首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The CGC population is a stabilized composite of 1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise germplasm. The objectives of this research were to estimate genetic parameters for weight traits of CGC and to evaluate genetic responses resulting from selection based on the following index: I = 365-d weight 3.2(birth weight). Phenotypes evaluated were birth weight (n = 5,083), 200-d weight (n = 4,902), 365-d weight (n = 4,626), and the index. In addition, there were 1,433 cows with at least one recorded weight, and 4,375 total observations of cow weight collected at the time their calves were weaned. In 1989, a randomly selected control line and a line selected for greater values of the index were established. Average generation intervals were 3.16 +/- 0.04 and 3.90 +/- 0.08 yr in the index and control lines, respectively. The index selection line (n = 950) accumulated approximately 212 kg more selection differential than the control line over three generations (n = 912). Heritability estimates for direct effects were 0.32 +/- 0.04, 0.49 +/- 0.05, 0.49 +/- 0.05, 0.30 +/- 0.04, and 0.70 +/- 0.04 for the index, birth weight, 365-d weight, 200-d weight, and cow weight, respectively. Heritability estimates for maternal effects were 0.05 +/- 0.02, 0.11 +/- 0.03, 0.04 +/- 0.02, and 0.19 +/- 0.04 for the index, birth weight, 365-d weight, and 200-d weight, respectively. In the control line, direct genetic changes for the index and its components were small. For the index selection line, direct genetic changes for the index, birth weight, 365-d weight, 200-d weight, and cow weight were 6.0 +/- 0.3, 0.45 +/- 0.09, 7.74 +/- 0.55, 3.42 +/- 0.25, and 6.3 +/- 0.9 kg/generation, respectively. Maternal genetic changes were generally small for both the control and index selection lines. Thus, selection for the index produced positive correlated responses for direct genetic effects on BW traits at all ages, with only minor effects on maternal genetic effects. Results demonstrate that despite a genetic antagonism that compromises selection response for decreased birth weight and increased postnatal growth, favorable genetic responses can be achieved with the selection index used in this study.  相似文献   

2.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

3.
In good environments, cow intake is sufficient for their own growth and for milk production to support their calf. In poor environments, cows lose BW or may reduce milk supply to maintain themselves. Heritability for direct genetic and maternal components of weaning weight as well as the correlations between these components might be expected to vary according to these circumstances. The purpose of this study was to estimate heritability and genetic correlations for the direct genetic and maternal components of weaning weight classified in 2 environments according to maternal BW gain and to identify whether a single heritability estimate is appropriate for the differing environments experienced by cows from year to year. Data used in this analysis was obtained from the Red Angus Association of America and consisted of 96,064 cow BW observations and 27,534 calf weaning weight observations. A dam's change in BW from one year to the next was used to classify each calf's weaning weight into 1 of 2 environmental groups, those being good or poor. Best linear unbiased estimates of the change in cow BW with age were obtained from analysis of cow BW using a repeatability model. If the phenotypic change in cow BW exceeded this average BW change, the calf's weaning weight associated with the end of this time frame was classified as having been observed in a good environment. If not, the calf's corresponding weaning weight was classified as having occurred in a poorer than average environment. Heritability estimates of 0.24 +/- 0.03, 0.24 +/- 0.03, 0.13 +/- 0.02, and 0.14 +/- 0.02 were obtained for weaning weight good direct, poor direct, good maternal, and poor maternal, respectively. Correlations between direct genetic and maternal weaning weight components in the good and poor environments were -0.47 +/- 0.08 and -0.20 +/- 0.09, respectively. These variance components are not sufficiently distinct to warrant accounting for dam nutritional environment in national cattle evaluation.  相似文献   

4.
Demographic characteristics and genetic trends in birth weight and pre- and postweaning ADG were examined in a population of Hereford cattle (Line 1). Line 1 was founded largely from two paternal half-sib sires and has been selected for postweaning growth. There were pedigree records on 951 members of the base population that predated 1935, when data collection began. Numbers of records analyzed using mixed-model methodology were 4,716 birth weight, 4,427 preweaning ADG, and 3,579 postweaning ADG. Birth weight and preweaning ADG were considered to have direct and maternal genetic components. Inbreeding accumulated rapidly from 1935 to 1960 and more slowly (.22%/yr) thereafter. Any reduction in additive genetic variance due to inbreeding and selection may have been offset by a concurrent reduction in generation interval that was observed as time progressed. Expected selection differential for 365-d weight, averaged over sexes, was 31.2 kg per generation. For birth weight, annual genetic trends in direct and maternal effects were 42 +/- 3 g and 15 +/- 3 g, respectively. Annual direct and maternal genetic trends for preweaning ADG were .70 +/- .06 g/d and .63 +/- .06 g/d, respectively. Direct response in postweaning ADG was linear and equal to 5.3 +/- .6 g.d-1.yr-1. As a result, estimated breeding values of birth weight, 200-d weight, and 365-d weight increased by 3.2 kg, 14.5 kg, and 62.4 kg, respectively, from 1935 to 1989. Selection within Line 1 was effective in increasing genetic potential for growth over 13 generations. No selection plateau was observed in any of the traits examined.  相似文献   

5.
Simultaneous selection for low birth weight and high yearling weight has been advocated to improve efficiency of beef production. Two sublines of Line 1 Hereford cattle were established by selection either for below-average birth weight and high yearling weight (YB) or for high yearling weight alone (YW). Direct effects on birth weight and yearling weight diverged between sublines with approximately four generations of selection. The objective of this study was to estimate genetic trends for traits of the cows. A three-parameter growth curve [Wt = A(1 - b0e(-kt))] was fitted to age (t, d)-weight (W, kg) data for cows surviving past 4.5 yr of age (n = 738). The resulting parameter estimates were analyzed simultaneously with birth weight and yearling weight using multiple-trait restricted maximum likelihood methods. To estimate maternal additive effects on calf gain from birth to weaning (MILK) the two-trait model previously used to analyze birth weight and yearling weight was transformed to the equivalent three-trait model with birth weight, gain from birth to weaning, and gain from weaning to yearling as dependent variables. Heritability estimates were 0.32, 0.27, 0.10, and 0.20 for A, b0, k, and MILK, respectively. Genetic correlations with direct effects on birth weight were 0.34, -0.11, and 0.55 and with direct effects on yearling weight were 0.65, -0.17, and 0.11 for A, b0, and k, respectively. Genetic trends for YB and YW, respectively, were as follows: A (kg/generation), 8.0+/-0.2 and 10.1+/-0.2; b0 (x 1,000), -1.34+/-0.07 and -1.16+/-0.07; k (x 1,000), -14.3+/-0.1 and 4.3+/-0.1; and MILK (kg), 1.25+/-0.05 and 1.89+/-0.05. Beef cows resulting from simultaneous selection for below-average birth weight and increased yearling weight had different growth curves and reduced genetic trend in maternal gain from birth to weaning relative to cows resulting from selection for increased yearling weight.  相似文献   

6.
Mass selection for increased weight at 200 d of age was conducted for six generations in a line of Landrace pigs. In the select line, the heaviest nine boars and 18 gilts were selected from each generation to produce the subsequent generation. A contemporaneous control line was maintained by randomly selecting a son from each sire and a daughter from each dam to attain a line size of five boars and 10 gilts. Inbreeding coefficients averaged .182 and .191 for the select- and control-line pigs and .150 and .162 for the select- and control-line dams, respectively, in the sixth generation. The 200-d weights and ultrasound backfat thickness data were collected from 1,022 pigs of 2,181 pigs farrowed. These pigs were sired by 92 boars and out of 210 sows. The generation interval was 13 mo. Twelve traits were studied: weights at birth and at 21, 35, 70, 154, and 200 d of age; daily gains from birth to 35 d, 35 to 70 d, 70 to 154 d, and 154 to 200 d; ultrasound backfat thickness at 200 d; and ultrasound backfat thickness adjusted for 200-d weight. Total weighted cumulative selection differential for 200-d weight was 88.7 kg. Realized heritability for 200-d weight was .26 +/- .08 with an average response of 4.2 +/- 1.3 kg/generation. Correlated responses resulted in increases for all weights and daily gains evaluated. Although ultrasound backfat thickness at 200 d increased in the select line compared to the control line, it was not altered by selection for 200-d weight when adjusted for 200-d weight.  相似文献   

7.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18 151 animals for birth weight and from 15 360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

8.
Correlated responses in reproductive and carcass traits from a line of Duroc pigs selected for increased 200-d weight along with a randomly selected control line were studied in 189 litters (116 select, 73 control) and 191 pigs (106 select, 85 control), respectively. Reproductive and maternal traits studied included litter sizes born, born alive, and alive at 21 d and litter weight at birth and at 21 d. Carcass traits studied were carcass length, longissimus muscle area, average backfat thickness, 10th rib backfat thickness, specific gravity, weights of closely trimmed ham, loin, and shoulder, belly weight, subjective scoring of the longissimus muscle for color and marbling, estimated percentage of muscle and lean gain per day. Total weighted cumulative selection differential for 200-d weight was 81.7 kg. The realized heritability for 200-d weight was .18 +/- .08, and the change in 200-d weight was 2.5 +/- 1.2 kg per generation. The regression coefficient of litter size born on generation was -.29 +/- .12 (P less than .10) pigs per generation. None of the other regression coefficients for the reproductive traits differed from zero. Average backfat thickness, 10th rib backfat thickness, and belly weight increased by .093 +/- .016 cm, .122 +/- .029 cm, and .089 +/- .040 kg, respectively, per generation. Specific gravity, ham weight, shoulder weight, color score, and percentage of muscle decreased -.00086 +/- .00024, -.165 +/- .013 kg, -.104 +/- .011 kg, -.035 +/- .015 points, and -.47 +/- .12%, respectively, per generation in response to the selection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

10.
There is limited genetic information relating calving difficulty and body weights to other productive and reproductive traits. Such information is useful for specifying selection criteria and for predicting economic consequences of selection. Genetic, maternal, and environmental covariances of six productive and reproductive measurements with calving difficulty, birth weight, 200-d weight, and 168-d postweaning gain were estimated in 12 experimental populations of cattle. Calf (direct) genetic effects resulting in longer gestation length were associated with increased calving difficulty and birth weight. Maternal genetic effects of increased gestation length and heavier birth weight were significantly associated. Lighter birth weight and reduced calving difficulty were associated with earlier heifer age at puberty. Increases in direct genetic effects of calving difficulty, 200-d weight, and postweaning gain were associated with a small increase in direct effect of scrotal circumference. Increased direct genetic effects of scrotal circumference were correlated with maternal effects decreasing calving difficulty and increasing 200-d weight. Direct effects of the skeletal measurements, yearling hip height, and heifer pelvic area were positively correlated with direct effects of calving difficulty, birth weight, 200-d weight, and postweaning gain, positively correlated with maternal effects for birth weight and 200-d weight, and negatively correlated with maternal calving difficulty. Percentage of retail product was positively associated with calving difficulty and negatively associated with 168-d gain. Predicted genetic change in calving difficulty resulting from one standard deviation of selection for either calving difficulty score or birth weight was much larger than for any other traits. Selection for 200-d weight, 168-d postweaning gain, hip height, pelvic area, or scrotal circumference was predicted to have opposite effects on direct and maternal calving difficulty. Estimated genetic correlations indicate some small to moderate relationships between calving difficulty and the measured productive and reproductive traits. However, selection for reduced calving difficulty should be based on calving difficulty score and(or) birth weight because of their superiority in predicted genetic change.  相似文献   

11.
Data from a French experimental herd recorded between 1990 and 1997 were used to estimate genetic parameters for individual birth and weaning weight, as well as litter size of Large White pigs using restricted maximum likelihood (REML) methodology applied to a multivariate animal model. In addition to fixed effects the model included random common environment of litter, direct and maternal additive genetic effects. The data consisted of 1928 litters including individual weight observations from 18151 animals for birth weight and from 15360 animals for weaning weight with 5% of animals transferred to a nurse. Estimates of direct and maternal heritability and proportion of the common environmental variance for birth weight were 0.02, 0.21 and 0.11, respectively. The corresponding values for weaning weight were 0.08, 0.16 and 0.23 and for litter size 0.22, 0.02 and 0.06, respectively. The direct and the maternal genetic correlations between birth and weaning weight were positive (0.59 and 0.76). Weak positive (negative) genetic correlations between direct effects on weight traits and maternal effects on birth weight (weaning weight) were found. Negative correlations were found between direct genetic effect for litter size and maternal genetic effects on all three traits. The negative relationship between litter size and individual weight requires a combined selection for litter size and weight.  相似文献   

12.
Mass selection for increased weight at 70 d of age was practiced for six generations in a line of Landrace pigs. It was desired to have the next generation sired by the heaviest nine boars and out of the heaviest 27 gilts. A contemporaneous, randomly selected (by pedigree) control line was maintained in which the next generation was sired by five boars and out of 10 gilts. Inbreeding coefficients were .208 and .214 for the selected and control line litters and .177 and .189 for the selected and control line dams in the sixth generation, respectively. A total of 1,906 pigs was farrowed with 70-d weights collected on 1,267 pigs. These pigs were sired by 88 boars and out of 190 gilts. The generation interval was 13 mo. Six traits were studied: birth, 21-d, 35-d and 70-d weights and preweaning (from birth to 35 d) and postweaning (from 35 to 70 d) daily gains. Direct and correlated responses per generation and per weighted cumulative selection differential (WCSD) were estimated. Total WCSD for 70-d weight was 30.3 kg. This corresponds to a standardized WCSD of 6.11 phenotypic standard deviations. The response per generation for 70-d weight was .65 +/- .29 kg. The realized heritability for 70-d weight was .13 +/- .06. Nearly all the increased weight at 70 d was the result of more rapid growth in the postweaning period, with little difference in growth in the preweaning period; birth, 21-d and 35-d weights and preweaning daily gains remained unchanged by selection for 70-d weight.  相似文献   

13.
The objectives of this study were to estimate response to divergent selection for an index of placental efficiency in swine, and to evaluate the effect of placental efficiency on litter size. The selection index (SI) included total born (TB), birth weight (BRWT), and placental weight (PW), and was designed to increase in the high line (H) or decrease in the low line (L) the efficiency of the placental function (PE), defined as the ratio BRWT:PW. (Co)variance components were estimated for direct and maternal additive effects by using an animal model with MTDFREML procedures. Estimated breeding values were calculated by using records on individual BRWT (n = 2,111), PW (n = 2,006), PE (n = 1,677), and SI (n = 1,677). Litter traits were evaluated using records on 193 litters. The model included the fixed effects of contemporary group for all traits, with the addition of sex for individual traits and parity for litter traits. Litter was fitted as an uncorrelated random effect for all traits, and TB was used as a linear and quadratic covariate for BRWT, PW, and PE. Direct heritability estimates from single-trait models were 0.03, 0.25, 0.18, 0.11, and 0.08 for BRWT, PW, PE, SI, and TB, respectively. Estimated breeding values were compared between lines by using a model including generation, line within generation, and replicate within line as the error term. Estimates of genetic divergence were 20.7 +/- 2.7 g, 0.24 +/- 0.03, 0.11 +/- 0.02, and 0.07 +/- 0.02 per generation for PW, PE, SI, and TB, respectively (P < 0.01), but divergence was not significant for BRWT. At Generation 4, direct EBV was higher in L than in H for PW (55.9 +/- 8.7 vs. -24.2 +/- 9.5 g, respectively; P < 0.01) and higher in H than in L for PE (0.58 +/- 0.10 vs. -0.35 +/- 0.09 g, respectively; P < 0.01). However, EBV was not different for BRWT, SI, or TB. These results indicate that PW and PE are susceptible to change by genetic selection; however, the correlated response in TB was an unexpected genetic trend toward a higher TB in L of 0.05 +/- 0.01 piglets per generation (P < 0.01).  相似文献   

14.
Maternal performance of 134 Hereford (H), Brangus (B), and reciprocal crossbred (H x B and B x H) cows from 2 to 7 yr of age was evaluated under semidesert conditions in this study. Calves produced by 2- and 3-yr-old cows were sired by Brangus and Hereford bulls. Calves produced by 4- to 7-yr-old cows were sired by Charolais bulls. Breed of sire and breed of dam of cow affected kilograms of weaning weight, 205-d weight, weaning weight as a percentage of cow weight, and 205-d weight as a percentage of cow weight produced annually. Brangus (either as sire or dam of cow) was superior to Hereford in all cases. Observed maternal heterosis on 2- to 3-yr-old cows was 23.0, 20.1, 30.0, 29.1, 23.9, and 23.0% for calf birth date, weaning percentage, weaning weight per year, 205-d weight per year, weaning weight as a percentage of cow weight per year, and 205-d weight as a percentage of cow weight per year, respectively (P less than .01). Observed maternal heterosis from mature cows was 19.8, 12.8, 21.0, 18.7, 17.4, and 15.4% for calf birth date, weaning percentage, weaning weight per year, 205-d weight per year, weaning weight as a percentage of cow weight per year, and 205-d weight as a percentage of cow weight per year, respectively (P less than .01). Results indicate large heterotic effects on annual cow productivity and an adaptive advantage for cows with Brangus sires and(or) dams under semidesert conditions.  相似文献   

15.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   

16.
Mass selection for increased weight at 200 d of age was conducted for six generations in a line of Duroc pigs. A randomly selected contemporary control line was maintained. Our objectives were to observe the response in 200-d weight, to measure correlated responses in weights at earlier ages, daily gains and ultrasound backfat thickness and to compare three methods for estimating responses to selection. Inbreeding coefficients averaged .213 and .202 for the select- and control-line pigs and .200 and .173 for the select- and control-line dams in the sixth generation, respectively. A total of 1,866 pigs were farrowed; 200-d weights were collected on 798 of them. These pigs were sired by 89 boars and were out of 193 sows. Twelve traits were studied: weights at birth and at 21, 35, 70, 154 and 200 d of age, daily gains from birth to 35 d, 35 d to 70 d, 70 d to 154 d and 154 d to 200 d, ultrasound backfat thickness at 200 d and ultrasound backfat thickness adjusted for 200-d weight. Three methods for estimating responses to selection gave similar results; therefore, the estimates were averaged. Total weighted cumulative selection differential for 200-d weight was 81.7 kg with a response in 200-d weight of 2.5 +/- 1.2 kg/generation. This response corresponds to a realized heritability for 200-d weight of .18 +/- .08. Increased weight at 200 d was the result of more rapid growth in the 154- to 200-d period, with decreased growth in the period from birth to 35 d. Growth at other periods was not changed significantly. Ultrasound backfat thickness at 200 d increased in the select line compared to the control line, but not when adjusted for 200-d weight.  相似文献   

17.
Estimates of (co)variance and genetic parameters of birth, weaning (205 days) and yearling (365 days) weight were obtained using single-trait animal models. The data were analysed by restricted maximum likelihood, fitting an animal model that included direct and maternal genetic and permanent environmental effects. The data included records collected between 1976 and 2001. The pedigree information extended as far back as early 1960s. The heritabilities for direct effects of birth, weaning and yearling weights were 0.36, 0.29 and 0.25, respectively. Heritability estimates for maternal effects were 0.13, 0.16 and 0.15 for birth, weaning and yearling weights, respectively. The correlations between direct and maternal additive genetic effects were negative for all traits analysed. The results indicate that both direct and maternal effects should be included in a selection programme for all the traits analysed.  相似文献   

18.
To estimate adjustment factors and genetic parameters for gestation length (GES), AI and calving date records (n = 40,356) were extracted from the Canadian Charolais Association field database. The average time from AI to calving date was 285.2 d (SD = 4.49 d) and ranged from 274 to 296 d. Fixed effects were sex of calf, age of dam (2, 3, 4, 5 to 10, > or = 11 yr), and gestation contemporary group (year of birth x herd of origin). Variance components were estimated using REML and 4 animal models (n = 84,332) containing from 0 to 3 random maternal effects. Model 1 (M1) contained only direct genetic effects. Model 2 (M2) was G1 plus maternal genetic effects with the direct x maternal genetic covariance constrained to zero, and model 3 (M3) was G2 without the covariance constraint. Model 4 (M4) extended G3 to include a random maternal permanent environmental effect. Direct heritability estimates were high and similar among all models (0.61 to 0.64), and maternal heritability estimates were low, ranging from 0.01 (M2) to 0.09 (M3). Likelihood ratio tests and parameter estimates suggested that M4 was the most appropriate (P < 0.05) model. With M4, phenotypic variance (18.35 d2) was partitioned into direct and maternal genetic, and maternal permanent environmental components (hd2 = 0.64 +/- 0.04, hm2 = 0.07 +/- 0.01, r(d,m) = -0.37 +/- 0.06, and c2 = 0.03 +/- 0.01, respectively). Linear contrasts were used to estimate that bull calves gestated 1.26 d longer (P < 0.02) than heifers, and adjustments to a mature equivalent (5 to 10 yr old) age of dam were 1.49 (P < 0.01), 0.56 (P < 0.01), 0.33 (P < 0.01), and -0.24 (P < 0.14) d for GES records of calves born to 2-, 3-, 4-, and > or = 11-yr-old cows, respectively. Bivariate animal models were used to estimate genetic parameters for GES with birth and adjusted 205-d weaning weights, and postweaning gain. Direct GES was positively correlated with direct birth weight (BWT; 0.34 +/- 0.04) but negatively correlated with maternal BWT (-0.20 +/- 0.07). Maternal GES had a low, negative genetic correlation with direct BWT (-0.15 +/- 0.05) but a high and positive genetic correlation with maternal BWT (0.62 +/- 0.07). Generally, GES had near-zero genetic correlations with direct and maternal weaning weights. Results suggest that important genetic associations exist for GES with BWT, but genetic correlations with weaning weight and postweaning gain were less important.  相似文献   

19.
Correlated effects of selection for components of litter size on growth and backfat thickness were estimated using data from 3 pig lines derived from the same base population of Large White. Two lines were selected for 6 generations on either high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (C). Genetic parameters for individual piglet BW at birth (IWB); at 3 wk of age (IW3W); and at weaning (IWW); ADG from birth to weaning (ADGBW), from weaning to 10 wk of age (ADGPW), and from 25 to 90 kg of BW (ADGT); and age (AGET) and average backfat thickness (ABT) at 90 kg of BW were estimated using REML methodology applied to a multivariate animal model. In addition to fixed effects, the model included the common environment of birth litter, as well as direct and maternal additive genetic effects as random effects. Genetic trends were estimated by computing differences between OR or PS and C lines at each generation using both least squares (LS) and mixed model (MM) methodology. Average genetic trends for direct and maternal effects were computed by regressing line differences on generation number. Estimates of direct and maternal heritabilities were, respectively, 0.10, 0.12, 0.20, 0.24, and 0.41, and 0.17, 0.33, 0.32, 0.41, and 0.21 (SE = 0.03 to 0.04) for IWB, IW3W, IWW, ADGBW, and ADGPW. Genetic correlations between direct and maternal effects were moderately negative for IWB (-0.21 +/- 0.18), but larger for the 4 other traits (-0.59 to -0.74). Maternal effects were nonsignificant and were removed from the final analyses of ADGT, AGET, and ABT. Direct heritability estimates were 0.34, 0.46, and 0.21 (SE = 0.03 to 0.05) for ADGT, AGET, and ABT, respectively. Direct and maternal genetic correlations of OR with performance traits were nonsignificant, with the exception of maternal correlations with IWB (-0.28 +/- 0.13) and ADGPW (0.23 +/- 0.11) and direct correlation with AGET (-0.23 +/- 0.09). Prenatal survival also had low direct but moderate to strong maternal genetic correlations (-0.34 to -0.65) with performance traits. The only significant genetic trends were a negative maternal trend for IBW in the OR line and favorable direct trends for postweaning growth (ADGT and AGET) in both lines. Selection for components of litter size has limited effects on growth and backfat thickness, although it slightly reduces birth weight and improves postweaning growth.  相似文献   

20.
Direct and maternal additive effects and heterosis were estimated using data from straightbred Angus, Brahman, Charolais, Hereford, and four generations of rotational crosses among these breeds. Traits of interest were birth weight, Julian day of birth, average daily gain from birth to weaning, 205-d weight, and weaning weight per cow exposed. Complete data were available on 3,445 calves produced from 4,733 matings. Discrete generations of 4-yr duration were produced from 1970 through 1988. Brahman was included in each rotational crossbreeding system. Genetic effects were estimated by regression. Direct and maternal additive effects of Brahman, Charolais, and Hereford were estimated as deviations from Angus. Direct and maternal heterosis effects were assumed proportional to expected heterozygosity. The Brahman direct additive effect resulted in later-born calves (P < 0.01). Brahman, Charolais, and Hereford direct additive effects increased birth weight, and the Brahman maternal additive effect decreased birth weight compared with Angus (P < 0.05). Charolais direct and maternal additive effects were greater than Angus for average daily gain and 205-d weight (P < 0.01). The Hereford maternal additive effects on average daily gain and 205-d weight were less than those of the other breeds (P < 0.01). Breed combinations including Brahman had greater direct heterosis for birth weight, average daily gain, and 205-d weight than other combinations (P < 0.01). Angus, Charolais, and Hereford direct additive effects on weaning weight per cow exposed were greater than Brahman (P < 0.05). Predicted average daily gain, 205-d weight, and weaning weight per cow exposed were, on average, greater in four-breed rotation systems than in three- and two-breed systems. Among two-breed rotation systems, predicted average daily gain and 205-d weaning weight were greatest for Charolais-Brahman and least for Angus-Hereford. Calves from the Angus-Charolais-Hereford system weighed less at weaning than any other three-breed combination. However, weaning weight per cow exposed from the Angus-Charolais-Hereford system was greatest among three-breed systems. Within three- and four-breed rotation systems, ranges in predicted birth and weaning weights among generations varied by up to 10.0 and 25.2 kg, respectively. The choice of breeds affects performance, and the sequence of their use may affect intergenerational variation in performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号