首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.

Purpose

We review 2,4-dichlorophenoxyacetic acid (2,4-D) and other phenoxy herbicide sorption experiments.

Methods

A database with 469 soil–water distribution coefficients K d (in liters per kilogram) was compiled: 271 coefficients are for the phenoxy herbicide 2,4-D, 9 for 4-(2,4-dichlorophenoxy)butyric acid, 18 for 2-(2,4-dichlorophenoxy)propanoic acid, 109 for 2-methyl-4-chlorophenoxyacetic acid, 5 for 4-(4-chloro-2-methylphenoxy)butanoic acid, and 57 for 2-(4-chloro-2-methylphenoxy)propanoic acid. The following parameters characterizing the soils, solutions, or experimental procedures used in the studies were also compiled if available: solution CaCl2 concentration, pH, pre-equilibration time, temperature, soil organic carbon content (f oc), percent sand, silt and clay, oxalate extractable aluminum, oxalate extractable iron (Oxalate Fe), dithionite–citrate–bicarbonate extractable aluminum, dithionite–citrate–bicarbonate extractable iron (DCB Fe), point of zero negative charge, anion exchange capacity, cation exchange capacity, soil type, soil horizon or depth of sampling, and geographic location. K d data were also compiled characterizing phenoxy herbicide sorption to the following well-defined sorbent materials: quartz, calcite, α-alumina, kaolinite, ferrihydrite, goethite, lepidocrocite, soil humic acid, Fluka humic acid, and Pahokee peat.

Results

The data review suggests that sorption of 2,4-D can be rationalized based on the soil parameters pH, f oc, Oxalate Fe, and DCB Fe in combination with sorption coefficients measured independently for humic acids and ferrihydrite, and goethite.

Conclusions

Soil organic matter and iron oxides appear to be the most relevant sorbents for phenoxy herbicides. Unfortunately, few authors report Oxalate Fe and DCB Fe data.  相似文献   

3.
RHIZOSPHERE MICROBIAL POPULATIONS IN CONTAMINATED SOILS   总被引:2,自引:0,他引:2  
Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) were grown in soil containing a mixture of organic chemicals for 14 weeks. The equal millimolar mixture of hexadecane, (2,2-dimethylpropyl)benzene, cis-decahydronaphthalene (decalin), benzoic acid, phenanthrene, and pyrene was added at levels of 0 and 2000 mg/kg. Organic chemical degrader (OCD) populations were assessed by a Most-Probable-Number technique, and bacteria and fungi were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were investigated to determine the effect it had on interpretation of the results. At 9 weeks, the OCD numbers were significantly higher in rhizosphere and contaminated soils than in bulk and non-contaminated soils, respectively. Alfalfa rhizosphere OCD levels were 4 × 107/g for contaminated and 6 × 106/g for non-contaminated soils. Bluegrass rhizosphere OCD levels were 1 × 107/g and 1 × 106/g in contaminated and non-contaminated soils, respectively. Selective enrichment of OCD populations was observed in contaminated rhizosphere soil. Higher numbers of OCD in contaminated rhizospheres suggest potential stimulation of bioremediation around plant roots.  相似文献   

4.
Understanding the role of organic acids on phosphorus (P) sorption capacity of soils is very important for its economic and friendly management. Combining P application with low-molecular weight organic acids could result in its higher plant availability for prolonged time. Therefore, citric and oxalic acid (at the rate of 1.0 mM kg?1 soil) were evaluated for their effect on P sorption capacity and its plant availability in two different textured calcareous soils. Organic acids decreased P sorption capacity and organic carbon partition coefficient (Koc) whereas increased Gibbs free energy (ΔG) of P. Organic-acid-treated soils required lesser quantity of P fertilizer to produce soil solution P concentration optimum for plant growth (external P requirement [EPR0.2]), that is, 0.2 mg L?1. Citric acid was efficient than oxalic acid in the above effects. P sorption parameters of Freundlich model were negatively correlated with lime potential and ΔG whereas had positive correlation (< 0.05) with EPR0.2 and Koc. Incubation with oxalic acid increased available P in loamy sand and loam soil by 20% and 30%, respectively. Thus, organic acids could help reduce application rate of P fertilizer through lowering its adsorption in highly P-fixing soils without compromise on yield.  相似文献   

5.
Sorption studies were conducted to determine the adsorption and desorption characteristics of a common synthetic chemical, trichloroethylene (TCE) in four granular media; sandy loam soil, organic top soil, peat moss and granular activated carbon (GAC). The results showed that the Freundlich Isotherm satisfactorily represents adsorption and desorption of dissolved TCE in these media and that the organic carbon content is an important factor in both processes. The soil-water partition coefficient (K oc) for TCE suggests that it will migrate quickly through soil.  相似文献   

6.
Results from a multi-year, pilot-scale land treatment project for PAHs and PCBs biodegradation were evaluated. A mathematical model, capable of describing sorption, sequestration, and biodegradation in soil/water systems, is applied to interpret the efficacy of a sequential active–passive biotreatment process of organic chemicals on remediation sites. To account for the recalcitrance of PAHs and PCBs in soils and sludges during long-term biotreatment, this model comprises a kinetic equation for organic chemical intraparticle sequestration process. Model responses were verified by comparison to measurements of biodegradation of PAHs and PCBs in land treatment units; a favorable match was found between them. Model simulations were performed to predict on-going biodegradation behavior of PAHs and PCBs in land treatment units. Simulation results indicate that complete biostabilization will be achieved when the concentration of reversibly sorbed chemical (S RA) reduces to undetectable levels, with a certain amount of irreversibly sequestrated residual chemical (S IA) remaining within the soil particle solid phase. The residual fraction (S IA) tends to lose its original chemical and biological activity, and hence, is much less available, toxic, and mobile than the “free” compounds. Therefore, little or no PAHs and PCBs will leach from the treatment site and constitutes no threat to human health or the environment. Biotreatment of PAHs and PCBs can be terminated accordingly. Results from the pilot-scale testing data and model calculations also suggest that a significant fraction (10–30%) of high-molecular-weight PAHs and PCBs could be sequestrated and become unavailable for biodegradation. Bioavailability (large K d , i.e., slow desorption rate) is the key factor limiting the PAHs degradation. However, both bioavailability and bioactivity (K in Monod kinetics, i.e., number of microbes, nutrients, and electron acceptor, etc.) regulate PCBs biodegradation. The sequential active–passive biotreatment can be a cost-effective approach for remediation of highly hydrophobic organic contaminants. The mathematical model proposed here would be useful in the design and operation of such organic chemical biodegradation processes on remediation sites.  相似文献   

7.
Soil adsorption and the effect of four chlorophenols and three chloroanilines on the growth of lettuce (Lactuca sativa) were determined in two soil types differing in organic matter content and pH. Adsorption increased with increasing organic matter content of the soils. Phytotoxicity, based on dosed amounts, was significantly higher in the soil with the low level of organic matter. This difference could be reduced by recalculating the EC50 values for the effect of the test substances on plant growth in mg kg-1 dry soil towards concentrations in mg L-1 pore water using data from soil adsorption experiments. For pentachlorophenol only this recalculation increased rather than decreased the difference between the two soils, however, when the EC50 values for pentachlorophenol were corrected for the difference in soil pH, almost the same values resulted for both soils. Calculated EC50 values on the basis of pore water concentrations appeared to be in good agreement with values determined in nutrient solution tests. These results indicate that, for plants, the toxicity and therefore the bioavailability of organic chemicals in soil mainly depend on the concentration in the soil solution, and can be predicted on the basis of sorption data. Attempts to develop QSARs relating log EC50 values in μmol L?1 pore water with lipophilicity (expressed as the octanol/water partition coefficient: log Kow,) of the test substances resulted in a statistically significant relationship. This relationship was further improved by correcting the chlorophenol data for dissociation effects.  相似文献   

8.
The effect of different humic fractions on polychlorinated biphenyl (PCB) contamination in soils was tested in the field by means of 53 soil samples from a high-altitude grassland plateau in the Italian Alps. Three humic fractions (humin, humic acids, and fulvic acids) were characterized in parallel by quantifying 12 PCB congeners to establish a direct relationship between PCB levels and humic fraction concentrations. Humin (the most hydrophobic fraction) appears to be the most closely correlated with the amount of PCBs in soil (R 2?=?0.83), while fulvic acid shows the lowest correlation (R 2?=?0.49). The idea of preferential sorption of hydrophobic compounds in the humin fraction is discussed, and the humin carbon content (f huminC) is proposed as an improved parameter for evaluating the potential for POP accumulation in soils, replacing total organic carbon (f oc). Congener studies revealed that penta- and hexa-substituted-CBs show the optimal combination of physicochemical properties for equilibrating with the humin content in soil. Moreover, f huminC/f oc is conceptually equivalent to the empirical coefficients used in predictive K sa equations. In our samples, the f huminC/f oc was 0.55, a value in between the empirical coefficients proposed in the literature. In predictive equations, the use of f huminC instead f oc avoids the necessity of using an empirical parameter for a ??generic?? condition by introducing an experimental parameter (f huminC) that takes into account local conditions (organic matter composition).  相似文献   

9.
Cadmium distribution coefficients, K d were determined at low Cd concentrations (solute: 0.2 to 3.0 μg Cd dm?3, soil: 0.044 to 1.1 mg Cd kg?1) for 63 Danish agricultural soils. The K d values ranged from 15 to 2450 L kg?1. About 40% of the soils had K d values below 200 L kg?1. The observed K d values correlated very well with soil pH (r 2 = 0.72). Introducing soil organic matter content as a second parameter improved the correlation some (r 2 = 0.79). No further improvements were obtained by introducing traditional soil parameters as clay, silt, fine sand, coarse sand and CEC or ‘reactive’ parameters as oxyhydroxides of Mn, Fe and Al. The identified regression equation for predicting K d values indicates that K d approximately doubles for each 0.5 unit increase in pH or 2% increase (weight basis) in organic matter content.  相似文献   

10.
The conversion factor, kK, for estimation of microbial biomass potassium (K) by the chloroform-fumigation extraction method was determined for some arable soils: upland field soils under different fertilization conditions, an upland field soil under a greenhouse condition, and a paddy field soil under a flooded condition. The kK value varied with land utilization (paddy or upland) or fertilization (chemical or organic fertilizer). Value of kK was different between paddy field soil (0.28–0.38) and upland field soil (0.41–0.73). This study indicates that the value could be useful for the estimation of microbial biomass K in soil by the chloroform-fumigation extraction method and further investigation of the amounts of biomass K in different types of soils under conditions with varied field managements will be necessary.  相似文献   

11.
The mobility of polycyclic aromatic hydrocarbons (PAH) in soils can be influenced by the presence of dissolved organic matter. Partition coefficients of selected polycyclic aromatic hydrocarbons, ranging from 3-ring to 6-ring compounds, to water-soluble soil organic matter (WSSOM) were determined. Partition coefficients were determined for WSSOM obtained from two soils under agricultural use and forest and for commercially available humic acid (Aldrich), taking advantage of a reversed phase (C18) separation method. The WSSOM was characterised with regard to charge and hydrophilic/hydrophobic properties with a dissolved organic matter (DOM) fractionation method. No sorption to WSSOM was found for the tri- and tetracyclic PAH, whereas the penta- and hexacyclic PAH showed a significant binding to both types of WSSOM and to Aldrich humic acid. The affinity of penta- and hexacyclic PAH to WSSOM was considerably lower compared to the affinity to Aldrich humic acid. This is suggested to be due to the lower amount of hydrophobic fractions, c. 30%, in the natural WSSOM as compared to Aldrich humic acid. Effective partition coefficients (Koceff) for the sorption of PAH to bulk soil calculated from KDOC and DOM in the naturally occurring concentration range were only 60–70% of the Koc values in pure water. The impact of DOM on pollutant transport is further influenced by non-equilibrium behaviour of PAH in soils and by sorption of DOM to the solid-soil matrix. Several scenarios are described in which the effect of DOM on pollutant transport may become important.  相似文献   

12.
The prediction of the mobility of arsenic (As) is crucial for predicting risks in soils contaminated with As. The objective of this study is to predict the distribution of As between solid and solution in soils based on soil properties and the fraction of As in soil that is reversibly adsorbed. We studied adsorption of As(V) in suspensions at radiotrace concentrations for 30 uncontaminated soils (pH 4.4–6.6). The solid–liquid distribution coefficient of As (Kd) varied from 14 to 4430 l kg?1. The logarithm of the concentration of oxalate‐extractable Fe explained 63% of the variation in log Kd; by introducing the logarithm of the concentration of oxalate‐extractable P in the regression model, 85% of the variation in log Kd is explained. Double labelling experiments with 73As(V) and 32P(V) showed that the As to P adsorption selectivity coefficient decreased from 3.1 to 0.2 with increasing degree of P saturation of the amorphous oxides. The addition of As(V) (0–6 mmol kg?1) reduced the Kd of 73As up to 17‐fold, whereas corresponding additions of P(V) had smaller effects. These studies suggest that As(V) is adsorbed to amorphous oxides in soils and that sites of adsorption vary in their selectivity in respect of As and P. The concentration of isotopically exchangeable As in 27 contaminated soils (total As 13–1080 mg kg?1) was between 1.2 and 19% (mean 8.2%) of its total concentration, illustrating that a major fraction of As is fixed. We propose a two‐site model of competitive As(V)–P(V) sorption in which amorphous Fe and Al oxides represent the site capacity and the isotopically exchangeable As represents the adsorbed phase. This model is fitted to 73As adsorption data of uncontaminated soils and explains 69% of the variation of log Kd in these soils. The log Kd in contaminated soils predicted using this two‐site model correlated well with the observed log Kd (r = 0.75). We conclude that solubility of As is related to the available binding sites on amorphous oxides and to the fraction of As that is fixed.  相似文献   

13.
Sluszny  C.  Graber  E. R.  Gerstl  Z. 《Water, air, and soil pollution》1999,115(1-4):395-410
Fresh amendment of soil with sewage sludge and composted sewage sludge resulted in increased sorption of three s-triazine herbicides: atrazine, ametryn and terbuthylazine. The extent of increased sorption (as evaluated by sorption coefficients Kd or Kf) was a function of soil type, such that sorption in amended organic carbon-poor soil (0.4% OC) was more enhanced than in amended organic carbon-rich soil (1.55% OC). Despite significant differences between the organic amendments in terms of humic and fulvic acid content, humin content, soluble organic matter content, total organic matter content, and H/C and O/C atomic ratios, organic matter composition had no discernible effect on either sorption distribution coefficients or on isotherm linearity in amended soils. Soils amended with composted sludge had the same sorption potential as did soils amended with the analogous uncomposted sludge. After incubating soil-sludge mixtures for a year at room temperature, organic matter content decreased to original pre-amendment levels. Sorption coefficients for the three compounds similarly decreased to initial pre-amendment values. Organic carbon normalized sorption coefficients (Koc) were essentially identical in the soils, amended soils, and incubated amended soils, indicating that sludge and compost derived organic matter does not have a significantly different sorption capacity as compared with the original soils, despite compositional differences.  相似文献   

14.
Toiber-Yasur  Inbar  Rosner  M.  Hadas  Aviva  Russo  D.  Yaron  B. 《Water, air, and soil pollution》1999,113(1-4):319-335
A field experiment was designed to provide data on the effect of soil heterogeneity on the distribution of herbicides following leaching by irrigation and rain water. Terbuthylazine and bromacil, two nonconservative herbicides, together with CaBr2, a conservative chemical, were used in the reported experiment. The experimental field consisted of a noncultivated 175-m2 plot in which 20 observation points were randomly selected. A hundred and ten centimeters of irrigation and rainwater were applied and the field was periodically sampled for chemical distributions. The spatial variability of the field was determined by measuring the Ks (saturated conductivity) and α (Gardner parameter). Auxiliary laboratory experiments were performed to define the adsorption-desorption of the chemicals studied in these field soils. Results on the adsorption-desorption of terbuthylazine and bromacil and on the redistribution of these chemicals in the field to a depth of 120 cm during leaching are shown. Bromacil leached to a greater extent than terbuthylazine. The differences among the concentrations of herbicides in the various cores studied may be explained in terms of properties of the chemicals and soil spatial variability. The residual concentrations of terbuthylazine and bromacil were also determined to a depth of 400 cm after the leaching of 110 cm of water. In some of the cores, two zones showing a relatively high concentration of terbuthylazine and bromacil were observed at depths of 40–60 and 200–300 cm, respectively. This redistribution pattern of the herbicides could be explained by the preferential flow of the solute in the cores studied.  相似文献   

15.
Rapid Headspace-GC determination of the soil-water partition ratio of volatile hydrocarbons The hydrocarbon load of contaminated soils is usually mainly adsorbed to the soil organic matter. The laboratory determination of the sorption equilibration of volatiles suffers from severe drawbacks due to volatilization losses of the analytes and low recoveries if liquid extraction methods are applied. The presented headspace technique for the determination of partition coefficients produces reliable results, also under adsorptive as well as under desorptive conditions. It was shown that the volatiles tested are subject to rather severe ad-/desorption hysteresis which strengthens the necessity to determine the desorptive Koc in contaminated sites. Additionally significant data were obtained that demonstrated a very strong effect of the organic matters quality on the partition ratios of volatiles.  相似文献   

16.
Although the chemical composition of soil organic matter (SOM) is known to significantly influence sorption of pesticides and other pollutants, it has been difficult to determine the molecular nature of SOM in situ. Here, using 13C nuclear magnetic resonance (NMR) data and elemental composition in a molecular mixing model, we estimated the molecular components of SOM in 24 soils from various agro‐ecological regions. Substantial variations were revealed in the molecular nature of SOM. As a proportion of soil carbon the proportion of the carbonyl component ranged from 0.006 to 0.05, charcoal from 0 to 0.15, protein from 0.09 to 0.29, aliphatic from 0.14 to 0.30, carbohydrate from 0.21 to 0.31, and lignin from 0.05 to 0.42. The relationships between Koc (sorption per unit mass of organic carbon) of carbaryl (1‐naphthyl methylcarbamate) and phosalone (S‐6‐chloro‐2,3‐dihydro‐2‐oxobenzoxazol‐3‐ylmethyl O,O‐diethyl phosphorodithioate) and the molecular nature of organic matter in the soils were significant. Of the molecular components estimated, lignin and charcoal contents correlated best with sorption of carbaryl and phosalone. Aliphatic, carbohydrate and protein contents were found to be negatively correlated with the Koc of both pesticides. The study highlights the importance of the molecular nature of SOM in determining sorption affinities of non‐ionic pesticides and presents an indirect method for sorption estimation of pesticides.  相似文献   

17.
Prediction of the fate of metals in soil requires knowledge of their solid–liquid partitioning. This paper reviews analytical methods and models for measuring or predicting the solid–liquid partitioning of metals in aerobic soils, and collates experimental data. The partitioning is often expressed with an empirical distribution coefficient or Kd, which gives the ratio of the concentration in the solid phase to that in the solution phase. The Kd value of a metal reflects the net effect of various reactions in the solid and liquid phases and varies by orders of magnitude among soils. The Kd value can be derived from the solid–liquid distribution of added metal or that of the soil‐borne metal. Only part of the solid‐phase metal is rapidly exchangeable with the solution phase. Various methods have been developed to quantify this ‘labile’ phase, and Kd values based on this phase often correlate better with soil properties than Kd values based on total concentration, and are more appropriate to express metal ion buffering in solute transport models. The in situ soil solution is the preferred solution phase for Kd determinations. Alternatively, water or dilute‐salt extracts can be used, but these may underestimate in situ concentrations of dissolved metals because of dilution of metal‐complexing ligands such as dissolved organic matter. Multi‐surface models and empirical models have been proposed to predict metal partitioning from soil properties. Though soil pH is the most important soil property determining the retention of the free metal ion, Kd values based on total dissolved metal in solution may show little pH dependence for metal ions that have strong affinity for dissolved organic matter. The Kd coefficient is used as an equilibrium constant in risk assessment models. However, slow dissociation of metal complexes in solution and slow exchange of metals between labile and non‐labile pools in the solid phase may invalidate this equilibrium assumption.  相似文献   

18.
It is generally assumed that the sorption of a nonionic pesticide on soil depends mainly on the content of soil organic matter (SOM); however, there are other factors that can contribute to this process. The possible causes of variation in the carbon-normalized partition coefficient (K OC) for chlorpyrifos (CPF) for a diverse set of ten soils have been investigated. On the one hand, the analysis of the chemical composition of the SOM was analyzed, and on the other hand, the likely interactions between the organic matter and the mineral phase were assessed. Sorption experiments of CPF were performed on whole soil, on soils treated with 2% hydrofluoric acid (HF), and onto calcined soil at 550 °C. Organic matter chemistry of soil was determined by 13C CP/MAS NMR spectroscopy; K OC values were positively correlated with aryl C relative proportion and negatively correlated with alkyl C and O-aryl C proportions and prediction equation of K OC was found (R 2?=?0.82, p?<?0.001). To evaluate possible organo-mineral interactions, a mathematical model was proposed which calculates the concentration of CPF at equilibrium (C cal) considering adsorption coefficients for the organic (K DHF) and inorganic (K D550 °C) soil constituents, separately. The comparison between C cal and the equilibrium concentration obtained from experimental data (C exp) onto whole soil allowed us to confirm that interactions between the OM and clay affect the adsorption of CPF in whole soil. Such findings should be taken into account in the development of predictive models for the evaluation of the fate and transport of this pesticide in soil.  相似文献   

19.
Abstract

The sorption behavior of three triazine herbicides: atrazine, metribuzin, and terbutryn was studied in two different soils. Three experimental procedures to determine the Kf values were assayed: the conventional batch equilibration method in which the sorbed concentration is calculated by difference from the change in solution concentration; an alternative mass balance equilibrium batch technique in which the solution and the sorbed phase concentration are measured directly; and the flow equilibration method in which a solution of known concentration was passed through a column of soil until the effluent reached the same concentration as the input solution. Four concentrations of each herbicide were selected and results were fitted to the linearized form of the Freundlich isotherm. Recovery of the herbicides was studied in soil and water samples using the same four concentrations employed in the sorption assays. Average recoveries ranged from 86 to 104% with standard deviations lower than 10%. The Koc (mg1–1/n kg‐1 Ll/n) values obtained ranged from 43 to 87 for atrazine, 27 to 114 for metribuzin, and 355 to 505 for terbutryn. The exponents 1/n of the Freundlich adsorption isotherms were lower than unity, with only one exception, and varied from 0.72 to 0.86 for atrazine, 0.73 to 1.12 for metribuzin, and 0.76 to 0.99 for terbutryn. The solution method gave values of Koc that were 1.25, 1.55, and 2.65 (average of both soils) times those of the mass balance method for terbutryn, atrazine and metribuzin, respectively. When adsorption was low, the mass balance calculation method is recommended if the batch equilibration method is used, since the solution method can produce a considerable overestimation of adsorption. The flow equilibration method produced similar values of adsorption than the mass balance batch equilibration method and it made the experimental procedure easier since pesticide solution concentration need not to be measured once the equilibration time has been determined to ensure that the equilibrium was reached.  相似文献   

20.
Residues of antibiotic pharmaceutical compounds (APCs) found in the environment are suspected to be translocated into the food chain and to provoke the formation of resistant microorganisms. However, the behavior of APCs in soils is largely unknown. In the present study batch experiments were carried out with sulfapyridine (SPY) and p‐aminobenzoic acid (ABA) amended to two loess Chernozem samples. Due to different fertilization in the course of a long‐term field experiment samples differed substantially in the concentration of organic carbon (Corg 1.6 and 2.4%) and composition of soil organic matter (SOM). APCs in soil extracts were analyzed by high performance liquid chromatography. The KF values of the Freundlich isotherm for SPY were 2.2 (1.6% Corg) and 5.5 (2.4% Corg). The Koc values were 101 and 308. The different Koc values indicated that not only the quantity but also the composition of SOM affected the SPY adsorption. Adsorption of SPY was substantially higher in moist than in air‐dry soil. ABA, consisting of a carboxyl group instead of the sulfonamide group substituted with a N‐heterocycle, was much less adsorbed than SPY (KF 0.2). From this it was concluded that the N‐heterocycle significantly contributed to the adsorption of SPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号