm处分层土壤最低温度为模型输入,对距坑壁15、25和35cm处分层土壤最低温度进行预测,并通过与田间实测数据的统计学分析来判定预测效果。结果表明:BP-WSPI-T、GA-WSPI-T和IBP-WSPI-T模型的平均相对误差分别为8.19%、4.41%和7.57%,GA-WSPI-T模型的预测效果最好,较BP神经网络预测精度得到了很大的提高,建议采用GA-WSPI-T模型对蓄水坑灌冬季果园土壤温度进行预测。  相似文献   

16.
不同灌溉方式对猕猴桃园土壤质量的影响   总被引:1,自引:0,他引:1  
为探明不同灌溉方式对猕猴桃园土壤质量的影响,2016-2017年在陕西眉县和杨凌猕猴桃园布设微喷灌、地面灌溉和滴灌处理,对0~50 cm土层的土壤容重、田间持水量、土壤孔隙度、有机质、速效钾、速效磷和碱解氮进行了统计分析,并利用土壤质量综合指数对不同灌溉处理土壤质量进行了评价。结果表明:(1)微喷灌和滴灌处理土壤容重、土壤孔隙度和田间持水量在0~50 cm各土层内无差异,在0~30 cm各土层均显著优于地面灌溉处理(P0.05);(2)与猕猴桃施肥标准相比,3种处理在0~50 cm土层内有机质和碱解氮均亏缺,微喷灌和地面灌溉处理在该土层内速效钾和磷均处于盈余状态;(3)土壤容重和有机质是反映猕猴桃园土壤质量的综合指标;(4)滴灌处理土壤质量综合指数在10~50 cm各土层显著高于微喷灌和地面灌溉处理(P0.05),是二者的1.21~1.81倍。因此,猕猴桃园采用滴灌是土地可持续性利用的有效措施。研究成果为猕猴桃园灌溉措施筛选及土地可持续性利用提供参考。  相似文献   

17.
无压灌溉土壤湿润体形状为球冠,径向和垂向最大湿润距离相等且与时间存在显著的幂函数关系,随着时间的延长,径向和垂向最大湿润距离趋于一定值。湿润体大小与供水压力之间呈抛物线关系,在零压力附近湿润体体积最大。湿润体半径与累计入渗量呈幂函数关系,拟合方程中的系数和指数为一定值,与入渗时间和供水压力无关,在试验条件下,分别为18.467和0.5037。综合以上结果,提出了预测无压灌溉土壤湿润体特征值的经验解模型。  相似文献   

18.
为提高蓄水多坑灌施尿素条件下土壤氮素利用率和保护生态环境,通过室内蓄水多坑(土箱半径40 cm,高120 cm,蓄水坑半径16 cm,深度60 cm)物理模型试验,研究了蓄水多坑灌施下尿素在土壤中的运移转化特性。结果表明,土壤水分主要分布在地表以下20~80 cm,0~10 cm土层土壤含水率较小,同一土壤深度处蓄水坑壁附近土壤含水率大于0通量面处土壤含水率;同一土壤深度蓄水坑壁附近土壤尿素态氮量大于0通量面处的尿素态氮量,尿素的水解在9 d内基本完成,第7天水解最快,尿素水解与时间存在良好的对数函数关系;土壤铵态氮主要集中在40~60 cm土层土壤中,且r=20 cm处的量高于0通量面处的;而土壤硝态氮的分布趋势与铵态氮相反,随时间的延长,0通量面和r=20 cm处的土壤铵态氮质量分数均在40~60 cm和60~80 cm增幅较大,而土壤硝态氮质量分数表现出在90~100 cm湿润锋处增幅最大。  相似文献   

19.
为探讨土壤容重对蓄水坑灌入渗和水氮分布的影响,试验采用30°扇柱体有机玻璃土箱,高120 cm,半径100 cm,设置3个土壤容重水平:1.3、1.4、1.47 g/cm3。通过室内入渗试验,研究了土壤容重对肥液入渗、含水率分布、铵态氮和硝态氮含量的影响。结果表明:蓄水坑灌条件下,累积入渗量随土壤容重的增大而减小,不同容重下累积入渗量与入渗时间之间均符合Kostiakov入渗模型。随土壤容重的增大,湿润体范围逐渐减小,在分布1 d内,0~60cm深度土壤体积含水率随土壤容重的增大而增大。土壤铵态氮含量随土壤容重的增大在不同径向方向上变化不一致。不同容重下深层湿润锋处土壤硝态氮的累积量为:1.47 g/cm31.4 g/cm31.3 g/cm3。  相似文献   

20.
为了明确灌后复水(降水)对土壤中水氮分布的影响以及选择合理的灌施方式,通过室内模型试验,研究了在蓄水多坑肥灌条件下不同降水量(30.624,37.334,43.56 mm)所对应单坑不同复水量(140.1,228.7,400.5 mm)和不同复水时间(灌后1,5,10 d)对土壤水氮运移的影响.研究结果表明:复水后土壤含水率增大,复水量为228.7 mm及以上时,30~80 cm深度范围内土壤含水率均达到田间持水率的80%以上,且复水量越大或复水时间间隔越短,复水后水分分布越均匀;硝态氮在湿润锋处积累明显,复水后坑壁附近土壤硝态氮质量浓度降低,硝态氮质量浓度峰值向远处推进,复水量越大或复水时间间隔越短,硝态氮推进越远且向深处迁移越明显;复水后铵态氮质量分数在近坑处降低,在距坑较远处增加,但变化幅度均不大,复水量越大,或复水时间间隔越短,对铵态氮质量浓度影响越大,复水后土壤铵态氮分布越均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号