首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对污染物浓度较高的猪场沼液,开展了不同浸润线高度下垂直潜流湿地处理效果的对比研究。试验结果表明:湿地浸润线可改变湿地填料层中的溶解氧分布和水力流态,从而造成了3种类型湿地系统对猪场沼液处理效果的差异;在不同水力负荷下,中浸润线垂直潜流湿地(VSSF-M)对猪场沼液中各项污染物的去除效果均好于低浸润线垂直潜流湿地(VSSF-L)和高浸润线垂直潜流湿地(VSSF-H);中浸润线垂直潜流湿地利用溶解氧梯度在填料层内实现了好氧区、缺氧区和厌氧区的共存,从而使硝化作用与反硝化作用在同一系统内完成,提高了系统的脱氮能力;中浸润线垂直潜流湿地系统还可适当增大系统的水力停留时间(HRT),并可优化水力流态,从而进一步改善湿地系统的净化效果。因此,结合处理效果和出水水质的稳定性,中浸润线垂直潜流湿地对浓度较高的猪场沼液具有较高的去除效率。  相似文献   

2.
The aim was to assess the role of Phragmites australis (Cav.) Trin. ex Steud. in experimental, mature, and temporarily flooded vertical flow wetland filters treating urban runoff rich in organic matter. During the experiment, ammonium chloride was added to sieved concentrated road runoff to simulate primary treated urban runoff contaminated with nitrogen. Five days at 20°C N-allylthiourea biochemical oxygen demand (BOD) and chemical oxygen demand removal efficiencies were relatively lower for planted than unplanted filters. Moreover, there was no significant difference for BOD removal for all filters under fluctuating inflow concentrations of sulfate. The nitrogen removal performances of planted filters were more efficient and stable throughout the seasons compared to those of unplanted filters. A substantial load of nitrogen (approximately 500 mg per filter) was removed by harvesting P. australis. Plant uptake was the main removal mechanism for nitrogen during high concentrations (10 mg/L) of ammonia-nitrogen in the urban runoff.  相似文献   

3.
Hydroponics culture generates large amounts of wastewater that are highly concentrated in nitrate and phosphorus but contains almost no organic carbon. Constructed wetlands (CWs) have been proposed to treat this type of effluent, but little is known about the performance of these systems in treating hydroponic wastewater. In addition, obtaining satisfactory winter performances from CWs operated in cold climates remains a challenge, as biological pathways are often slowed down or inhibited. The main objective of this study was to assess the effect of plant species (Typha sp., Phragmites australis, and Phalaris arundinacea) and the addition of organic carbon on nutrient removal in winter. The experimental setup consisted of 16 subsurface flow CW mesocosms (1 m2, HRT of 3 days) fed with 30 L?d1 of synthetic hydroponics wastewater, with half of the mesocosms fed with an additional source of organic carbon (sucrose). Carbon addition had a significant impact on nitrate and phosphate removal, with removal means of 4.9 g m-2?d-1 of NO3-N and 0.5 g m-2 d-1 of PO4-P. Planted mesocosms were generally more efficient than unplanted controls. Furthermore, we found significant differences among plant treatments for NO3-N (highest removal with P. arundinacea) and COD (highest removal with P. australis/Typha sp.). Overall, planted wetlands with added organic carbon represent the best combination to treat hydroponics wastewater during the winter.  相似文献   

4.
The performances of a new and a mature integrated constructed wetland (ICW) system treating domestic wastewater were evaluated for the first time. The new ICW in Glaslough (near Monaghan, Ireland) comprises five wetland cells, and the mature system in Dunhill (near Waterford, Ireland) comprises four cells. The performance assessment for these systems is based on physical and chemical parameters collected for 1 year in Glaslough and 5 years in Dunhill. The removal efficiencies for the former system were relatively good if compared to the international literature: biochemical oxygen demand (BOD, 99.4%), chemical oxygen demand (COD, 97.0%), suspended solids (SS, 99.5%), ammonia nitrogen (99.0%), nitrate nitrogen (93.5%), and molybdate-reactive phosphorus (MRP, 99.2%). However, the mature ICW had removal efficiencies that decreased over time as the Dunhill village expanded rapidly. The mean removal efficiencies were as follows: BOD (95.2%), COD (89.1%), SS (97.2%), ammonia nitrogen (58.2%), nitrate nitrogen (?11.8%), and MRP (34.0%). The findings indicate that ICW are efficient in removing BOD, COD, SS, and ammonia nitrogen from domestic wastewater. Moreover, both ICW systems did not pollute the receiving surface waters and the groundwater.  相似文献   

5.
In this study, the role of Cyperus sp. was evaluated for removal of pollutants from swine wastewater. Vertical-flow pilot scale constructed wetlands (CWs) operating with a hydraulic retention time (HRT) of 72 h were monitored in a greenhouse, located in Viçosa, Brazil. Significant differences were observed for the following parameters: Kjeldahl nitrogen, total phosphorus, alkalinity and electric conductivity, with averages removals of 37.5 and 28.5%, 55.9 and 44.4%, 30.2 and 25.6 and 26.1% and 22.9% (for planted and unplanted CWs, respectively). The rate of dry matter yield from Cyperus sp. was 7.5 g?m?2 day?1, and the nutrient uptake capacities were 21.8, 2.1, 14.0 and 0.9 g?m?2 of N, P, K and Na, respectively. Evapotranspiration (2.7 mm day?1) was statistically higher in the planted CWs. Plants in the CWs are important for achieving high nutrient removal.  相似文献   

6.
人工湿地在猪场污水净化中的应用   总被引:9,自引:3,他引:9  
人工湿地具有良好的净化污水的功能,它是一种推流式生物反应器。文中主要叙述人工湿地结构与净化猪场污水机理;并分析了人工湿地从开始运行到成熟过程,湿地结构成分变化及对污水净化效果的影响;经筛选,人工湿地中的植物为鸭舌草,它是适于这类型人工湿地种植的良好草种。经运行测试分析表明:BOD5去除率达88.04%,CODCr去除率达88.56%,SS去除率达90.77%,硫化物去除率达88.29%,铜化物去除率达95.74%。人工湿地因出水水质好,运行维护方便,在猪场污水处理系统中使用较为理想。  相似文献   

7.
Three common Appalachian plant species (Juncus effusus L., Scirpus validus L., and Typha latifolia L.) were planted into small-scale constructed wetlands receivingprimary treated wastewater. The experimental design includedtwo wetland gravel depths (45 and 60 cm) and five plantingtreatments (each species in monoculture, an equal mixture of the three species, and controls without vegetation), with two replicates per depth × planting combination. Inflow rates (19 L day-1) and frequency (3 times day-1) were designed to simulate full-scale constructed wetlands as currently used for domestic wastewater treatmentin West Virginia. Influent wastewater and the effluent from each wetland were sampled monthly for ten physical, chemical and biological parameters, and plant demographic measurements were made. After passing through these trough wetlands, the average of all treatments showed a 70% reduction in total suspended solids (TSS) and biochemical oxygen demand (BOD), 50 to 60% reduction in nitrogen (TKN), ammonia and phosphate, anda reduction of fecal coliforms by three orders of magnitude. Depth of gravel (45 or 60 cm) had little effect on wetland treatment ability, but did influence Typha and Scirpus growth patterns. Gravel alone provided significant wastewater treatment, but vegetation further improved many treatment efficiencies. Typha significantly out-performedJuncus and Scirpus both in growth and in effluent quality improvement. There was also some evidence that the species mixture out-performed species monocultures.Typhawas the superior competitor in mixtures, but a decline in Typha growth with distance from the influent pipe suggested that nutrients became limiting or toxicities may have developed.  相似文献   

8.
The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic landscape river water were studied in the western section of the Qingyuan River at the Minhang campus of Shanghai Jiaotong University. The first wetland was a single-stage system using gravel as a filtration medium, and the second was a three- stage system filled with combinations of gravel, zeolite, and fly ash. Results from parallel operations of the wetlands showed that the three-stage constructed wetland could remove organics, nitrogen, and phosphorus successfully. At the same time, it could also decrease ammoniacal odour in the effluent. Compared to the single-stage constructed wetland, it had better nutrient removal efficiencies with a higher removal of 19.37%-65.27% for total phosphorus (TP) and 21.56%- 62.94% for total nitrogen (TN), respectively, during the operation period of 14 weeks. In terms of removal of chemical oxygen demand (COD), turbidity, and blue-green algae, these two wetland systems had equivalent performances. It was also found that in the western section of the test river, in which the two constructed wetlands were located, the water quality was much better than that in the eastern and middle sections without constructed wetland because COD, TN, and TP were all in a relatively lower level and the eutrophication could be prevented completely in the western section.  相似文献   

9.
潘琼    潘峰 《水土保持研究》2015,22(6):317-323
同等条件下开展了3种不同类型人工湿地(垂直流、潜流和表面流人工之地)对洞庭湖水质净化效果的研究。结果表明:(1)洞庭湖水体中NH4+-N,TN,TP,高锰酸钾指数,BOD5和CODCr的进水浓度与3种不同类型人工湿地出水浓度季节变化规律保持一致,冬季明显高于夏季,洞庭湖进水中NH4+-N,TN,TP,高锰酸钾指数,BOD5和CODCr浓度均高于3种不同类型人工湿地出水浓度,相同时期,3种不同类型人工湿地出水水质NH4+-N,TN,TP,高锰酸钾指数、BOD5和CODCr浓度基本表现为表面流 > 潜流 > 垂直流;(2)3种类型人工湿地对TN,TP,高锰酸钾指数、BOD5和CODCr的去除率依次表现为垂直流 > 潜流 > 表面流,而对NH4+-N的去除率依次表现为垂直流 > 表面流 > 潜流,其中以BOD5的去除效果最好(去除率最高),但3种类型人工湿地对BOD5的去除率差异均不显著(p > 0.05);(3)3种类型人工湿地植物地上和地下生物量均表现为垂直流 > 潜流 > 表面流,差异均显著(p < 0.05),垂直流人工湿地植被N含量、P含量、N积累量和P积累量均显著高于潜流和表面流(p < 0.05);(4)3种不同类型人工湿地植物的N,P积累量分别与生物量、N含量、P含量均呈显著的线性关系(p < 0.01),人工湿地植物生物量对N,P积累量的影响大于植物体内N,P含量的影响,可以通过生物量来评价人工湿地植物对N,P去除效果。  相似文献   

10.
王华  何梅 《水土保持研究》2018,25(6):189-195
通过研究鄱阳湖典型洲滩湿地4种植物群落带下各土壤环境因子的含量变化特征,结合研究区20个植被样方的典范对应分析(Canonical Correspondence Analysis,CCA)排序,分析了鄱阳湖典型洲滩湿地主要土壤环境因子及其对植被分布的影响。结果表明:Jaccard指数、Sorensen指数和Cody指数均表现为:藜蒿—苔草带 < 芦苇—藨草群落 < 苔草—狗牙根群落 < 苔草—藨草群落,随生境梯度呈递减规律,而Bray curtis指数则表现为藜蒿—苔草带 > 芦苇—藨草群落 > 苔草—狗牙根群落 > 苔草—藨草群落,随生境梯度呈递增规律。土壤总有机碳、全氮、硝态氮、铵态氮呈一致的变化规律,均表现为苔草—藨草群落 > 芦苇—藨草群落 > 苔草—狗牙根群落 > 藜蒿—苔草带,而土壤速效磷表现为藜蒿—苔草带 > 苔草—狗牙根群落 > 芦苇—藨草群落 > 苔草—藨草群落,不同植被带土壤全磷含量差异均不显著(p > 0.05)。相关性分析表明,不同植被带Bray curtis指数均与土壤养分呈负相关,Jaccard指数、Sorensen指数和Cody指数均呈正相关,沿河岸带的增加,其相关系数的绝对值逐渐增加,而土壤磷素与湿地多样性指数没有显著的相关性(p > 0.05)。CCA排序分析表明:土壤环境因子具有明显的生态梯度,土壤总有机碳是影响研究区植被分布的最主要因素,土壤全氮是影响湿地植被分布的次要土壤环境因子。  相似文献   

11.
采用沙培法,研究了不同浓度Cr6+(0、10、20、40 mg.L-1)对风车草湿地和薏米湿地净化生活污水的影响及铬积累规律。结果表明:(1)COD的去除率在苗期随铬浓度增大而逐渐升高,其余时期在20、40 mg.L-1处理下受到显著抑制(除了花期风车草湿地外);随铬处理浓度的增大,风车草湿地对TN的去除率变化不明显,薏米湿地对TN的去除率则受到抑制作用(除了花期10 mg.L-1外);这两种湿地对生活污水中铬的净化效果较好,仅在40 mg.L-1处理的风车草湿地出水中检测出铬。(2)10 mg.L-1铬促进风车草和薏米的生物量增大,较高浓度铬(20、40 mg.L-1)则抑制。(3)基质细沙及植物根系对污水中铬具有较好的吸附及积累作用,铬含量在细沙及植物中均随铬浓度增大而显著升高,其中两种植物对铬的积累量都表现为地下部显著大于地上部,表明风车草和薏米的根部中铬较难转移到其地上部。  相似文献   

12.
人工湿地中氨氮反应与pH变化关系的研究   总被引:3,自引:2,他引:3  
在三江平原气候条件下,配制以NO-3-N、NH+4-N和P(PO-4-P为主要成分的模拟进水,通过间歇运行方式,考察潜流人工湿地模拟系统中氨氮反应与pH变化的关系.结果表明,湿地系统对高pH值进水具有缓冲作用.在运行期间,土壤-炉渣湿地上层pH小于下层pH值,土壤湿地上层pH大于下层pH值.随着停留时间(HRT)的增加和NH+4-N浓度的降低,湿地系统中的pH值呈现规律性变化,土壤-炉渣湿地的氧化还原电位(ORP)与pH值呈负相关.湿地系统中pH值变化曲线的拐点可作为NH+4-N反应结束的指示参数.  相似文献   

13.
河口湿地红树林植被恢复对土壤养分动态的影响   总被引:1,自引:0,他引:1  
以泉州湾河口人工红树林湿地为研究对象,以光滩为对照,采集0—10,10—20,20—30 cm土层土壤,研究不同红树林恢复(桐花树、秋茄、秋茄-桐花树混交林)对河口湿地土壤pH、有机质及主要养分元素(氮磷钾)的影响。结果表明:不同植被恢复模式下土壤pH和有机质含量呈明显的垂直变化特征,相对于无植被的光滩(恢复前),红树林植被恢复显著降低了土壤pH (P<0.05),但增加了土壤有机质含量(P<0.05)。不同红树林恢复模式下,土壤碱解氮、有效磷、速效钾和全钾含量均大致表现为随土层深度的增加而增加,而全磷含量则表现为随深度的增加而降低。相对于恢复前,红树林植被恢复均增加了表层土壤主要养分(氮磷钾)含量,其中,以桐花树—秋茄混交林的影响最为显著(P<0.05)。综上,不同模式红树林植被恢复对河口湿地土壤理化性质和养分动态具有明显的调节作用,其中,混交林模式通过高效利用地上地下空间,改善土壤结构和质量,增加生物量和养分归还量,显著改善了土壤养分动态,是河口区植被恢复的优选手段。研究结果可为加强河口红树林湿地养分管理、维护湿地系统养分平衡提供科学参考。  相似文献   

14.
Water resources are threatened globally and declining water quality is primarily due to stormwater, agricultural, urban, and mining runoffs. Steamboat Creek in Nevada is the largest non point source (NPS) of pollution to the Truckee River. Treatment wetlands are a cost-effective and reliable technique to control NPS pollution, therefore, a large-scale wetland along Steamboat Creek has been proposed as a component of a regional watershed restoration plan. This study used ten parallel pilot-scale wetland mesocosms, and tested the effects of drying and rewetting, hydraulic retention time (HRT), and high nitrogen loading on the efficiency of nutrient and total suspended solids (TSS) removal. Drying and rewetting produced noticeable effects on nutrient retention, but the effect was short-lived. During longer HRT period nutrient removal in manipulated mesocosms with an 8 h HRT were higher than controls with a 4 h HRT. Reducing the HRT from 4 h to 30 min further decreased nutrient interception. During increased influent nitrogen loading (9.5?±?2.4 mg l?1), manipulated mesocosms functioned as sinks for total nitrogen (TN) with removal efficiency increasing from 45?±?13% to 87?±?9%. The average change in TN concentration was 9.1?±?2.2 mg l?1. Drying/rewetting and varying HRT influenced total phosphorus (TP) and TSS similarly, and TP removal was associated with TSS removal. Results can help make decisions regarding wetland construction, management, and operation more effective in order to reduce nutrient loads to the Truckee River.  相似文献   

15.
研究了新型复式潜流人工湿地对生活污水的净化效果。在不同水力负荷、季节、曝气方式等条件下经过小试试验,分析了该湿地对污染物净化效果的影响。结果表明,该系统出水水质稳定,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准。在水力负荷184 mm·d-1条件下COD、NH3-N去除率最大分别可达87.2%、68.9%。冬季低温条件下对各类污染物去除率仍大于20%。正交试验分析得知,最佳运行条件是气温28.6℃、水力负荷0.184 m3·m-2·d-1、水力停留时间2.4 d。对比试验表明,采用预曝气方式对湿地净化效果明显优于厌氧处理。  相似文献   

16.
多级串联潜流人工湿地净化城市地面径流的试验研究   总被引:1,自引:0,他引:1  
在室外露天试验场按不同水流方式设计和建造2组多级串联潜流人工湿地,通过中型试验测试其在不同运行方式下对西安市地面径流中COD、NH4+-N、TN、TP的净化效果。结果表明:2组人工湿地系统出水水质均达到GB 3838-2002《地表水环境质量标准》Ⅳ类标准;在湿地净化过程中,填料起主要作用,可吸附40%~50%的污染物,植物和微生物的协同作用可将净化效果提高20%~30%;2种人工湿地系统HRT为36~48h,运行间隔时间为7~15d的运行效果最佳;改变水流方式的复合流人工湿地系统净化效果优于水平潜流人工湿地系统,净化效果高出5%左右。研究设计的2种人工湿地均可用于城市地面径流污染的控制和雨水利用。  相似文献   

17.
Steamboat Creek, Washoe County, Nevada, is considered the most polluted tributary of the Truckee River, therefore the reduction of nutrients from the creek is an important factor in reducing eutrophication in the lower Truckee River. Restoration of the wetlands along the creek has been proposed as one method to improve water quality by reducing nutrient and sediments from non-point sources. This study was aimed to design a simulation model wetlands water quality model (WWQM) that evaluates nitrogen, phosphorus, and sediments retention from a constructed wetland system. WWQM is divided into four submodels: hydrological, nitrogen, phosphorus, and sediment. WWQM is virtual Visual Basic 6.0 program that calculates hydrologic parameters, nutrients, and sediments based on available data, simple assumptions, knowledge of the wetland system, and literature data. WWQM calibration and performance was evaluated using data sets obtained from the pilot-scale constructed wetland over a period of four and half years. The pilot-scale wetland was constructed to quantify the ability of the proposed wetland system for nutrient and sediment removal. WWQM simulates nutrient and sediments retention reasonably well and agrees with the observed values from the pilot-scale wetland system. The model predicts that wetlands along the creek will remove nitrogen, phosphorus, and sediments by 62, 38, and 84 %, respectively, which would help to reduce eutrophication in the lower Truckee River.  相似文献   

18.
The objective of this study was to check the effect of the use of a physico-chemical treatment on the clogging process of horizontal subsurface flow constructed wetlands by means of dynamic modelling. The hydraulic submodel was based on series as well as parallel branched complete stirred tanks of equal volume. The model was validated with data obtained from 2 identical experimental wetlands, which had a surface area of 0.54 m2 and a water depth of 0.30 m, and that were monitored over a period of 5 months. One of the wetlands was fed with settled urban wastewater, whereas the other with the same wastewater, but previously treated with a physico-chemical treatment. In the model, pore volume reduction depends on the growth of bacteria and on solids retained. The effluent concentrations of COD and ammonium in both experimental wetlands were very similar in all the conditions tested, and therefore the physico-chemical treatment did not improve the removal efficiency. The model indicated that after 120 days of operation in some regions of the wetland fed with settled wastewater the porosity decreased in a 17%, whereas in the other wetlands it only decreased as much as 6%. The use of a prior physico-chemical treatment is a good alternative for avoiding an anticipated clogging of subsurface flow constructed wetlands.  相似文献   

19.
为提高人工湿地除污能力,探索利用生物炭强化人工湿地除污的可行性,以垂直流人工湿地为研究对象,通过单因素分析对比不添加生物炭系统(CW-1)和添加生物炭系统(CW-2)的垂直流人工湿地出水净化效果、微生物活性(基质酶活性、生物量、生物膜)大小,探究生物炭对垂直流人工湿地污水系统中总氮(TN)、氨氮(NH4+-N)、总磷(...  相似文献   

20.
In the greenhouse and container nursery production industry there is potential for runoff of nitrogen (N) and phosphorus (P), which may contaminate surface and groundwater. Since the 1950s constructed wetlands (CWs), as a simple, low-technology method, have been shown to effectively treat agricultural, industrial, and municipal wastewater. We investigated the N and P attenuating potential of three floating hydrophytes planted in a laboratory-scale subsurface flow (SSF) CW system. Over an 8-week period plants were supplied with N and P (0.39 to 36.81 mg·L?1 N and 0.07 to 6.77 mg·L?1 P) that spanned the rates detected in nursery runoff between the discharge and inflow locations of a commercial nursery currently employing CWs. Whole plant dry weight was positively correlated with N and P supplied. Highest N recovery rates were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce (Pistia stratiotes L.). P recovery rates were similar for water hyacinth, water lettuce, and dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.). These floating hydrophytes can be cultivated in a SSF CW to remediate runoff losses of N and P. The possibility exists for integrating them into a polycultural remediation system that includes emergent aquatic macrophytes for processing and polishing nursery/greenhouse wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号