首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 656 毫秒
1.
热解温度和时间对马弗炉制备生物炭的影响   总被引:1,自引:0,他引:1  
为总结马弗炉制备生物炭的经验和明晰热解温度和时间对生物炭性质的影响,以玉米秸秆为原料,在不同热解温度(400,500,600℃)和时间(2,3,4,6,8h)交叉条件下,在实验室用马弗炉烧制生物炭,计算生物炭的产率,测定其碳和氮含量,并总结利用马弗炉制备生物炭的经验。结果表明:不同热解条件下,生物炭的产率为11.2%~32.1%,生物炭的碳含量为60.9%~77.3%,全氮含量为1.1%~2.8%,C/N为23.5~71.6。随着热解温度的升高,生物炭的产率降低,400℃时为20.5%~32.1%,500℃时为12.6%~19.4%,600℃时为11.4%~16.8%。随着热解时间的延长,生物炭的产率有降低的趋势。生物炭的碳含量随热解温度升高而增加(400℃时为60.9%~63.2%,500℃时为62.6%~71.8%,600℃时为66.3%~77.3%),随热解时间呈无规律变化。生物炭的全氮含量及C/N随热解时间和温度的变化没有明显的规律。对马弗炉制备生物炭的建议为:(1)烧制生物炭时,使用锡箔纸包裹坩埚外壁,可以防止秸秆被烧成灰,使生物炭的产率保持稳定,但是锡箔纸不可重复使用;(2)热解温度不要超过700℃,当超过700℃时,部分秸秆会被烧成灰,生物炭的产率很低;(3)烧制结束后,关闭马弗炉电源,待炉内温度降低后,再打开炉门,这样可以避免高温生物炭与冷空气的接触。综上所述,马弗炉热解是实验室较低温度下(小于700℃)制备生物炭的一种有效方法。  相似文献   

2.
几种生物质热解炭基本理化性质比较   总被引:4,自引:1,他引:4  
生物炭由生物质材料在无氧或缺氧条件下经高温裂解形成,是土壤改良和废弃物处理的良好改良剂。选取五种生物质原料(大豆秸秆、玉米秸秆、水稻秸秆、稻壳和松针,均为农林废弃物),经300、400、500、600和700℃热解2 h,测定其结构及理化性质。研究结果表明,生物炭炭化结构良好清晰;生物质形成生物炭在BET比表面积、T-PLOT微孔容积、p H和阳离子交换量值方面均随热解温度升高而升高,大豆秸秆和玉米秸秆比表面积在700℃时达到最高;平均孔径随热解温度升高有一定程度下降;700℃下水稻秸秆和稻壳形成生物炭具有最高硅含量。除松针炭外,其余各生物炭呈碱性。  相似文献   

3.
热解温度对玉米秸秆生物炭稳定性的影响   总被引:1,自引:0,他引:1  
为了探究热解温度对生物炭稳定性的影响,选用玉米秸秆作为生物质原料,分别在300、500、700℃条件下热解制备生物炭。利用元素分析仪、傅里叶变换红外光谱(FTIR)和热重分析仪(TGA)表征生物炭的结构和性质,采用H_2O_2和K_2Cr_2O_7氧化法测定生物炭的抗氧化能力。结果表明,生物炭的C含量随热解温度的升高而增加,H和O含量以及H/C和O/C之比则随热解温度的升高而降低,说明了生物炭的芳香化程度增加,稳定性增强。FTIR结果表明,随着热解温度的升高,生物炭中的—OH、C—O—C和—CH等不稳定性集团减少甚至消失。TGA分析表明,随着热解温度的增加,生物炭质量损失由42.9%降低至14.67%,其700℃制备生物炭热稳定性最强。H_2O_2和K_2Cr_2O_7抗氧化结果表明,500℃条件下制备的生物炭的碳损失量最低,分别为7.19%和6.02%,其抗氧化能力最强。  相似文献   

4.
热解温度对油菜秸秆炭理化特性及孔隙结构的影响   总被引:2,自引:0,他引:2  
以农业废弃物油菜秸秆为原料,采用低氧升温炭化法,在不同热解温度(300,400,500,600,700℃)下分别炭化2 h,制备生物炭,收集并测定固体产物生物炭特性及孔隙结构。结果表明,随着热解温度的升高,油菜秸秆生物炭p H值逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。热解温度高于400℃时,油菜秸秆生物炭的矿质元素含量相对富集,表面碱性含氧官能团增加、酸性含氧官能团减少。阳离子交换量在400~500℃条件下达到较高水平,为77.39~80.00 cmol·kg-1。红外光谱表明,热解温度高于300℃时,油菜秸秆的芳香基团开始形成。随着热解温度的升高,油菜秸秆生物炭的比表面积和比孔容均是先变大后变小,在400~500℃条件下孔隙结构的发育和孔体积的形成比较好,具有较大的比表面积和比孔容,生物炭产出率相对较高,养分损失少,生物炭的理化性能、养分利用及孔隙结构均达到最优。  相似文献   

5.
为了研究花生壳生物炭的特征,评价其农业与环境领域应用价值与潜力,该研究分别在300,500,700℃下制备花生壳生物炭,测定其基础理化性质,以期了解花生壳生物炭特征及其随热解温度的变化规律。将花生壳原料放入马弗炉中,达到目标温度后低氧炭化2 h,然后对处理后样品进行理化性质的检测。结果表明,随着热解温度的升高,生物炭产率逐渐下降,土壤阳离子交换量(CEC)含量降低;大量矿质元素随着热解温度的升高含量增加,在500~700℃过程中,增幅较大;微量矿质元素中,B元素无明显变化规律,其他元素均随着热解温度的升高而增加;随热解温度的升高,花生壳生物炭表面的碱性官能团数量增加,酸性官能团的数量降低,花生壳生物炭的pH值由酸性变成强碱性,花生壳生物炭芳香化程度升高,稳定性增强;花生壳生物炭的孔隙度在高温(700℃)条件下比较发达,微孔和中孔均在较高温度下比较丰富,且微孔比重高于中孔。  相似文献   

6.
[目的]探讨热解温度对制备不同类型秸秆生物炭及其吸附去除Cu~(2+)的影响。[方法]以玉米、水稻、芝麻3类秸秆为原料于400~700℃热解炭化制备生物炭,探讨热解温度对秸秆生物炭的结构官能团、比表面积、孔径分布等结构及理化性质的影响,并评价生物炭对Cu~(2+)的吸附性能。[结果]生物炭的pH和比表面积随热解温度的升高而逐渐增大,而产率却逐渐稳定,其中热解温度的变化对水稻和芝麻秸秆生物炭的影响更为明显;此外,生物炭对Cu~(2+)的吸附效率与生物炭的种类和热解温度有关,升高热解温度有利于提高生物炭对Cu~(2+)的吸附去除率,且水稻和芝麻秸秆生物炭的吸附效率明显高于玉米秸秆生物炭,其中700℃下热解所制备的水稻和芝麻秸秆生物炭对Cu~(2+)的去除率可达100%。[结论]该研究可为控制农业环境污染提供科学依据。  相似文献   

7.
畜禽粪便与秸秆混合热解制备生物炭研究   总被引:2,自引:0,他引:2  
以牛粪和猪粪为原料,玉米芯秸秆为辅料,采用管式反应器制备生物炭,研究热解温度(200、300、400、500℃)和秸秆添加量(20%、40%、60%、80%)对畜禽粪便生物炭产率和理化特性的影响。结果显示,随着热解温度的升高,混合料生物炭产率降低,挥发分含量逐渐降低,而灰分含量、pH、全磷和全钾含量均呈递增趋势,全氮含量呈先增后减趋势;添加秸秆有利于改善畜禽粪便生物炭的pH,调节养分含量;秸秆添加量为20%时,牛粪秸秆混合生物炭的孔隙特性在400℃表现最好,猪粪秸秆混合生物炭的孔隙特性较差。牛粪秸秆混合生物炭相比猪粪秸秆混合生物炭有更好的炭产率、pH和孔隙特性,其较好的孔隙特性有利于其作为吸附剂等使用,猪粪秸秆混合生物炭具有更好的养分特性,可作为磷肥生产辅料或土壤改良剂使用。  相似文献   

8.
温度梯度对秸秆炭化物质产率及特性的影响   总被引:1,自引:0,他引:1  
在300~700℃温度区间,玉米秸秆、水稻秸秆以每100℃为间隔,大豆秸秆以200℃为间隔,研究炭化热解,量化对比产物。结果表明,秸秆热解炭比表面积、总孔容积、pH和碱式官能团随温度升高而增加,孔径和酸式官能团随温度升高而降低;热解液随热解温度升高,酸度降低;热解气中氢气和甲烷含量随温度升高而增加。热解温度平均每升高100℃,热解炭产率平均减少9.31%,热解液产率平均增加4.55%,热解气产率平均增加4.35%。玉米秸秆热解炭、热解液和热解气产率拐点分别为600、611和666℃,水稻秸秆热解炭、热解液和热解气产率拐点分别为666、600和666℃。量化参数可为优化秸秆炭化工艺提供技术支持。  相似文献   

9.
本研究以竹片、山核桃壳、水稻及油菜秸秆等4种生物质为原料,通过热重分析研究各生物质材料性质与热解特性及生物炭产率之间的关系;并在300~700 ℃下热解6 h制备生物炭,分析生物炭的元素组成及官能团结构。结果表明,在低温段(300~400 ℃),生物质材料中的纤维素、木质素等组分对生物炭产率影响较明显,木质素含量高的材料产率较高;而400 ℃以上则是灰分含量对生物炭产率影响较大,水稻及油菜秸秆由于灰分含量高,其400 ℃以上的生物炭产率高于竹片及山核桃壳。随着炭化温度的升高,生物炭灰分含量增加,无灰基的碳含量增大,稳定性增强;仅水稻秸秆炭由于灰分含量较高,在高温(500~700 ℃)条件下仍有部分含氧官能团存在。综上,生物炭在一定温度下的产率取决于生物质材料来源,而生物炭的稳定性则主要由炭化温度决定,且温度越高,性质越稳定。  相似文献   

10.
热解温度是影响生物炭表面性质的重要因素。在250~450℃范围内制备玉米秸秆生物炭(CB)和杨木生物炭(PB)。采用X-射线光电子能谱仪对生物炭的表面元素进行分析,发现各元素含量随热解温度而变化,2种生物炭的变化规律不同。傅里叶变换红外分析表明,热解温度升高造成生物炭基团的变化,C=O基团增多,芳香性增强。研究生物炭在水中的氮磷释放行为发现,随着热解温度的升高,NH4+-N和NO3--N的释放呈现先增加后减少的趋势;CB的总磷释放有所增加,PB的总磷释放先增加后降低。不同热解温度的生物炭,其营养元素的释放速率在初期存在一定差别,释放过程在48 h内基本完成。生物炭的表面性质及氮磷释放行为与热解温度及生物质来源密切相关。  相似文献   

11.
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d室内培育试验,研究秸秆生物炭添加对红壤性水稻土pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤pH值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加RB500和CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。  相似文献   

12.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

13.
选取小麦秸秆、污泥、猪粪三种原料制备的生物质炭为研究材料,通过盆栽试验,探究不同原料生物质炭对PAHs污染土壤中小白菜生长情况及对PAHs吸收积累的影响。结果表明:三种生物质炭对小白菜吸收PAHs均有一定的抑制作用,与对照相比,施用生物质炭小白菜对PAHs的吸收量降低14.53%~49.41%,三种生物质炭的抑制能力依次为麦秸炭猪粪炭污泥炭;相对于1%的施用量,施用2%的麦秸炭与猪粪炭小白菜中PAHs含量分别显著降低32.02%和21.40%,而污泥炭不同施用量对小白菜中PAHs总含量的影响无明显差异;生物质炭对小白菜吸收2~3环的低分子量PAHs的降低率为0~30.81%,对4~6环的高分子量PAHs吸收的降低率为30.72%~68.07%;施用2%的麦秸炭和猪粪炭,使小白菜的生物量显著提高20.03%和22.28%。因此,施用生物质炭可作为一种降低污染土壤中作物吸收PAHs,同时保障作物产量的有效技术途径。  相似文献   

14.
基于工业分析指标的秸秆生物炭热值预测   总被引:1,自引:0,他引:1  
为了有效的预测秸秆生物炭热值,选取棉花、小麦、玉米、油菜和水稻5种农作物秸秆,经过粉碎、干燥后进行炭化处理后,获得175个秸秆生物炭试验样品,并按相关标准测定其热值及灰分、挥发分和固定碳含量。在分析炭化工艺、工业组成与高位热值相关性的基础上,采用回归方法建立基于工业组成的秸秆生物炭热值的预测模型。分析结果表明,对比不同炭化条件下制备的秸秆炭样品的热化工特性,炭化温度对热值影响最明显,保温时间与升温速率对热值影响小。通过方差分析检验,基于工业分析组成建立的秸秆热值曲线拟合方程都是显著的,其中基于灰分、灰分和挥发分、挥发分和固定碳、灰分和固定碳的秸秆热值曲线拟合方程达到了较好的预测精度。  相似文献   

15.
生物质内源矿物对热解过程及生物炭稳定性的影响   总被引:3,自引:2,他引:1  
选用花生壳和牛粪两种富碳生物质,通过酸洗去矿和外加典型矿物的方法,在热重分析仪中模拟热解过程,探讨矿物对热解行为的催化效应;通过元素分析计算碳保留;通过K_2Cr_2O_7化学氧化以及拉曼光谱考察矿物对生物炭稳定性的影响。结果表明:内源矿物对生物质热解中的分解温度有显著催化效应,将碳骨架的主体分解温度从250~400℃降低到200~350℃;花生壳中典型矿物为KCl,牛粪中为CaCl_2;矿物CaCl_2对牛粪的分解催化效应比KCl对花生壳的催化效应更显著。生物质去矿后,热解过程中碳保留率并未发生显著变化,但生物炭产物中碳稳定性提高。K_2Cr_2O_7氧化实验表明,去矿花生壳和去矿牛粪制备的生物炭碳稳定性比原始生物质制备的生物炭分别增加了52.7%和30.6%;通过拉曼光谱观察碳结构,发现生物质去矿后制备的生物炭有序化增强(ID/IG减小),说明矿物质使生物炭更易产生晶格缺陷,对产物稳定性有负面作用。因此,生物质内源矿物的存在,在热解时催化碳分解,使得生物炭碳结构更无序化,降低产物稳定性,但对过程中碳保留率的影响不显著。  相似文献   

16.
园林废弃物处理不合理,不仅会造成植物营养元素的流失,还会造成环境污染。以法国梧桐Platanus orientalis,桂花Osmanthus fragrans,红叶石楠Photiniax fraseri和樟树Cinnamomum camphora等南方城市典型园林绿化废弃物生物质为原材料,研究热解温度(350,500和650℃)对不同园林废弃物生物质炭产率和理化特性的影响。结果表明:生物质炭的产率随着热解温度的升高呈下降趋势,且在350~500℃温度段变化较明显;原材料灰分质量分数对生物质炭产率有明显影响,法国梧桐叶片炭产率最高,其枝条炭产率最低。高温度条件下制备的生物质炭芳香性增强,亲水性和极性减弱,650℃制备的红叶石楠枝条炭和法国梧桐枝条炭的芳香性较强,350℃制备的法国梧桐叶炭亲水性和极性最强。桂花和樟树叶片炭的全氮质量分数较高,叶片炭全硫质量分数高于枝条炭。随着热解温度的升高,生物质炭表面的含氧官能团种类和数量逐渐减少,红叶石楠叶片炭在高温条件下官能团仍明显存在。利用扫描电镜和X-ray能谱分析生物质炭(500℃)发现,樟树枝条炭和法国梧桐枝条炭孔隙结构较发达,红叶石楠叶片炭中磷、镁、钾、钙等元素质量分数较高。综上所述,园林废弃物生物质炭的特性主要受原材料和热解温度的影响,不同温度下制备的园林废弃物生物质炭具有不同的产率和理化特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号