首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Soil respiration is an important process for carbon geochemical cycling. Based on our five long‐term fertilizer experiments, soil respiration was measured using pot experiments with or without planting soybean. Soil respiration rates and soybean root biomass were determined at different observation times. Soil respiration rates due to soil microbial activity could be estimated by extrapolating a newly derived regressive equation at zero root biomass. Soil microbial respiration rates in the control were also observed directly, ranging from 16.0 to 42.7 mg carbon (C) m?2 h?1. Average soil microbial respiration rates from the regression analyses and direct observations were 32.9 and 27.8 mg C m?2 h?1, respectively. The average proportions of soil respiration rates due to the soybean growth were 63.0% using the regressive equation and 69.8% from direct observation. Therefore, the application of these two methods could provide new insight for separating plant root respiration from soil microbial respiration, which is important for estimating their individual contributions to atmospheric carbon dioxide.  相似文献   

2.
In bioremediation, hydrocarbon biodegradation rates can be estimated from measured O2 and CO2 profiles in situ. Although Fick's law is typically used in calculating the respiration rates, its theoretical base is weak. We propose an adjusted Fick's law with a correction term for the advective flux. We evaluated the applicability of this model to simulate gas diffusion associated with passive degradation of petroleum hydrocarbons in a biopile by comparing the results of this model with the results of Fick's law and the Stefan–Maxwell equations. The deviations from the use of Fick's law depended strongly on the consumption rate of oxygen, the respiration quotient, the mineralization quotient and the volatility of the hydrocarbon. In the whole range of calculated CO2 concentration versus depth profiles, production rates of CO2 could be estimated by Fick's law with a maximum deviation of 6%. For the consumption rate of O2 the maximum deviation is 19%. However, when we used the adjusted Fick's law, the deviations from the results obtained with the Stefan–Maxwell equations were much smaller. The deviations amounted up to only 4%, when the respiration rate r was 1.5 or a hydrocarbon with volatility similar to benzene was present. If the presence of a hydrocarbon was neglected in the calculations, the deviations of the adjusted Fick's law from the results obtained with the Stefan–Maxwell equations were substantial for a hydrocarbon with volatility similar to benzene or toluene.  相似文献   

3.
Understanding carbon (C) cycling and sequestration in vegetation and soils, and their responses to nitrogen (N) deposition, is important for quantifying ecosystem responses to global climate change. Here, we describe a 2-year study of the C balance in a temperate grassland in northern China. We measured net ecosystem CO2 exchange (NEE), net ecosystem production (NEP), and C sequestration rates in treatments with N addition ranging from 0 to 25 g N m?2 year?1. High N addition significantly increased ecosystem C sequestration, whose rates ranged from 122.06 g C m?2 year?1 (control) to 259.67 g C m?2 year?1 (25 g N). Cumulative NEE during the growing season decreased significantly at high and medium N addition, with values ranging from ?95.86 g C m?2 (25 g N) to 0.15 g C m?2 (5 g N). Only the highest N rate increased significantly cumulative soil microbial respiration compared with the control in the dry 2014 growing season. High N addition significantly increased net primary production (NPP) and NEP in both years, and NEP ranged from ?5.83 to 128.32 g C m?2. The C input from litter decomposition was significant and must be quantified to accurately estimate NPP. Measuring C sequestration and NEP together may allow tracking of the effects of N addition on grassland C budgets. Overall, adding 25 or 10 g N m?2 year?1 improved the CO2 sink of the grassland ecosystem, and increased grassland C sequestration.  相似文献   

4.
Salt-affected soils are widespread, particularly in arid climates, but information on nutrient dynamics and carbon dioxide (CO2) efflux from salt-affected soils is scarce. Four laboratory incubation experiments were conducted with three soils. To determine the influence of calcium carbonate (CaCO3) on respiration in saline and non-saline soils, a loamy sand (6.3% clay) was left unamended or amended with NaCl to obtain an electrical conductivity (EC) of 1.0 dS?m?1 in a 1:5 soil/water extract. Powdered CaCO3 at rates of 0%, 0.5%, 1.0%, 2.5%, 5.0% and 10.0% (w/w) and 0.25-2 mm mature wheat residue at 0% and 2% (w/w) were then added. Cumulative CO2-C emission from the salt amended and unamended soils was not affected by CaCO3 addition. To investigate the effect of EC on microbial activity, soil respiration was measured after amending a sandy loam (18.8% clay) and a silt loam (22.5% clay) with varying amount of NaCl to obtain an EC1:5 of 1.0–8.0 dS?m?1 and 2.5 g glucose C?kg?1 soil. Soil respiration was reduced by more than 50% at EC1:5?≥?5.0 dS?m?1. In a further experiment, salinity up to an EC1:5 of 5.0 dS?m?1 was developed in the silt loam with NaCl or CaCl2. No differences in respiration at a given EC were obtained between the two salts, indicating that Na and Ca did not differ in toxicity to microbial activity. The effect of different addition rates (0.25–2.0%) of mature wheat residue on the response of respiration to salinity was investigated by adding NaCl to the silt loam to obtain an EC1:5 of 2.0 and 4.0 dS?m?1. The clearest difference between salinity levels was with 2% residue rate. At a given salinity level, the modelled decomposition constant ‘k’ increased with increasing residue addition rate up to 1% and then remained constant. Particulate organic carbon left after decomposition from the added wheat residues was negatively correlated with cumulative respiration but positively correlated with EC. Inorganic N (NH 4 + -N and NO 3 ? -N) and resin P significantly decreased with increasing salinity. Resin P was significantly decreased by addition of CaCl2 and CaCO3.  相似文献   

5.
Soil respiration throughout an annual cycle was measured at three different stands in a tropical grassland situated at Kurukshetra at 29°58' N lat. and 76°51' E long. Rates of CO2 evolution were measured by alkali absorption using 13 cm dia × 23 cm aluminium cylinders inserted 10 cm into the ground. Both movable and permanently-fixed cylinders were used. The CO2 evolution rates for the three stands were: Stand I (dominated by Sesbania bispinosa) 49–358 mg CO2 m?2 h?1; Stand II (mixed grasses) 55–378 mg CO2m?2 h?1; and Stand III (dominated by Desmostachya bipinnata) 55–448 mg CO2 m?2 h?1. A positive significant relation existed between rate of CO2 evolution and soil water content (r = 0.59?0.740), and between soil respiration and temperature (r = 0.58?0.69). A statistical model developed on the basis of the relationship between CO2 evolution rates and certain abiotic environmental factors showed 69% comparability between the calculated and observed values of soil respiration. The contribution of root and root-associated microorganisms to total soil respiration was estimated at 42% using the relationship between root biomass and CO2 output from movable cylinders.  相似文献   

6.
Soil respiration is a carbon flux that is indispensable for determining carbon balance despite variations over time and space in forest ecosystems. In Kanchanaburi, western Thailand, we measured the soil respiration rates at different slope positions—ridge (plot R), upper slope (plot U), and lower slope (plot L)—on a hill in a seasonal tropical forest [mixed deciduous forest (MDF)] to determine the seasonal and spatial variations in soil respiration on the slope. The heterotrophic (organic layer and soil) and autotrophic (root) respiration was differentiated by trenching. Soil respiration rates showed clear seasonal patterns: high and low rates in rainy and dry seasons respectively, at all plots, and tended to decrease up the slope. Soil respiration rates responded significantly to soil water content in the 0–30?cm layer, but the response patterns differed between the lower slope (plot L) and the upper slope (plots R and U): a linear model could be applied to the lower slope but exponential quadratic models to the upper slope. The annual carbon dioxide (CO2) efflux from the forest floor was also associated with the slope position and ranged from 1908?gC?m?2?year?1 in plot L to 1199?gC?m?2?year?1 in plot R. With ascending position from plot L to R, the contribution of autotrophic respiration increased from 19.4 to 36.6% of total soil respiration, while that of the organic layer decreased from 26.2 to 9.4%. Mineral soil contributed to 46.3 to 54.4% of the total soil respiration. Soil water content was the key factor in controlling the soil respiration rate and the contribution of the respiration sources. However, the variable responses of soil respiration to soil water content create a complex distribution of soil respiration at the watershed scale.  相似文献   

7.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

8.
A field experiment was conducted to examine responses of soil respiration, nitrification, and denitrification to warming in a winter wheat (Triticum aestivum L.)–soybean (Glycine max (L.) Merr) rotation cropland. The results showed that seasonal variations in soil respiration were positively related to seasonal fluctuations in soil temperature. Seasonal mean soil respiration rates for the experimental warming (EW) and control (CK) plots were 3.98 ± 0.43 and 2.54 ± 0.45 μmol m?2 s?1, respectively, in the winter wheat growing season, and they were 4.59 ± 0.16 and 4.36 ± 0.08 μmol m?2 s?1, respectively, in the soybean growing season. There was a marginally significant level (p = 0.097) for mean nitrification rates between EW and CK plots. Soil temperature and moisture accounted for 58.2% and 58.1% of the seasonal variations observed in the winter wheat and soybean plots, respectively.  相似文献   

9.

Purpose

Carbon (C) dynamics in grassland ecosystem contributes to regional and global fluxes in carbon dioxide (CO2) concentrations. Grazing is one of the main structuring factors in grassland, but the impact of grazing on the C budget is still under debate. In this study, in situ net ecosystem CO2 exchange (NEE) observations by the eddy covariance technique were integrated with a modified process-oriented biogeochemistry model (denitrification–decomposition) to investigate the impacts of grazing on the long-term C budget of semiarid grasslands.

Materials and methods

NEE measurements were conducted in two adjacent grassland sites, non-grazing (NG) and moderate grazing (MG), during 2006–2007. We then used daily weather data for 1978–2007 in conjunction with soil properties and grazing scenarios as model inputs to simulate grassland productivity and C dynamics. The observed and simulated CO2 fluxes under moderate grazing intensity were compared with those without grazing.

Results and discussion

NEE data from 2-year observations showed that moderate grazing significantly decreased grassland ecosystem CO2 release and shifted the ecosystem from a negative CO2 balance (releasing 34.00 g C?m?2) at the NG site to a positive CO2 balance (absorbing ?43.02 g C?m?2) at the MG site. Supporting our experimental findings, the 30-year simulation also showed that moderate grazing significantly enhances the CO2 uptake potential of the targeted grassland, shifting the ecosystem from a negative CO2 balance (57.08?±?16.45 g C?m?2?year?1) without grazing to a positive CO2 balance (?28.58?±?14.60 g C?m?2?year?1) under moderate grazing. The positive effects of grazing on CO2 balance could primarily be attributed to an increase in productivity combined with a significant decrease of soil heterotrophic respiration and total ecosystem respiration.

Conclusions

We conclude that moderate grazing prevails over no-management practices in maintaining CO2 balance in semiarid grasslands, moderating and mitigating the negative effects of global climate change on the CO2 balance in grassland ecosystems.  相似文献   

10.
Soil respiration in forest plantations can be greatly affected by management practices. Irrigation is necessary for high productivity of poplar plantations in semi-arid northwest China. Moreover, plowing is essential for improving soil quality and reducing evaporation. In the present study, the influences of irrigation and plowing on soil carbon dioxide (CO2) efflux were investigated in poplar plantations in 2007 and 2008. The experiments included three stand age classes receiving three treatments: control, irrigation, and plowing. Mean soil respiration in irrigation treatment stands was 5.47, 4.86, and 4.43?µmol?m?2?s?1 in 3-, 8-, and 15-year-old stands, respectively, during the growing season. In contrast, mean soil respiration in control stands was 3.71, 3.83, and 3.98?µmol?m?2?s?1 in 3-, 8-, and 15-year-old stands, respectively. During the entire observation period, mean soil respiration in plowing treatment stands increased by 36.2% compared with that in the control stands. Mean soil respiration in irrigation treatment stands was significantly higher than that in the control stands; this was mainly because fine root growth and decomposer activities were greatly depressed by soil drought, since natural precipitation could not meet their water demands. The results also suggest that plowing management can greatly increase soil CO2 emission by modifying soil structure. After plowing, soil bulk density decreased and soil aeration was greatly improved, leading to greater rates of oxidation and mineralization.  相似文献   

11.
Land‐use change and soil management play a vital role in influencing losses of soil carbon (C) by respiration. The aim of this experiment was to examine the impact of natural vegetation restoration and long‐term fertilization on the seasonal pattern of soil respiration and cumulative carbon dioxide (CO2) emission from a black soil of northeast China. Soil respiration rate fluctuated greatly during the growing season in grassland (GL), ranging from 278 to 1030 mg CO2 m?2 h?1 with an average of 606 mg CO2 m?2 h?1. By contrast, soil CO2 emission did not change in bareland (BL) as much as in GL. For cropland (CL), including three treatments [CK (no fertilizer application), nitrogen, phosphorus and potassium application (NPK), and NPK together with organic manure (OM)], soil CO2 emission gradually increased with the growth of maize after seedling with an increasing order of CK < NPM < OM, reaching a maximum on 17 August and declining thereafter. A highly significant exponential correlation was observed between soil temperature and soil CO2 emission for GL during the late growing season (from 3 August to 28 September) with Q10 = 2.46, which accounted for approximately 75% of emission variability. However, no correlation was found between the two parameters for BL and CL. Seasonal CO2 emission from rhizosphere soil changed in line with the overall soil respiration, which averaged 184, 407, and 584 mg CO2 m?2 h?1, with peaks at 614, 1260, and 1770 mg CO2 m?2 h?1 for CK, NPK, and OM, respectively. SOM‐derived CO2 emission of root free‐soil, including basal soil respiration and plant residue–derived microbial decomposition, averaged 132, 132, and 136 mg CO2 m?2 h?1, respectively, showing no difference for the three CL treatments. Cumulative soil CO2 emissions decreased in the order OM > GL > NPK > CK > BL. The cumulative rhizosphere‐derived CO2 emissions during the growing season of maize in cropland accounted for about 67, 74, and 80% of the overall CO2 emissions for CK, NPK, and OM, respectively. Cumulative CO2 emissions were found to significantly correlate with SOC stocks (r = 0.92, n = 5, P < 0.05) as well as with SOC concentration (r = 0.97, n = 5, P < 0.01). We concluded that natural vegetation restoration and long‐term application of organic manure substantially increased C sequestration into soil rather than C losses for the black soil. These results are of great significance to properly manage black soil as a large C pool in northeast China.  相似文献   

12.
Three organic wastes (banana skin (BS), brewery spent grain (BSG), and spent mushroom compost (SMC)) were used for bioremediation of soil spiked with used engine oil to determine the potential of these organic wastes in enhancing biodegradation of used oil in soil. The rates of biodegradation of the oil were studied for a period of 84 days under laboratory conditions. Hydrocarbon-utilizing bacterial counts were high in all the organic waste-amended soil ranging between 10.2?×?106 and 80.5?×?106?CFU/g compared to unamended control soil throughout the 84 days of study. Oil-contaminated soil amended with BSG showed the highest reduction in total petroleum hydrocarbon with net loss of 26.76% in 84 days compared to other treatments. First-order kinetic model revealed that BSG was the best of the three organic wastes used with biodegradation rate constant of 0.3163 day?1 and half-life of 2.19 days. The results obtained demonstrated the potential of organic wastes for oil bioremediation in the order BSG?>?BS?>?SMC.  相似文献   

13.
Reclamation of sodic soils is proving increasingly vital as greater land area becomes salt-affected in the northern Great Plains of the United States. Flue gas desulfurization gypsum (FGDG) can be an agriculturally important resource for increasing land productivity through the amelioration of sodic soils. Biochar is also considered as an aid in reclaiming degraded soils. In this incubation study, two rates of FGDG (33.6 Mg ha?1 and 66.2 Mg ha?1), two rates of biochar made from sugar beet (Beta vulgaris L.) pulp (16.8 Mg ha?1), and one rate of FGDG combined with one rate of biochar (33.6 Mg ha?1 ea.) were applied to a sodic soil. Soil physicochemical properties, including cationic exchange, pH, electrical conductivity (ECe), sodium adsorption ratio (SARe), total organic carbon (TOC), water retention, and soil respiration rate, were assessed during and at the end of the incubation period. Addition of FGDG to sodic soil increased ECe from 3.5 to 8.4 dS m?1 and decreased SARe from 16 to 9. Biochar addition to sodic soil increased TOC from 62.2 to 99.5 μg g?1 and increased soil respiration rate (mg C kg?1 soil day?1) on every measurement period. When FGDG and biochar were both added to the sodic soil, TOC did not significantly improve; however, ECe increased from 3.5 to 7.7 dS m?1, SARe decreased from 16 to 9, and soil respiration rate increased for all measurements. The results confirm there is potential for FGDG and biochar to reclaim sodic soils alone, and applied in combination.  相似文献   

14.

Purpose

Increased sedimentation due to land use intensification is increasingly affecting carbon processing in streams and rivers around the globe. This study describes the design of a laboratory-scale flow-through incubation system as a tool for the rapid estimation of sediment respiration. The measurements were compared with those obtained using an in situ closed chamber respiration method. The influence of sediment size on respiration rates was also investigated.

Materials and methods

Measurements were conducted on a pre-alpine gravel-bed river sediment separated into the following grain size fractions: > 60 mm (14.3%), 60–5 mm (60.2%), 5–2 mm (13.7%), 2–0.063 mm (11.1%) and <0.063 mm (0.6%). Concurrently, in situ and laboratory measurements were carried out on a naturally heterogeneous sediment. In situ respiration was determined in closed chambers as O2 consumption over time, while in the laboratory, respiration was determined using flow-through respiration chambers. Oxygen concentrations were measured using a fibre-optic oxygen meter positioned at the inflow and outflow from the chamber.

Results and discussion

The mean respiration rates within naturally mixed riverbed sediments were 1.27 ± 0.3 mg O2 dm?3 h?1 (n = 4) and 0.77 ± 0.1 mg O2 dm?3 h?1 (n = 3) for the flow-through chamber system and closed chamber system, respectively. Respiration rates were statistically significantly higher in the flow-through chamber system (t test, p < 0.05), indicating that closed chamber measurements underestimated the oxygen consumption within riverbed sediments. Sediment grain size was found to significantly affect respiration rates in both systems (ANOVA, p < 0.001) with the fine sediment fraction (particle size <0.063 mm) having the highest respiration rate (rflow-through = 51 ± 23 mg O2 dm?3 h?1). The smallest fractions (2–0.063 and <0.063 mm), which represent approximately 12% of total sediment volume, contributed 60% of total respiration.

Conclusions

The study demonstrated that flow-through respiration chambers more accurately estimate the respiration rate within riverbed sediments than in situ closed chambers, since the former experiment imitates the natural conditions where continuous interstitial flow occurs in the sediments. We also demonstrated that fine sediments (<5 mm) substantially contribute to heterotrophic respiration in the studied gravel-bed river.
  相似文献   

15.

Purpose

Rice-paddy-dominated watersheds in eastern China are intensively cultivated, and lands with two crops receive as much as 550–600 kg?ha–1?year–1 of nitrogen (N), mainly through the addition of N-based fertilizers. However, stream N concentrations have been found to be relatively low. Waterways in the watersheds are assumed to be effective “sinks” for N, minimizing its downstream movement. We directly measured net sediment denitrification rates in three types of waterways (ponds, streams/rivers, and a reservoir) and determined the key factors that control net sediment denitrification. Such information is essential for evaluating the impact of the agricultural N cycle on the quality of surface water.

Materials and methods

The pond–stream–reservoir continuum was sampled every 2 months at nine sites in an agricultural watershed between November 2010 and December 2011. Net sediment N2 fluxes/net sediment denitrification rates were determined by membrane inlet mass spectrometry and the N2/Ar technique. A suite of parameters known to influence denitrification were also measured.

Results and discussion

Net denitrification rates ranged between 28.2?±?18.2 and 674.3?±?314.5 μmol N2–N?m–2?h–1 for the streams, 23.7?±?23.9 and 121.2?±?38.7 μmol N2–N?m–2?h–1 for the ponds, and 41.8?±?17.7 and 239.3?±?49.8 μmol N2–N?m–2?h–1 for the reservoir. The mean net denitrification rate of the stream sites (173.2?±?248.4 μmol N2–N?m–2?h–1) was significantly higher (p?<?0.001) than that of the pond sites (48.3?±?44.5 μmol N2–N?m–2?h–1), and the three types of waterways all had significantly higher (p?<?0.01) mean net denitrification rates in summer than in other seasons. Linear regression and linear mixed effect model analysis showed that nitrate (NO3 ?–N) concentration in surface water was the primary controlling factor for net sediment denitrification, followed by water temperature. Using monitoring data on NO3 ?–N concentrations and temperature of the surface water of waterways and an established linear mixed effect model, total N removed through net sediment denitrification in the pond–stream–reservoir continuum was estimated at 46.8?±?24.0 t?year–1 from July 2007 to June 2009, which was comparable with earlier estimates based on the mass balance method (34.3?±?12.7 t?year–1), and accounted for 83.4 % of the total aquatic N. However, the total aquatic N was only 4.4 % of the total N input to the watershed, and thus most of the surplus N in the watershed was likely to be either denitrified or stored in soil.

Conclusions

High doses of N in a rice-paddy-dominated watershed did not lead to high stream N concentrations due to limited input of N into waterways and the high efficiency of waterways in removing N through denitrification.  相似文献   

16.
In saline soils under semi-arid climate, low matric and osmotic potential are the main stressors for microbes. But little is known about the impact of water potential (sum of matric and osmotic potential) and substrate composition on microbial activity and biomass in field collected saline soils. Three sandy loam soils with electrical conductivity of the saturated soil extract (ECe) 3.8, 11 and 21 dS m?1 (hereafter referred to EC3.8, EC11 and EC21) were kept at optimal water content for 14 days. After this pre-incubation, the soils were either left at optimal water content or dried to achieve water potentials of ?2.33, ?2.82, ?3.04 and ?4.04 MPa. Then, the soils were amended with 20 g?kg?1 pea or wheat residue to increase nutrient supply. Carbon dioxide emission was measured over 14 days; microbial biomass C was measured at the end of the experiment. Cumulative respiration decreased with decreasing water potential and was significantly (P?<?0.05) lower in soils at water potential ?4 MPa than in soils at optimal water content. The effect of residue type on the response of cumulative respiration was inconsistent; with residue type having no effect in the saline soils (EC11 and EC21) whereas in the non-saline soil (EC3.8), the decrease in respiration with decreasing water potential was less with wheat than with pea residue. At a given water potential, the absolute and relative (in percentage of optimal water content) cumulative respiration was lower in the saline soils than in the non-saline soil. This can be explained by the lower osmotic potential and the smaller microbial biomass in the saline soils. However, even at a similar osmotic potential, cumulative respiration was higher in the non-saline soil. It can be concluded that high salt concentrations in the soil solution strongly reduce microbial activity even if the water content is relatively high. The stronger relative decrease in microbial activity in the saline soils at a given osmotic potential compared to the non-saline soil suggests that the small biomass in saline soils is less able to tolerate low osmotic potential. Hence, drying of soil will have a stronger negative effect on microbial activity in saline than in non-saline soils.  相似文献   

17.
The degradation rate of the pollutant is often an important parameter for designing and maintaining an active treatment system or for determining the rate of natural attenuation. A quasi‐steady‐state gas transport model based on Fick’s law with a correction term for advective flux, for estimating diesel degradation rates from N2, O2 and CO2 concentration versus depth data, was evaluated in a laboratory column study. A loamy sand was spiked with diesel fuel at 0, 1000, 5000 and 10 000 mg kg−1 soil (dry weight basis) and incubated for 15 weeks. Soil gas was sampled weekly at 6 selected depths in the columns and analysed for O2, CO2 and N2 concentrations. The agreement between the measured and the modelled concentrations was good for the untreated soil (R2= 0.60) and very good for the soil spiked with 1000 mg kg−1 (R2= 0.96) and 5000 mg kg−1 (R2= 0.97). Oxygen consumption ranged from −0.15 to −2.25 mol O2 m−3 soil day−1 and CO2 production ranged from 0.20 to 2.07 mol CO2 m−3 soil day−1. A significantly greater mean O2 consumption (P < 0.001) and CO2 production (P < 0.005) over time was observed for the soils spiked with diesel compared with the untreated soil, which suggests biodegradation of the diesel substrate. Diesel degradation rates calculated from respiration data were 1.5–2.1 times less than the change in total petroleum hydrocarbon content. The inability of this study to correlate respiration data to actual changes in diesel concentration could be explained by volatilization, long‐term sorption of diesel hydrocarbons to organic matter and incorporation of diesel hydrocarbons into microbial biomass, aspects of which require further investigation.  相似文献   

18.
Though engineered covers have been suggested for reducing landfill methane emissions via microbial methane oxidation, little is known about the covers' function at low temperature. This study aimed to determine the methane consumption rates of engineered soil columns at low temperature (4–12°C) and to identify soil characteristics that may enhance methane oxidation in the field. Engineered soils (30 cm thick) were mixtures of sewage sludge compost and de-inking waste, amended with sand (SDS soil) or bark chips (SDB soil). At 4–6°C, we achieved rates of 0.09 gCH4 kgTS?1d?1 (0.02 m3 m?2d?1) and 0.06 gCH4 kgTS?1d?1 (0.009 m3 m?2d?1) with SDS and SDB soils, respectively. With SDS, good movement and exchange of oxygen in porous soil moderated the slowdown of microbial activity so that the rate dropped only by half as temperature declined from 21–23°C to 4–6°C. In SDB, wet bark chips reduced the soil's air-filled porosity and intensified non-methanotrophic microbial activity, thus reducing the methane consumption rate at 4–6°C to one fourth of that at 21–23°C. In conclusion, soil characteristics such as air-filled porosity, water holding capacity, quantity and stabilization of organic amendments that affect the movement and exchange of oxygen are important variables in designing engineered covers for high methane oxidation at low temperature.  相似文献   

19.
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50?C70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg?1 soil) than the higher levels (500 or 1,000 mg N kg?1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg?1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.  相似文献   

20.
Abstract

We observed carbon dioxide (CO2) flux at two experimental plots (wheat (Triticum aestivum L.) -planted and bare) for a year using an automatically controlled chamber. At each plot, two chambers were installed at six observation points by rotation. Consequently, the total installment duration at each point was one-third of the entire experimental period. Although we manually moved the chambers periodically, they hampered wheat growth and reduced the dried weight of harvested wheat by 65%. However, they did not influence the carbon (C) content ratio of harvested wheat. The rate of decrease of soil water contents after rainfall in the wheat plot was higher than that in the bare plot, especially after the canopy height reached around 30 cm. The maximum gap of soil water content at 5 cm depth between the two plots was about 5%. Wheat mitigated the increase of soil temperature in the daytime. The gap of soil temperature at 2 cm depth between the two plots sometimes exceeded 10°C. Considering the difference between dried weights of harvested wheat per unit ground area inside and outside the chamber collar, the annual net ecosystem exchange (NEE), whole ecosystem respiration and gross primary production were estimated respectively as –103 g C m?2 y?1, 831 g C m?2 y?1 and–934 g C m?2 y?1. The absolute values of each were smaller than those reported from past studies. Adding the exported carbon of harvested wheat (364 g C m?2) and subtracting the imported carbon of the seeds (3.1 g C m?2) to the NEE, net biome production across the ground surface was 259 g C m?2. It was greater than that in the bare plot (187 g C m?2). Although further improvements of measurements and more accurate estimated equations are necessary to evaluate the carbon budget correctly with chamber measurements, our chamber measurement captured the NEE variation, responding to seasonal, meteorological and biological changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号