共查询到19条相似文献,搜索用时 64 毫秒
1.
[目的]科学地评价卷烟配方中劲头的大小,通过建立BP神经网络模型预测卷烟劲头。[方法]以烟叶游离烟碱百分含量、总烟碱百分含量、结合态烟碱百分含量、游离烟碱占总烟碱比率和水浸液p H作为BP神经网络的输入,感官劲头作为输出,网络训练前对输入指标作归一化处理,然后通过训练样本数据对网络进行充分的训练,获得适宜的参数矩阵,得到卷烟劲头的网络预测模型,最后用训练好的网络模型对检验样本数据进行预测。[结果]卷烟配方中劲头大小的预测值与实际值相对标准偏差小于5%,达到了较好的预测结果。[结论]建立了卷烟劲头的BP神经网络预测模型,该模型对于预测卷烟劲头具有指导意义。 相似文献
2.
3.
【目的】不同区域影响天然气需求量的因素存在差异,数据集包含的数据特征也不尽相同,同时天然气长期需求预测存在样本数据少的问题,因此较难构建各区域通用的需求预测模型。【方法】选取山东省11个地级市为研究对象,根据天然气年度消费量、GDP、人口等影响天然气需求量的主要因素,将多个地区、多时间跨度的数据作为总样本库,使用皮尔逊相关系数对样本特征进行初筛,利用K-means聚类算法对各样本数据进行聚类,选取能源消费结构相似的3个样本点,并将样本点对应的下一时间点的天然气需求量作为数据样本的新特征;同时,将灰色理论预测输出结果作为BP神经网络的输入样本,基于新的样本数据特征与BP神经网络构建组合预测模型。【结果】基于K-means聚类+灰色理论+BP神经网络的预测方法有效利用了相似能源结构的城市天然气历史需求量,并结合灰色理论预测模型在小样本数据上鲁棒性高的优点,预测得到山东省11个地级市天然气长期需求预测的平均绝对百分比误差为0.57%~6.41%。与传统的灰色理论预测模型、BP神经网络模型、K-means聚类+BP神经网络相比,新预测方法在模型误差、预测结果的稳定性方面均有明显改进。【结论】新... 相似文献
4.
5.
在普通BP算法基础上,引入克隆选择粒子群算法,建立电力需求预测模型.将当期国内生产总值、前期国内生产总值、人口、当期产业结构变化、前期产业结构变化等影响电力需求的因素作为网络输入,电力需求作为网络输出,同时选择合适的隐层节点数,确定模型的网络结构.利用克隆选择粒子群算法反复优化BP网络的权值组合,将优化后的权值作为BP神经网络的初始值,进行BP算法,直至网络达到训练指标.利用近几年相关输入输出变量年度数据,对建立的模型进行电力需求实证预测分析,并同普通BP神经网络预测结果进行对比.结果表明:基于克隆选择粒子群优化的BP神经网络不仅训练速度快,而且误差小,预测精度明显提高,说明该模型对于电力需求预测的有效性. 相似文献
6.
能源是支撑人类生存、经济发展和现代文明不可缺少的物质基础,随着社会经济的发展,对于能源的需求也在不断增长,因此准确地预测能源消费需求对于制定能源规划具有重要的指导意义.基于灰色神经网络预测模型,以重庆市历年能源统计数据为样本,根据能源消耗总量与能源消耗增长率、万元GDP能耗、万元财政收入能耗、居民收入能耗、能源消费弹性等因素之间的相关性,对重庆"十三五"期间能源的消费需求进行了预测,结果表明:运用灰色神经网络模型能够较为科学地预测重庆未来能源的实际需求趋势,可为政府相关部门的决策提供参考. 相似文献
7.
8.
近来鲜活农产品价格暴跌暴涨,这种现象不仅损害消费者的利益,对农民来说更是构成了巨大的威胁.对其原因进行分析,发现目前鲜活农产品市场上存在着信息不对称、供需不平衡等问题.利用ARIMA模型对鲜活农产品需求进行预测,以期为农民生产提供一定的指导.研究结果表明修正后的模型预测值与实际数据拟合状况良好,由此说明该模型具有一定的可用性. 相似文献
9.
基于BP神经网络的日光温室气温预报模型 总被引:1,自引:1,他引:1
为建立日光温室中短期气温预报模型,以2个冬季生产季的日光温室实时气温观测资料为基础,利用BP神经网络建模和曲线拟合的方法,对日光温室1~7d气温预报模型进行了研究。结果表明:1)以室外气温为输入要素的温室气温预报模型,最高气温预报值与观测值的符合度指数(D)为0.68~0.93,均方根误差(RMSE)为3.1~6.3℃;2)最低气温预报值与观测值的符合度指数(D)为0.81~0.95,均方根误差(RMSE)1.5~2.2℃;3)日光温室内最低气温预报绝对误差小于2℃的预报准确率Rate(≤2℃)为78%~95%;4)逐时气温预报模型预报值与实测值的符合度指数(D)为0.95~0.99,均方根误差(RMSE)为1.0~2.8℃,逐时气温预报模型预测准确率较高。结合目前气象台站"周预报"结果,模型可较准确地预报温室内1~7d最低气温,并模拟日光温室内气温的逐时变化,可为冬季日光温室低温灾害预警及室内气温调控提供有益参考。 相似文献
10.
当前关于旅游资源评价具有很强的主观色彩,各评价模型中变量多、非线性强.BP神经网络模型利用MATLAB计算程序对旅游资源进行评价,能最大程度避免主观因素对评价结果的影响.利用文献比较法、理论分析法和专家咨询法,构建包含7个一级指标和16个二级指标的评价指标体系,在此基础上设计了评价模型,重点分析了评价模型中误差取值,并... 相似文献
11.
近年来,由于猪肉安全事故和供求关系等因素的影响,导致猪肉市场价格波动大,养猪业难以持续稳定发展。科学预测猪肉需求量,对科学指导生猪生产和宏观调控猪肉市场价格意义重大。笔者根据历年数据,采用BP神经网络预测方法,实现在MATLAB中运行,通过对模型的多次训练,选择隐层神经元数目为6个,达到了期望效果。预测结果表明,2012~2016年,我国人均猪肉需求量分别为34.10、38.12、38.66、40.28和40.60kg/a。 相似文献
12.
为了准确预测马铃薯气候产量达到趋利避害的目的,利用1980—2015 年山西省大同市马铃薯产量及同期国家基准观象台观测到的气候资料,选用传统的统计回归方法和BP神经网络方法分别建立马铃薯产量预报模型。结果表明:通过二次函数曲线和最小二乘法确定马铃薯敏感期的气候因子是气温、日照和降水,其中降水对马铃薯产量的影响最大。通过改进的气候产量算法可以更好地反映气候要素与作物单产之间的函数关系。在Matlab 平台上训练精度设为0.005、学习率0.01 的BP神经网络方法可以很好地逼近非线性函数。用大于1/3 样本进行预报检验表明,在预报精度和拟合精度上,BP神经网络模型都明显优于传统的回归模型,BP神经网络方法在马铃薯产量预报中有具有非常广泛的应用前景。 相似文献
13.
基于BP神经网络的土壤贮水量预报模型研究 总被引:1,自引:0,他引:1
[目的]为实现作物的实时灌溉提供科学依据。[方法]利用实测气象资料、桓台县节水灌溉试验站2008~2009冬小麦试验资料等建立BP神经网络预报模型,应用Matlab神经网络工具箱,采用Trainlm算法进行模型训练,对试验田的土壤贮水量进行预测。[结果]基于BP神经网络的土壤贮水量预报模型的泛化能力较强;在冬小麦日耗水量较大的拔节、扬花、灌浆3个时期,该模型的预报精度较高,稳定性较好。[结论]基于BP神经网络的土壤贮水量预报模型在冬小麦耗水较大时期的模拟值具有较高的精度。 相似文献
14.
15.
在温室环境中,厚皮甜瓜较易感染一些病害,而传统的病害预测模型收敛速度慢,易在局部局限在极小值,为准确预测温室厚皮甜瓜病害,在BP神经网络的基础上进行优化,引入了遗传算法,在全局最优解的附近进行局部搜索,以遗传算法的全局搜索能力克服了传统神经网络的局部极小值问题与收敛速度缺陷。经以Matlab对试验数据进行仿真分析,证实引入遗传优化算法进行温室厚皮甜瓜病害预测误差显著减小,取得了较理想的拟合结果。 相似文献
16.
基于BP神经网络股价预测的一种改进方法 总被引:1,自引:0,他引:1
为提高神经网络经济预测的泛化能力,对神经网络预测数据处理方法进行了改进,把对数据的归一化变为对数据增长量的归一化,因而只要被预测的增长量不超过以往的历史数据增长量,则不会发生外延问题。根据这一思路,采用个股(中国石化)收盘价的数据,通过对收盘价的增长量进行了归一化,得到新的时间序列,将该时间序列视为一个从输入到输出的非线性映射,用BP神经网络进行非线性映射的逼近。对网络进行学习与训练的仿真试验后,预测结果与实际结果的比较说明,改进方法有效。 相似文献
17.
BP神经网络在小麦赤霉病气象预测中的应用* 总被引:1,自引:0,他引:1
应用BP神经网络的方法建立四川资中小麦赤霉病发病的预报模型,为预防小麦赤霉病发病提供科学依据。根据四川资中小麦赤霉病发生发展的气象生理指标及历年该病发生的统计资料,借助人工神经网络强大的函数映射能力,采用Fletcher-Reeves算法的变梯度反向传播算法——Traincgf,建立了小麦赤霉病发病的气象预报模型。该模型不需要事先确定数学模型,拟合与预测的平均绝对偏差分别为0.01,0.05,优于多元线性回归模型的0.17,0.29。BP神经网络预报模型的拟合精度和预报精度都较高,优于多元线性回归模型,能很好地实现预期效果,对小麦赤霉病发病的预测预防工作具有一定的指导意义。 相似文献
18.
BP神经网络算法的一种改进及在小麦赤霉病预测中的应用 总被引:4,自引:0,他引:4
针对BP网络收敛速度慢,计算量大等缺点,提出了动量法和批处理梯度下降学习算法相结合的BP神经网络改进算法,用以提高BP网络训练速度。该方法成功地实现了小麦赤霉病流行程度预测,效果显著。 相似文献
19.
基于神经网络的森林火灾危害程度预测研究 总被引:2,自引:0,他引:2
以可燃物分布、可燃物含水量、可燃物载量、可燃物种类、平均月发生次数、距居民点距离、坡度、温度、湿度等因素为输入变量,危害程度为输出变量,采用BP神经网络建立了林火危害程度预测模型,定量分析这些指标对林火危害程度的影响规律。结果表明:模型具有较高的预测精度,输出结果的误差小于3%。 相似文献