首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abe H  Nakai T  Utsumi Y  Kagawa A 《Tree physiology》2003,23(12):859-863
Cell behavior in the cambium and developing xylem of 3-year-old Japanese cedar (Cryptomeria japonica D. Don.) trees, during and after an 11-day suspension of irrigation, was analyzed. Leaf xylem pressure potential and tangential strain of the stem surface were monitored throughout the experiment. Anatomical features and numbers of developing tracheids and cambial cells were observed in four trees, sampled on Days 0, 4, 8 and 11 after irrigation was suspended. Daytime xylem pressure potential decreased to -1.9 MPa on Day 7 and remained the same until irrigation was resumed on Day 11. The transverse dimensions of the tracheids, which began to form secondary walls, began to decrease on Day 4. The number of cells in the cambial zone and cell expansion zone decreased abruptly on Day 8. Tangentially aligned developing tracheids with collapsed cell walls were observed in samples harvested on Days 8 and 11. Secondary wall formation was recognized in these tracheids. After the resumption of irrigation, xylem pressure potential recovered rapidly to the same value as before the suspension of irrigation. Tangential strain increased within 30 min after the resumption of irrigation, and continued to increase until the onset of light the next day. Eighteen days after the resumption of irrigation, anatomical features of cells in the cambium and cell-expansion zone were similar to those observed before suspension of irrigation.  相似文献   

2.
Detailed root and shoot development of bareroot and container Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling stocktypes were compared during the first growing season after outplanting. The study was installed in raised beds with ideal environmental conditions and at a field reforestation site. Survival at both sites was 98% and did not differ between stocktypes. Seedlings were excavated in spring (5, 8, 12, and 16 weeks after planting) and in fall (35, 40, and 45 weeks after planting). In spring, container seedlings had more numbers of new roots and greater new root and shoot biomass than bareroot seedlings at both sites. In fall, bareroot seedlings consistently averaged more new root growth (though nonsignificant) than container seedlings suggesting that stocktype differences may not continue long-term. Container seedlings had significantly greater water percent than bareroot seedlings at the field site (all sample dates) and the raised bed site (weeks 5, 8, and 40 only). Regardless of environmental conditions or season, seedlings at both sites maintained water percent between 60 and 70% of fresh weight. Seedlings grown in the raised beds had much greater growth than those grown in the field. However, relative growth patterns for the two stocktypes were very similar on each site. The data generated establish baseline differences between stocktypes for root initiation, growth, and allometry during the first year after planting. Challenges associated with root development research are discussed.  相似文献   

3.
Effects of defoliation on partial shoot removal by decapitation on seedling growth, water use and net gas exchange of remaining basal leaves, were examined in Citrus spp. Shoot and root growth rates were manipulated to test for effects of growth demands on net gas exchange. Partially defoliated plants had higher leaf pressure potentials, root conductivities and rates of water use than intact control plants. Shoot regrowth occurred at the expense of root loss. Basal leaves on defoliated plants consistently had higher rates of CO(2) assimilation (A) than leaves on intact plants. Stomatal conductance (g(s)) changed little after defoliation so the higher A of leaves on defoliated plants lowered the ratio of intercellular to ambient CO(2) concentration (C(i)/C(a)) in the mesophyll. In some cases, g(s) increased with A in defoliated plants but C(i)/C(a) was not affected. Stomatal conductance only limited A when intact seedlings were stressed by root confinement in small pots or when leaves were exposed to high vapor pressure deficits during gas exchange measurements. Increased carbon demand for shoot regrowth increased photosynthetic capacity and was more important than stomatal responses in determining A after partial shoot loss.  相似文献   

4.
介绍了日本的柳杉的育苗、造林、经营利用等情况,并根据日本的情况对贵州引种的日本柳杉的经营提出了建议。  相似文献   

5.
Modeling shoot water contents in high-elevation Picea rubens during winter   总被引:1,自引:0,他引:1  
During the winter of 1990-1991, a meteorological tower was established at an 880-m elevation site within the spruce-fir zone on Mt. Moosilauke, New Hampshire, USA. Hourly means of air, needle and trunk temperatures, wind velocity, relative humidity and solar radiation were recorded. On a weekly basis, shoots that had elongated during the preceding growing season were collected from four red spruce (Picea rubens Sarg.) trees and their relative water contents (RWC) determined. Cuticular resistances of needles from these shoots were measured four times during the winter.Measured meteorological parameters were used in a previously developed model to simulate changes in red spruce shoot RWC during the winter. The modeled results were compared to measured shoot RWCs. The predictive power of the model was improved when it was modified to include measured values of cuticular resistance and needle and trunk temperatures. The new version of the model accurately predicted RWC from late December 1990 to the beginning of April 1991, after which spring recharge appeared to occur. We conclude that water lost from foliage was easily replaced by stored reserves and that uptake of water by the roots was not required to maintain an adequate foliar water content during the winter.  相似文献   

6.
To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.  相似文献   

7.
8.
Huang YS  Chen SS  Lin TP  Chen YS 《Tree physiology》2001,21(4):261-266
The distribution of growth stresses in leaning trunks of Cryptomeria japonica (L.f.) D. Don was determined by measuring the stresses released by the kerf method with strain gauges glued at specified positions along the trunks. Effects of both tree height and peripheral positions on the surface of leaning trunks on surface growth stress were determined. The inner residual growth strains in leaning trunks were also measured. We found high compression stresses in the lower side of leaning trunks that differed greatly from the tensile stresses in normal erect trunks. However, transverse compression stress was found around the tree trunk in both normal and compression wood. In leaning trees, the distribution of internal stresses in the bent trunk portion differed from that in the erect trunk portion, being compressive on the outside and tensile on the inside. The resistant moment introduced by compression stress generated in compression wood is released by the bending of the leaning trunk. The bending stresses are then superimposed on the original internal growth stress. We demonstrated that Poisson's effect of longitudinal stresses should be considered when evaluating transverse surface growth stresses. The existence and intensity of compression wood development can be assessed by growth stress measurements. We conclude that the compressing force of compression wood functions physiologically to give an upward righting response in a leaning trunk.  相似文献   

9.
This study focused on the physiological changes inCryptomeria japonica accompanied by needle color changes during the winter. The physiological measurements include gas exchange, chlorophyll fluorescence, pigments, active oxygen scavenging enzymes, and several proteins in the photosynthetic apparatus. The light-saturated photosynthesis decreased during the winter. Total chlorophyll content and chlorophylla/b ratio decreased; meanwhile xanthophyll cycle pigments and lutein contents increased significantly. These results indicate that cold acclimation had occurred. Photoinhibition was also observed inC. japonica which can be determined from the decreases in photochemical efficiency of PS II and the partial closure of PS II reaction centers. Small and large subunits of Rubisco and LHC II in the needles ofC. japonica showed only a slight decrease during the winter, indicating that photoinhibition inC. japonica probably reflects a protective process to prevent more severe damage to the photosynthetic apparatus during low-temperature stress. This research was supported by the Bio-oriented Technology Research Advancement Institute (BRAIN), Japan  相似文献   

10.
Boyce RL  Lucero SA 《Tree physiology》1999,19(13):893-898
Roots play a role in maintaining foliar water balance in subalpine conifer saplings during winter. We used deuterium-labeled water to demonstrate that roots of Engelmann spruce (Picea engelmannii Parry) take up water during the late-winter-early spring period. Based on a root severing experiment, we conclude that small, snow-covered saplings were largely dependent on root water uptake to meet winter transpiration needs, whereas larger saplings relied more on water stored in stem sapwood. Both water uptake and water stored in roots appeared to be critical for the survival of saplings exposed above the snowpack during the late-winter-early spring period, when sap reserves were insufficient to meet increasing transpirational demands.  相似文献   

11.
Growth and gas exchange characteristics were studied in pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) seedlings grown in hydroponic culture in the presence of N (50 mg l(-1)) and transferred at the start of their second growing season to tap water at 5, 8, 12, 16 or 20 degrees C (air temperature between 18-20 degrees C) for 3 weeks (pine) or 5 weeks (spruce). Root growth of both species was completely inhibited at root temperatures of 5 and 8 degrees C, but increased almost exponentially as root temperature increased. Shoot growth was maximal at 12 degrees C in both pine and spruce and decreased at low root temperatures. In both species, CO(2) uptake was decreased at low root temperatures and appeared to be influenced by the pattern of nitrogen retranslocation. In pine seedlings, as root temperature increased, an increasing proportion of the total nitrogen pool was retranslocated to the new shoot, whereas in spruce seedlings nitrogen was retranslocated to the roots. Differences in the retranslocation of nitrogen in the two species were reflected in the amount of soluble protein in needles, which at the end of the experiment increased with increasing root temperature in pine, but decreased in spruce. Our data suggest that in spruce, but not pine, CO(2) uptake was limited by the amount of Rubisco.  相似文献   

12.
13.
We assessed the vertical distribution of litter and its seasonal patterns in the canopy and on the forest floor (soil), as well as litterfall (the flux of litter from the canopy to the soil) in a 33-year-old plantation of Japanese cedar (Cryptomeria japonica D. Don). The masses of total litter, dead leaves, and dead branches in the canopy of C. japonica trees averaged 34.09, 19.53, and 14.56 t dry wt ha−1, respectively, and were almost constant during the study period. The total masses of the annual litterfall were 4.17 and 5.88 t dry wt ha−1 year−1 in the two consecutive years of the study. The mass of the soil litter averaged 7.95 t dry wt ha−1 during the same period. All relationships between the mass of canopy litter and tree-size parameters (diameters at breast height and at the lowest living branch) were linear in a log-linear regression. Compared with the results for this plantation at a younger stage (16 years old), our results suggest that the total mass of dead leaves attached to each tree increases markedly with increasing age, but that the trajectory of this increase as a function of tree size may change from an exponential to a saturation curve with increasing stand age.  相似文献   

14.
Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and hydraulic conductivity of three sources each of shortleaf, loblolly and longleaf pine seedlings were evaluated for 28 days in a seedling growth system that simulated the planting environment. Across species, an increase in root-zone temperature alleviated limitations to root growth caused by water stress. In the coldest temperature, longleaf pine maintained a higher hydraulic conductivity compared to shortleaf and loblolly pine. Without water limitation, the root growth and hydraulic conductivity of shortleaf and loblolly pine were superior to that of longleaf pine, but as water availability decreased, the root growth of longleaf pine surpassed that of loblolly pine. Hydraulic conductivities of the seed sources differed, and differences were attributed to either new root growth, or an increase in the efficiency of the root system to transport water.  相似文献   

15.
日本柳杉生长对气候的响应   总被引:2,自引:0,他引:2  
对建立的日本柳杉的差值年表与气象数据进行的相关性分析结果表明:日本柳杉的生长与上年10、11月的温度,与上年12月、当年1月的降水量正相关;与当年3月的降水量、8月的温度负相关。这既是日本柳杉海拔分布的重要因子,也是影响林分生物生产力和碳循环的重要因素。  相似文献   

16.
Freezing tolerance and shoot water relations parameters of western red cedar (Thuja plicata Donn) seedlings were measured every 2 weeks from October 1989 to April 1990. Freezing tolerance, measured by freeze-induced electrolyte leakage, showed seasonal shifts in the temperature causing 50% foliage electrolyte leakage (LT(50)). The LT(50) value was -4 degrees C in October, it decreased to -20 degrees C in February and then increased to -6 degrees C in April. The foliage index of injury at -10 degrees C (II(-10)) also showed seasonal shifts from a high of 98% in October to a low of 18% in February followed by an increase to 82% in April. Osmotic potentials at saturation (Psi(s(sat))) and turgor loss point (Psi(s(tlp))) were, respectively, -1.07 and -1.26 MPa in October, -1.57 and -2.43 MPa in January, and -1.04 and -1.86 MPa in April. Dry weight fraction (DWF) increased and symplastic volume at full turgor (V(o)) decreased during the fall-winter acclimation phase, whereas DWF decreased and V(o) increased during the late winter-spring deacclimation phase. Relationships between seasonal patterns of freezing tolerance and shoot water relations parameters showed that LT(50) and II(-10) decreased linearly as Psi(s(tlp)) and V(o) decreased and DWF increased. There was no discernible difference in the relationship during fall acclimation or spring deacclimation. The freezing dehydration index at -10 degrees C (FDI(-10)) declined from 0.69 in November to 0.41 in February and increased to 0.56 in April. The value of II(-10) decreased linearly as FDI(-10) decreased, although a measurement made on actively growing spring foliage did not fit this relationship. The results indicate that seasonal changes in freezing tolerance of western red cedar are partially due to changes in tissue water content, symplastic volume, passive osmotic adjustment and FDI(-10).  相似文献   

17.
Thaumatin-like proteins (TLPs) are induced by a variety of phytopathogens in many plants and several TLPs are allergenic. Previously, we isolated three TLP-encoding cDNAs (Cry j 3.1, Cry j 3.2 and Cry j 3.3) from a cDNA library derived from the pollen of Cryptomeria japonica D. Don. Here, we describe three new TLP cDNAs (Cry j 3.4, Cry j 3.5 and Cry j 3.6). We compared the sequences, the genetic map location and the expression patterns of the Cry j 3 genes. The amino acid sequence predicted from Cry j 3.5 exhibits only limited similarity to those predicted from the other Cry j 3 genes. Linkage analysis showed that the Cry j 3.1 to Cry j 3.4 genes are located in the same linkage group, but Cry j 3.5 is located in a different group. Organ-specificity and induction by stresses and plant hormones differed among the Cry j 3 mRNAs. In pollen grains, the Cry j 3.5 mRNA expression level was higher than that of the other Cry j 3 genes. Exposure to UV-B and salt stress induced expression of Cry j 3.1. The ethylene-releasing compound ethephon strongly induced expression of Cry j 3.4. Salt stress and salicylic acid also induced expression of Cry j 3.4. Abscisic acid weakly induced expression of Cry j 3.5. Arachidonic acid strongly induced expression of Cry j 3.4 and Cry j 3.6, and weakly induced that of Cry j 3.3, whereas expression of Cry j 3.1 and Cry j 3.5 was unaffected. These results suggest that the roles of TLPs and the cascades that regulate their expression differ among the members of the TLP family in C. japonica.  相似文献   

18.
Tree exudates play an important role in the defense system of trees. In this study, the composition of exudates secreted from the wound site of Cryptomeria japonica was examined. Seven diterpenoids, including ferruginol (1), cryptojaponol (2), isopimaric acid (3), 7β-hydroxydeoxocryptojaponol (4), isopimarol (5), sandaracopimarinol (6) and phyllocladan-16α-ol (7), were identified through chromatographic separation and spectroscopic analyses. Among them, ferruginol was the most abundant compound, accounting for 76.6 % of the total content in exudates. Exudates, ferruginol and isopimaric acid possessed the strongest antibacterial activity and had MIC values of 25–250, 12.5–100 and 6.25–100 μg/mL, respectively, against one strain of Gram-negative bacteria (Escherichia coli) and four strains of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, S. epidermidis and Enterococcus faecalis). In addition, exudates and ferruginol presented 79 and 53 % at 100 μg/mL, respectively, of antioxidant activities against 1,1-dipheny1-2-picrylhydrazyl radical. C. japonica bark exudates and their diterpenes exhibit the strongest antioxidant activity and can inhibit bacterial growth and thus have the potential to be developed into natural antioxidants and bactericides.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号