首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重金属高污染农田土壤EDTA淋洗条件初探   总被引:7,自引:1,他引:6  
通过室内振荡淋洗试验研究了乙二胺四乙酸二钠(EDTA)浓度、淋洗时间、液固比、淋洗次数对甘肃省白银市某高污染农田土壤中重金属去除效果的影响,并测定了EDTA淋洗前后土壤中重金属形态的变化。结果表明:淋洗剂浓度和液固比越高、淋洗时间越长、淋洗次数越多,对重金属的去除效果越好。在EDTA浓度为5 mmol/L、液固比为2.5、连续振荡淋洗3次、每次1 h时,对土壤中Cd、Cu、Pb、Zn 4种重金属的总去除率分别为 55.2%、21.9%、19.3% 和20.9%,其中Cd 淋洗效率最高。EDTA对土壤中交换态、碳酸盐结合态和铁锰氧化物结合态重金属的去除效果明显,但不能有效去除有机及硫化物态和残余态土壤重金属。  相似文献   

2.
通过HCl、柠檬酸、EDTA这3种提取剂对Pb、Cd、Cu、Zn污染土壤的漫提试验,研究了土壤清洗洗脱重金属的效果,并探讨了土壤清洗导致K、Ca、Mg、Fe、Mn这几种营养元素的流失和有效性的改变。试验结果表明,土壤清洗能有效地洗脱土壤中的Ph、Cd、Cu、Zn,伺时也造成了土壤中K、Ca、Mg、Fe、Mn的流失,降低了其中部分营养元素的有效性。EDTA对重金属的洗脱能力大于HCl和柠檬酸。HCl漫提造成的K、Ca、Mg的流失量大于柠檬酸和EDTA,柠檬酸浸提造成的Fe流失量大于HCl和EDTA,EDTA漫提造成的Mn流失量大于HCl和柠檬酸。HCl和柠檬酸浸提降低了土壤K、Ca、Mg的有效性EDTA浸提提高了土壤K的有效性。降低了土壤Ca的有效性。在高浓度时(50mmol/L),EDTA显著地降低了土壤Mg的有效性。HCl漫提导致土壤K的有效性下降比柠檬酸严重,高浓度的EDTA浸提导致土壤Ca的有效性下降比HCl和柠檬酸严重。HCl、柠檬酸、EDTA浸提都能提高土壤中Fe的有效性.且EDTA的效应大于其它2种萃取剂;在低浓度时,3种提取剂都能提高土壤中Mn的有效性,且以柠檬酸的作用最为明显,当提取剂浓度增加时,Mn的有效性有所回落。  相似文献   

3.
Arthrobacter JG-9-detectable hydroxamate siderophores were monitored in a series of soils subjected to different treatments in the laboratory and in a series of field soils subjected to different regimes. Concentrations of soil siderophores were found to be strongly related to the quantity of organic substrates available for microbial growth in the soil. It was possible to specifically stimulate siderophore production using L-ornithine as a precursor. Soil pH, water activity and iron availability also influenced the production of siderophores in soil. For two series of field samples, siderophores concentration in soil was correlated with grass production. A model is proposed in which the rhizosphere constitutes the most important microsite in soil for siderophore production. Siderophores are thereby conceived as vehicles for iron, increasing the mass flow of iron from the soil-humus complex to the growing microbial, particularly fungal, biomass.  相似文献   

4.
A bioassay has been developed for the detection of siderophores in soil. The siderophore concentration can be determined directly, avoiding extraction. The growth of the siderophore-auxotrophic bacterium Arthrobacter JG-9 in soil suspension cultures is used as a measure of the amount of siderophores present in the suspended soil. To measure growth, the amount of organic carbon metabolized is determined. Growth in the soil suspension cultures was governed by both the siderophore concentration and the iron availability. Since both factors are soil dependent, the bioassay has been based on the principle of standard addition. Ferrioxamine B is used as internal standard. The lower threshold of siderophores in soils, detectable by the assay, is of the order of 5 μg ferrioxamine B equivalent activity kg−1 soil. The variability coefficient of the assay is of the order of 11%.  相似文献   

5.
A laboratory-prepared contaminated soil was partitioned into four fractions, namely carbonate, Fe/Mn oxides, organic matter and clay mineral, according to the form in which the heavy metal bound with soil constituents. Individual contaminated soil fractions and synthetic soils were prepared for the study of soil extraction using ethylenediaminetetraacetic acid (EDTA). The effect of contact time and EDTA concentration were evaluated for both individual soil fractions and synthetic soils. The extraction reached equilibrium rapidly, after about 30 min. A 0.01 M EDTA solution was less effective than a 0.05 M or a 0.10 M EDTA. EDTA was proved to be effective for metal removal from the four individual soil fractions and synthetic soils. In general, approximately 90% of metals were removed from synthetic soils by 0.10 M EDTA. EDTA extraction of Pb from a contaminated carbonate fraction was thought to be affected by the formation of lead carbonates. A simple equation based on the sum of the released heavy metal from the individual components is used to check if there are interactions among the different soil components when mixed. The estimated values agreed well with the experimentally measured results only for the 0.10 M EDTA system.  相似文献   

6.
The effects of deferoxamine mesylate (DFAM), a bacterial siderophore, on the availability of iron and aluminium in three different soils were investigated. The distinct ability of DFAM to mobilize both metals in soil solution indicate a possible importance of siderophores in connection with toxicological aspects as well as for weathering and soil forming processes.  相似文献   

7.
茶皂素对潮土重金属污染的淋洗修复作用   总被引:13,自引:2,他引:13  
为了探讨茶皂素淋洗修复土壤重金属污染的可行性,该文采用振荡提取和土柱淋洗的方法,研究了茶皂素对污染土壤中重金属的去除作用。结果表明,茶皂素溶液的浓度和土壤的pH值对重金属去除率有明显影响。土柱淋洗试验中,采用质量分数7%茶皂素溶液作淋洗液,pH 5.0±0.1、土液质量体积比1:4为最佳淋洗修复条件,此时,Pb、Cd、Zn、Cu的去除率分别为6.74%、42.38%、13.07%、8.75%,去除率的大小顺序为Cd>Zn>Cu>Pb。茶皂素淋洗能有效去除酸溶态和可还原态的重金属,从而大大降低了重金属的环境风险,同时说明茶皂素用于土壤重金属污染淋洗修复有较大潜力。  相似文献   

8.
Bioaugmentation is a promising method for assisting phytoextraction of heavy metals from contaminated soil, and the development of bioaugmentation-assisted phytoextraction requires the understanding of the mechanism involved in the interaction between plants and inocula. In this study, a pot study was conducted to evaluate the effect of bacterial endophyte Pseudomonas sp. Lk9 which can produce biosurfactants, siderophores and organic acids on the growth and metal uptake of Cd-hyperaccumulator Solanum nigrum L. growing in multi-metal-contaminated soil. The results revealed that Lk9 inoculation could improve soil Fe and P mineral nutrition supplies, enhance soil heavy metal availability, and affect host-mediated low-molecular-weight organic acids secretion, thereby significantly increasing S. nigrum shoot dry biomass by 14% and the total of Cd by 46.6%, Zn by 16.4% and Cu by 16.0% accumulated in aerial parts, compared to those of non-inoculated control. The assessment of phytoextraction showed that Lk9 inoculation elevated the bioaccumulation factor of Cd (28.9%) and phytoextraction rates of all metals (17.4%, 48.6% and 104.6% for Cd, Zn and Cu, respectively), while the translocation factors had negligible difference between Lk9 inoculation (3.30, 0.50 and 0.40 for Cd, Zn and Cu, respectively) and non-inoculated control (2.95, 0.53 and 0.42 for Cd, Zn and Cu, respectively). It was also found that the symbiotic association between S. nigrum and Lk9 significantly increased the soil microbial biomass C by 39.2% and acid phosphatase activity by 28.6% compared to those in S. nigrum without Lk9. This study would provide a new insight into the bioaugmentation-assisted phytoextraction of heavy metal-contaminated soils.  相似文献   

9.
采用湿筛-离心法将采集自谷里铜矿矿区周边的重金属污染土壤筛分成不同粒径的团聚体,并用EDTA对原土和各粒径组分进行淋洗,旨在为进一步对矿区周边环境修复及风险评价提供参考依据。结果显示,粘粒级(〈0.002mm)团聚体颗粒具有相对较高的有机质(OM)含量、阳离子交换量(CEC)、游离氧化铝含量(Ald)和游离氧化铁含量(Fed)。Cu和Zn在粘粒级团聚体颗粒含量最高,而Pb在砂粒级〉0.2mm团聚体颗粒含量最高。Cu、Zn和Pb3种重金属在不同粒径团聚体的解吸规律相似,均表现出在粘粒级和细粉沙级团聚体解吸率最高,而在砂粒级团聚体的解吸率最低,但砂粒级团聚体颗粒对解吸总量的贡献最大。3种金属中,Cu的解吸率(〉15%)和解吸速率最大,原土及不同粒径颗粒团聚体组分的Cu、Pb和Zn的EDTA解吸过程均出现快速增长再趋于平缓的两个阶段,动力学模拟以Elovich方程描述最优。  相似文献   

10.
Removal of Heavy Metals from Calcareous Contaminated Soils by EDTA Leaching   总被引:1,自引:0,他引:1  
The performance of EDTA for the treatment of calcareous soils contaminated with heavy metals from mining and smelting activities was evaluated in this study. Soil samples containing variable levels of contamination, from 500 to 35 000 mg kg-1 Pb and 700 to 20 000 mg kg-1 Zn, were subjected to EDTA treatment and the extraction of heavy metals was found to vary, ranging between 50 and 98% for Pb and 50 to 100% for Zn. Total residual concentrations were above the limits set by regulatory authorities; leachable metals, however, were efficiently removed and treated soils were all acceptable in terms of toxicity. The effect of EDTA concentration and pulp density was studied on a soil sample containing 12 000 mg kg-1 Pb and 10 000 mg kg-1 Zn. Heavy metals removal was improved at low pulp densities and when EDTA concentration was increased from 0.025 to 0.25 M. The tetrasodium salt Na4-EDTA was found to be less effective for metals removal compared to the disodium salt Na2-EDTA, though applied at higher concentrations. This experimental work has also demonstrated the great importance of soil matrix for the overall evaluation of the EDTA leaching as a cost effective remedial option. The simultaneous dissolution of calcite was found to consume approximately 90% of the available EDTA. It was thus concluded that for the treatment of calcareous soils the design criteria and cost estimations should be based on the calcite content of the soil.  相似文献   

11.
Rhamnolipid, a metal sequestering agent produced by Pseudomonas Sp., has been effective in the removal of metals in soil washing technologies. Rhamnolipid has a strong affinity for cadmium (Cd) compared to some other metals (e.g. cobalt (Co), nickel (Ni)) and might also be useful in chelate-assisted phytoextraction. There have been many studies investigating the formation of metal-rhamnolipid complexes and the ability of rhamnolipid to remove metals from soil. However, to date, the longevity of rhamnolipid in soil has not been measured. Therefore, this study investigated the rate of rhamnolipid degradation in soils of varying physicochemical properties and contaminated with varying concentrations of Cd and zinc (Zn). The rate of rhamnolipid degradation was compared with ethylene diamine tetraacetic acid (EDTA) and citric acid. Our results indicate that citric acid was rapidly degraded, with 20% degradation occurring between 1 and 4 d depending on the level of soil contamination and 70% degradation within 20 d. EDTA was more persistent in the soils; only 14% of the EDTA was degraded after 20 d. Rhamnolipid had cumulative degradation between those of citric acid and EDTA. In most contaminated soils, cumulative degradation of the chelates and ligands were lower than in the uncontaminated soils. These results show that rhamnolipid may remain in the soil long enough to enhance metal phytoextraction, but not remain long enough to raise concerns regarding metal transport in the long-term.  相似文献   

12.
The present study was conducted to assess the suitability of sewage sludge amendment in soil for Beta vulgaris var. saccharifera (sugar beet) and Triticum aestivum (wheat) by evaluating the arsenic and selenium accumulation and physiological responses of plants grown at 10%, 25%, and 50% sewage sludge amendment rate. Sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently with higher accumulation in plant parts. The chlorophyll contents increased after the sewage sludge treatments except for 50%. The sewage sludge amendment led to a significant increase in arsenic and selenium concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency. The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake in the leaves and root concentrations of arsenic and selenium in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots and leaves for most of the heavy metals. Concentrations of arsenic and selenium were more than the permissible limits of national standards in the edible portion of sugar beet and wheat grown on different sewage sludge amendments ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet and wheat may not be a good option due to risk of contamination of arsenic and selenium.  相似文献   

13.
Assisted phytoremediation procedures have been widely employed as soil removal instrument of heavy metals from contaminated soils. Rhizosphere processes have a major impact on pb and Zn availability and its fractions in soils. The present study evaluates the effects of EDTA, citric acid (CA) and poultry manure extract (PME) on bioavailability and fractionation of pb, Zn in both the rhizosphere of sunflower (Helianthus annuus L.) and bulk soil. EDTA and CA were added to soils at the rates of 0, 0.5 and 1 mmol kg?1 soil and PME at 0, 0.5 and 1 g kg?1 soil as factorial in a completely randomized pattern with three replicates in greenhouse condition. Results showed that chelator application had a significant impact (p < 0.05) on pb, Zn extraction by different extractants and its fractions in soils. The order of concentrations of pb, Zn present in different fractions in soil treated by chelators was: oxides-bounded fraction > residual fraction > OM-bounded fraction > carbonate-bounded fraction > exchangeable fraction. Biochemical soil characteristics in the sunflower rhizosphere change resulting from its roots contributing to pb, Zn decline in mobile soil fractions, and change in soil pb, Zn fractions that are generally regarded as more stable.  相似文献   

14.
通过增溶实验和土壤洗脱实验,研究了一种生物表面活性剂——皂角苷(saponin)对多环芳烃-重金属复合污染土壤的洗脱作用及机理。结果表明,皂角苷对菲、芘等多环芳烃有极强的增溶作用,当皂角苷浓度为0.04%时,菲、芘在液相中的表观溶解度分别增大了约22倍和128倍,因而皂角苷能显著增强多环芳烃污染土壤中菲、芘的洗脱,洗脱效率最大分别可达84.1%和81.4%,增大了约2倍和17倍。皂角苷可与重金属离子形成水溶性的络合物,从而增强洗脱重金属污染土壤中的Zn^2+和Cd^2+,在皂角苷浓度为0.4%时,Zn^2+、Cd^2+的洗脱效率分别可达93.0%和79.4%,增大了约75倍和8倍。皂角苷可同时洗脱多环芳烃-重金属复合污染土壤中的菲、芘和Zn^2+、Cd^2+,洗脱效率分别达87.6%、83.5%和92.3%、78.6%,重金属的存在略增大了皂角苷对菲、芘等多环芳烃的洗脱效率,但多环芳烃对Zn^2+、Cd^2+的洗脱效率没有明显影响。皂角苷可同时增强洗脱复合污染土壤中的多环芳烃和重金属,从而为多环芳烃-重金属复合污染土壤的修复奠定基础。  相似文献   

15.
为筛选出适宜有色金属冶炼厂周边砷镉污染土壤的复合钝化材料,通过模拟试验,研究2,4,6-三巯基均三嗪三钠(TMT)、铁盐、黏土矿物、铝基材料等材料钝化土壤Cd和As的最优复配配方。结果显示,相同实验条件下,添加C1、C2、C3三种钝化材料后,有色金属冶炼厂周边土壤酸浸出溶液中砷、镉浓度均符合了《地表水环境质量标准》(GB 3838-2002)Ⅳ类环境质量标准。随着时间的推移,添加1.0%的C3材料(铁盐+铝基材料+ TMT)钝化重金属砷镉效果最好。其中,砷酸浸提态含量降低率最高达到了96.95%,镉酸浸提态含量降低率最高达到了99.37%。通过形态分析可以看出C3钝化材料能使重金属砷镉的形态从可交换态、铁锰氧化物结合态慢慢向残渣态的形态转移,起到了同时钝化 As、Cd 的效果,降低了砷镉重金属的迁移能力,减少冶炼厂周边砷镉重金属污染环境风险。  相似文献   

16.
The capability of Chromolaena odorata (L) to grow in the presence of different concentrations of three heavy metals in crude oil-contaminated soil and its capability to remediate the contaminated soil was investigated using pot experiments. C. odorata plants were transplanted into contaminated soil containing 50,000 mg kg?1 crude oil and between 100 and 2,000 mg kg?1 of cadmium, nickel, and zinc and watered weekly with water containing 5% NPK fertilizer for 180 days. C. odorata did not show any growth inhibition in 50,000 mg kg?1 crude oil. Plants in experiments containing 2,000 mg kg?1 Cd showed little adverse effect compared to those in Zn-treated soil. Plants in 1,000 and 2,000 mg kg?1 Ni experiments showed more adverse effects. After 180 days, reduction in heavy metals were: 100 mg kg?1 experiments, Zn (35%), Cd (33%), and Ni (23%); 500 mg kg?1, Zn (37%), Cd (41%), and Ni (25%); 1,000 mg kg?1, Zn (65%), Cd (55%), and Ni (44%); and 2,000 mg kg?1, Zn (63%), Cd (62%), and Ni (47%). The results showed that the plants accumulated more of the Zn than Cd and Ni. Accumulation of Zn and Cd was highest in the 2,000 mg kg?1 experiments and Ni in the 500 mg kg?1 experiments. Crude oil was reduced by 82% in the experiments that did not contain heavy metals and by up to 80% in the heavy metal-treated soil. The control experiments showed a reduction of up to 47% in crude oil concentration, which was attributed to microbial action and natural attenuation. These results show that C. odorata (L) has the capability of thriving and phytoaccumulating heavy metals in contaminated soils while facilitating the removal of the contaminant crude oil. It also shows that the plant??s capability to mediate the removal of crude oil in contaminated soil is not significantly affected by the concentrations of metals in the soil.  相似文献   

17.
针对质地黏重、低渗透性黏性土的淋洗效率低下,该文提出冻融协同化学淋洗的修复方案,并以某冶炼厂受Cd、Pb污染场地黏性土为研究对象,选用乙二胺四乙酸二钠(ethylene diaminetetraacetic acid disodium salt,EDTA)为淋洗剂,进行了冻融-淋洗土柱的实证试验。结果表明,土体的反复冻融(冻胀-吸水、融沉-排水)破坏土体颗粒原有结构,有助于淋洗液与污染物充分接触,淋洗效果明显,经7次冻融后,Cd、Pb去除率分别达到77.24%、37.78%。采用改进的BCR(European Communities Bureau of Reference)连续提取法分析了土柱中Cd、Pb的赋存特征,经7次冻融后,土壤中弱酸提取态、可还原态、残渣态结合的Cd质量分数较淋洗前分别降低了41.46%、63.02%、26.33%,而土壤中可还原态和残渣态结合的Pb质量分数分别降低了32.32%、67.36%。冻融协同化学淋洗修复技术的淋洗剂用量远小于传统淋洗法,为今后利用寒区冻融交替现象,大规模对季冻区重金属污染土壤的异位修复提供了新的思路。  相似文献   

18.
One technique for cleansing heavy metal contaminated soils is to wash the excavated soil with an extraction solution of a chelating agent. The rate of extraction is an important parameter when considering the length of time needed for soil clean-up and the amount and concentration of wash solution required. The extraction kinetics of copper, zinc, iron and manganese from a contaminated sediment of the Clark Fork River in western Montana, U.S.A., with Disodiun Ethylenediaminetetraacetate (Na2EDTA) as the extraction agent, were investigated. The results showed the extraction process consisted of rapid extraction in the first minutes followed by much slower extraction for the remainder of the experiment. The rate of extraction, particularly in the rapid phase, demonstrated clear pH dependence: the lower the pH, the faster the extraction rate. In the EDTA concentration range of 0.01 M to 0.05 M, the effect of the EDTA concentration on the extraction rate was not important compared with that of the solution pH. Extraction kinetics for different size particles were similar, although in the first few minutes, EDTA extracted more metals from clay and silt than sand. The two reaction, diffusion, and two-constant kinetic models were compared to experimental results. The two reaction model did not fit any of the data well, and only iron extraction could be described with a simple diffusion model. In general the extraction rates can be well described by the two-constant model, C=A t B, up to 600 minutes and under different conditions such as solution pH, EDTA concentration, and different sediment particle size.  相似文献   

19.
High levels of metals impede plant growth by affecting physiological processes. Siderophores are microbial Fe-chelators that, however, bind other metals. This study evaluated plant growth in a soil containing elevated levels of metals, including Al, Cu, Fe, Mn, Ni, and U, using Streptomyces-derived cell-free supernatant containing siderophores and auxins. Cowpea plants in the soil were treated with the culture filtrate. Growth was measured and biochemical analyses such as chlorophyll contents, RNA and protein quantification, lipid membrane peroxidation, and anti-oxidative responses were conducted to evaluate oxidative stress in the plants. Liquid chromatography-mass spectrometry was used to simulate competition for siderophore binding, and metal content of plants was determined spectroscopically. Whereas the metals inhibited plant growth, addition of siderophores improved growth. There was evidence of lipid peroxidation, an enhanced superoxide dismutase activity, and lowered chlorophyll, RNA, protein, carotenoid and residual indole acetic acid contents, especially in control plants. Siderophore competition assays between Al and Fe, and Fe and Cu suggested that trivalent metals are more competitive for siderophore binding than divalent ones. Compared to control plants, higher amounts of metals were obtained in siderophore-treated plants. Siderophores were able to supply plants with Fe in the presence of levels of metals, mainly Al, Cu, Mn, Ni and U that otherwise inhibit Fe acquisition. This led to enhanced chlorophyll content, circumventing lipid peroxidation effects on leaves. Siderophores lowered the formation of free radicals, thereby protecting microbial auxins from degradation and enabling them to enhance plant growth which in turn resulted in augmented metal uptake.  相似文献   

20.

Purpose

Soil washing with chelators is a viable treatment alternative for remediating multi-contaminated soils. The aim of this study was to investigate the removal efficiencies of Cd, Zn, Pb, and Cu in alkaline and acid multi-metal-contaminated soils by washing with the mixed chelators (MC).

Materials and methods

The batch experiments were carried out to evaluate the removal efficiencies of heavy metals in contaminated soils by the MC with different molar ratios of EDTA, GLDA, and citric acid, and evaluated the washing factors, including contact time, pH, MC concentration, and single and multiple washings at the same MC dose, on the removal efficiencies.

Results and discussion

Results showed that the removal efficiencies for Cd, Zn, Pb, and Cu by the MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) were as much as those of the only EDTA washing from both soil at the same application dose of total chelators; moreover, the application dose of EDTA decreased by 80%. For the alkaline-contaminated soil, the removal efficiencies of Cd, Zn, Pb, and Cu decreased with the increasing of the solution pH, which was opposite to acid-contaminated soil. This was attributed to that the metal-ligand complex could be obviously re-adsorbed on the soil surface sites, particularly in low pH values. The removal efficiencies of Cd, Zn, Pb, and Cu depended on MC concentration. A higher MC concentration led to a more effective removal of Cd, Zn, Pb, and Cu in alkaline-contaminated soil; however, their changes were slightly increased in acid-contaminated soil. At the same dose of MC, single washing with higher MC concentration might be favorable to remove heavy metals, moreover, with much less wastewater generation.

Conclusions

The MC (the molar ratio of EDTA, GLDA, and citric acid was 1:1:3) may be a useful, environmentally friendly, and cost-effective chelators to remediate heavily multi-metal-contaminated soil.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号