首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM2.5) exposure. Ambient PM2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM2.5, without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM2.5 has not been investigated. Filter-based PM2.5 was collected at locations (n?=?5) and detailed characterization of both ambient and extracted PM2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.  相似文献   

3.
The U.S. Environmental Protection Agency (EPA) designated 20 urban areas including major cities located in mid-Atlantic US area as being in non-attainment of the new national ambient air quality standards for PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter). To support the development of effective State Implementation Plans for PM2.5 in the non-attainment area, 24-h integrated Speciation Trends Networks data collected in the mid-Atlantic US urban area were analyzed through the application of the positive matrix factorization (PMF). A total of 117 to 235 samples and 27 to 29 chemical species collected at the four monitoring sites between 2001 and 2003 were analyzed and six to nine sources were identified. Secondary particles provided the highest contributions to PM2.5 mass concentrations (38–50% for secondary sulfate; 9–18% for secondary nitrate). Potential source contribution function analyses show the potential source areas and pathways of secondary particles contributing to this region, especially the regional influences of the biogenic as well as anthropogenic secondary particles. Motor vehicle emissions contributed 21–33% to the PM2.5 mass concentration. In four sites in southern New Jersey and Delaware, gasoline vehicle and diesel emissions were tentatively separated by different abundances of organic and elemental carbons. The compositional profiles for gasoline vehicle and diesel emissions are similar across this area. In addition, other combustion sources, aged sea salt, and intercontinental dust storms were identified.  相似文献   

4.
PM2.5 and PAHs bound to PM2.5 were investigated in downtown Bologna, from January to June 2003, in order to determine the burden of the fine fraction in the aerosol of a typical urban environment of the Po Valley, a critical area in Northern Italy in terms of atmospheric pollution. The sampling campaign was divided into three parts: a winter sub-campaign, an intermediate campaign where PM2.5 and PM10 were simultaneously sampled and which identified PM2.5 as the major component of PM10, and a summer sub-campaign. Critical concentrations of both PM2.5 and PAHs were observed in winter time; for example, in January 2003 the mean value for the 24-h average PM2.5 concentration was 58 μg/m3, much higher than the annual arithmetic mean of 15 μg/m3 established by the US ambient air quality standard (NAAQS). Correspondingly, the mean value for benzo[a]pyrene (BAP) in PM2.5 was 1.79 ng/m3, again higher than the annual mean of 1 ng/m3, required by European regulations for BAP in PM10. In summer time the BAP concentration considerably decreases to 0.10 ng/m3 as the likely effect of photolysis and dilution on a higher boundary layer; PM2.5 decreases too, but the mean concentration (22 μg/m3) is still higher than the NAAQS value. Further analysis included TEM microscopy of collected particles and correlations between PM2.5, PAHs and gases (benzene, O3, CO, NO2, SO2). All these observations identified on-road mobile sources as the main source of emissions and, in general, of the poor air quality level in the city of Bologna.  相似文献   

5.
Samples of airborne particulate matter (PM2.5) were collected at a site in Lahore, Pakistan from November 2005 to January 2006. A total of 129 samples were collected using an Andersen Reference Ambient Air Sampler 2.5-400 sampler and analyzed for major ions, trace metals, and organic and elemental carbon concentrations. The data set was then analyzed by positive matrix factorization (PMF) to identify the possible sources of the atmospheric PM collected in this urban area. Six factors reproduced the PM2.5 sample compositions with meaningful physical interpretation of the resolved factors. The sources included secondary PM, diesel emissions, biomass burning, coal combustion, two-stroke vehicle exhaust, and industrial sources. Diesel and two-stroke vehicles contributed about 36%, biomass burning about 15%, and coal combustion sources around 13% of the PM2.5 mass. Nearly two thirds of the PM2.5 mass is carbonaceous material. Secondary particles contributed about 30% of PM2.5 mass. The conditional probability function (CPF) was then used to help identify likely locations of the sources present in this area. CPF analysis point to the east and northeast, which are directions of urban and industrial areas located across the border near Amritsar, India as the most probable source for high PM2.5 concentration from diesel and two-stroke vehicles exhaust in Lahore. Analysis of those days within three different ranges of PM2.5 concentration shows that most of the measured high PM2.5 mass concentrations were driven by diesel and two-stroke vehicle emissions including the associated primary sulfate. The use of the potential source contribution function (PSCF) to find the source locations of regionally transported particles is inapplicable in situations when high PM2.5 concentrations are dominated by local sources and local meteorology.  相似文献   

6.
In a study to differentiate between coal-fly ash and minerals in the atmosphere, samples were collected on Nuclepore filters in dichotomous samplers and analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry. The samples included ambient aerosol from two sites, resuspended soil, and emissions from coal- and oil-fired power plants in the Philadelphia area. Fly ash and minerals were identified by observing high abundances of Al, Si, K, Ca, Ti, and Fe in individual particles, and their mass concentrations were estimated from measured dimensions and an assumed density. Fly ash was distinguished from minerals by morphology. Sulfate was the major component of the fine fraction (<2.5 μm aerodynamic dia.). Crustal matter concentrations in the fine fraction estimated by SEM ranged from 40 to 300 ng m?3, and fly ash accounted for 7 to 62% of the crustal matter. In the coarse fraction (2.5 to 10 μm), minerals were the predominant component and ranged in concentration from 500 to 6000 ng m?3. Fly ash accounted for 0 to 16% of the crustal matter; the typical amount was 6%. Other less abundant coarse particles included botanical matter and industrial source emissions. Coarse fraction crustal matter estimated from x-ray fluorescence elemental data agreed well with that based on electron microscopy.  相似文献   

7.
Aerosol samples were collected during the wintertime from Nov. 24, 1998 to Feb. 12, 1999 in Beijing, China. Chemical composition was determined using several analytical techniques, including inductive coupled plasma atomic emission spectroscopy (ICP-AES), graphite furnace atomic absorption spectroscopy (GFAAS) and flame atomic absorption spectroscopy (FAAS) for trace elements, ion chromatography (IC) for water-soluble ions and CHN elemental analyzer for organic carbon (OC) and elemental carbon (EC). The average concentration of aerosol was 375?±?169 μg m?3, ranging from 136 to 759 μg m?3. Multilinear regression (MLR) analysis was performed and crustal matter, secondary particles and organics were identified as three major components of aerosol in wintertime in Beijing, accounting for 57.3%?±?9.8%, 13.4%?±?8.0%, and 22.8%?±?5.9% of the total concentration, respectively. Based on performance evaluation, Al, SO4 2? and OC were selected as tracers of the three components, with the regression coefficients of 23.5, 1.78 and 1.26, respectively. A regression constant of 19.6 was obtained, which accounts for other minor components in aerosol. On average 93.5% of the total aerosol concentration, ranging from 82% to 105%, was explained by crustal matter, secondary particle and organics. Meteorological conditions are important factors that can influence the concentration level and chemical composition of aerosols. Wind would be favorable for the pollutant dilution, leading to low aerosol levels, whereas too strong a wind may cause regional soil dust and local road dust to be resuspended resulting in a high contribution of crustal matter. Circuitous air movement, high RH% and low wind speed facilitated the secondary particle formation, not only inorganic salts, such as sulfate and nitrate, but also secondary organic carbon in a similar way.  相似文献   

8.
A monitoring program of particulate matter was conducted at eight sampling sites in four highly industrialized cities (Shenyang, Anshan, Fushun, and Jinzhou) of Liaoning Province in Northeast China to identify the major potential sources of ambient PM2.5. A total of 814 PM2.5 and PM2.5–10 samples were collected between 2004 and 2005. All PM samples were collected simultaneously in four cities and analyzed gravimetrically for mass concentrations. A sum of 16 elemental species concentrations in the PM samples were determined using inductively coupled plasma atomic emission spectroscopy. Annual means of PM2.5 concentrations ranged from 65.0 to 222.0 μg m?3 in all the eight sampling sites, and the spatial and seasonal variations were discussed. Enrichment factors were calculated, and Cr, Cu, Zn, As, Cd, and Pb will be pollution-derived elements. Site-to-site comparisons of PM2.5 species in each city were examined using coefficient of divergence, revealing that the two sites in each city are similar in elemental species. Principle component analysis was used for preliminary source analysis of PM2.5. Three or four factors in each city were isolated, and similar sources (crustal source, coal combustion, vehicle exhaust, iron making, or some other metallurgical activities) were identified at four cities.  相似文献   

9.
Size distribution of trace elements is measured at the Mediterranean coast of Turkey, by analyzing hi-vol impactor samples collected between August 1993 and May 1994. Mass median diameters of marine elements are between 4.6 and 5.3 μm, and those of crustal elements are between 3.0 and 3.5 μm. Mass median diameters of crustal elements are 30% smaller in samples impacted by Saharan Dust. Pollution derived elements, As, Cd, Mo, Pb, Se, and Zn have MMD's between 1.25 and 1.01 μm. Although 70–90% of the masses of these elements were associated with particles smaller than 2.1 μm, 10–30% of their mass was associated with coarse particles. Coarse component in concentrations of Cd, Pb, Sb and particulate Hg are due to adsorption of fine anthropogenic particles on coarse crustal aerosol, whereas coarse fraction Zn, As, Se, In, Mo and Au are crustal at Al concentrations > 100 ng m?3. Bromine, Cr, Ni, and V have bimodal distributions. The fine component, which account for approximately 30–40% of their masses are due to anthropogenic sources, whereas the coarse component, which accounts for 30–50% of their masses are due to sea salt for Br, and crustal particles for Cr, Ni, and V.  相似文献   

10.
Particulate matter measurements (PM10, PM2.5) using a beta radiation attenuation monitor were performed at the Akrotiri research station (May 2003–March 2006) on the island of Crete (Greece). The mean PM10 concentration during the measuring period (05/02/03–03/09/04) was equal to 35.0?±?17.7 μg/m3 whereas the mean PM2.5 concentration (03/10/04–04/02/06) was equal to 25.4?±?16.5 μg/m3. The aerosol concentration at the Akrotiri station shows a large variability during the year. Mean concentrations of particulate matter undergo a seasonal change characterised by higher concentrations during summer [PM10, 38.7?±?10.8 μg/m3 (2003); PM2.5, 27.9?±?8.7 μg/m3 (2004) and 27.8?±?9.7 μg/m3 (2005)] and lower concentrations during winter [PM10, 28.7?±?22.5 μg/m3 (2003/2004); PM2.5, 21.0?±?13.0 μg/m3 (2004/2005) and 21.4?±?21.9 μg/m3 (2005/2006)]. Comparative measurements of the PM10 concentration between the beta radiation attenuation monitor, a standardized low volume gravimetric reference sampler and a low volume sequential particulate sampler showed that PM10 concentrations measured by the beta radiation attenuation monitor were higher than values given by the gravimetric samplers (mean ratio 1.17?±?0.11 and 1.21?±?0.08, respectively). Statistical and back trajectory analysis showed that elevated PM concentrations (PM10, 93.8?±?49.1 μg/m3; PM2.5: 102.9?±?59.9 μg/m3) are associated to desert dust events. In addition regional transport contributes significantly to the aerosol concentration levels whereas low aerosol concentrations were observed during storm episodes.  相似文献   

11.
The distribution of acidic andalkaline constituents (SO4 2-,NO3 -, Cl-, NH4 +, Na+,K+, Ca2+) between the fine and coarseparticle range has been examined in an urban locationin Thessaloniki, N. Greece over an 8-month period. The chemistry of wet and dry deposition collected overthe same period was also examined. Statisticalassociations between species within each environmentalphase were investigated using correlation analysis.Use of principal component analysis was made toinvestigate compositional similarities betweenaerosol, deposited dust and rain. It was found thatSO4 followed by NO3, NH4 and Caprevailed in fine aerosol. Sulphates and Ca were alsothe prevailing ions in the coarse particle fraction.Wet deposition was found to be the dominant depositionmechanism for all species. The high dry depositionrates observed for Ca and SO4 suggest that mostof the dry deposited sulphate is in the form ofCaSO4. Scavenging ratios of ionic speciesassociated with coarse aerosol were higher than thecorresponding ratios for fine particles. Principalcomponent analysis suggested that variations in ioniccomposition of fine aerosol could be interpretedprimarily by gas-to-particle neutralization reactionsinvolving atmospheric ammonia. In contrast, theinteraction between SO2 and HNO3 with Cacompounds seems to be the most likely factor that canexplain variations in wet and dry deposition ioniccontents.  相似文献   

12.
Suspended particulate matter (SPM) and PM2.5 in the urban and suburban atmosphere of the Kanto Plain of Japan, which includes the Tokyo metropolitan area, during the period 22–26 July 2002 were characterized. Samples of SPM and PM2.5 were collected by low-volume samplers at 6-h intervals at Suginami, Saitama, and Kisai. At all the sites, the major components of SPM and PM2.5 were organic carbon (OC), elemental carbon (EC), and sulfate. The ion balance, the size distributions of the ionic species, and the high correlation between SO4 2? and NH4 + indicated that the main chemical form of sulfate was (NH4)2SO4. The OC/EC ratios were larger in the daytime than in the nighttime. The correlation coefficients of OC, OC/EC, and SO4 2? with ozone concentrations at inland sites (Saitama, Kisai) were higher than those at the coastal site (Suginami). Bound water and hydrogen and oxygen atoms associated with OC, the amounts of which were estimated with a mass closure model, contributed substantially to the total particle mass. The chemical characteristics of the particles indicated that two mechanisms led to high concentrations of SPM and PM2.5: (i) an active photochemical process produced high concentrations of OC and sulfate, leading to a high concentration of (NH4)2SO4 in the particles and to production of secondary organic aerosols; (ii) stable meteorological conditions resulted in accumulation of primary particles, mainly emitted from vehicle exhaust, resulting in high concentrations of OC and EC.  相似文献   

13.
Primary particulate matter is emitted directly into the atmosphere from various anthropogenic and natural sources such as power plants (combustion of fossil fuels) or forest fires. Secondary particles are formed by transformation of SO2, NOx, NH3, and VOC in the atmosphere. They both contribute to ambient particulate matter concentrations, which may have adverse effects on human health. Health hazards are caused by small particulate size, high number of especially fine (< 2.5 µm) and ultra-fine (< 0.1 µm) particles and/or their chemical composition. As part of an integrated assessment model developed at IIASA, a module on primary particulate matter (PM) emissions has been added to the existing SO2, NOx, NH3 and VOC sections. The module considers so far primary emissions of total suspended particles (TSP), PM10 and PM2.5 from aggregated stationary and mobile sources. A primary PM emission database has been established. Country specific emission factors for stationary sources have been calculated within the module using the ash content of solid fuels.  相似文献   

14.
Aerosol samples were collected at Catania (Italy), from 16 March to 13 June 2005. The sampling was performed using a low pressure five-stage Berner cascade impactor. The samples were analysed for total aerosol mass, Water Soluble Organic Carbon (WSOC), Total Carbon (TC) and main inorganic ionic species. The Water-Insoluble Carbon (WINC) was derived by the difference: TC-WSOC. The samples share some common features: ammonium sulphate and carbon-containing species (both soluble and insoluble) are the largest contributors of fine particle mass, while coarse particles essentially consist of sea-salt, sodium nitrate and unaccounted PM (probably crustal material). The WINC/WSOC ratio decreases from the smallest size range to the large accumulation mode range (0.42–1.2 μm), while the ${\text{nssSO}}^{ = }_{4} $ and $ {\text{NH}}^{ + }_{4} $ contribution rises. The water-insoluble carbonaceous matter is the dominant component in the smallest particles (0.05–0.14 μm). We identified four different aerosol types, corresponding to different sources, contributing to the total particles load of the investigated urban environment: vehicular traffic, producing primary carbonaceous insoluble particles, secondary aerosols, dominating the composition of accumulation mode particles, and marine particles and mineral dust (both important components of the coarse aerosol fraction).  相似文献   

15.
Ambient concentrations of PM10 were measured every fifteen minutes from November 2002 to October 2003 at Alsasua (Northern Spain) using a laser particle counter. A high volume sampler was also used to collect 24-h integrated PM10 samples at a frequency of three running days per week (i.e. three consecutive PM10 samples followed by five days without sampling) for gravimetric determination of PM10 mass concentrations followed by chemical analysis of its chemical components. The annual mean PM10 concentration obtained using the laser particle counter with gravimetric correction was 22.7 μg m?3 (365 days), while the mean for the gravimetric samples was 29.5 μg m?3 (134 days). A total of 94 integrated PM10 samples were analyzed for 60 chemical species using a combination of inductively coupled plasma spectrometry (ICP) and ion chromatography (IC). The concentrations of the main PM10 components were found to be generally in agreement with the values reported for other Spanish cities. Bilinear Positive Matrix Factorization (PMF2) was used to study the sources of PM10 and its constituents. Six main sources of PM10 were identified (average contribution to total PM10 mass in parentheses): crustal material (35%), secondary sulfate (21%), secondary nitrate (14%), motor vehicles (12%), sea-salt aerosol (12%) and metallurgical industries (3%).  相似文献   

16.
Measurements of particle size distributions and PM2.5 from an urban background site in the Central Po Valley are analysed; the site is one of the medium–small-size cities in the central valley, without the direct influence of the metropolitan and industrial area of Milan and of the Adriatic Sea. The data comprise number concentration of particle with diameters ranging between 10 and 700 nm, PM2.5 and main meteorological variables from February to August 2008. Daily cycles of the observed pollutants are analysed, along with auto-correlation function for particle number concentration and principal component analysis (PCA) of all the available variables; finally, the diurnal pattern of PM2.5 low-, medium- and high-pollution events has been investigated. Total particle number concentration showed a daily pattern both in winter and summer, although different between weekdays and Sundays and with wider variations during the cold season. A daily cycle is present for the geometric mean diameter of nucleation mode particles in winter and of nucleation and Aitken mode particles in summer. PM2.5 showed a slight daily pattern for weekdays and Sundays, similar, but lagged, to total particle count cycle. Mixing layer depth resulted the main process controlling PM2.5, although also human activities contribute to PM2.5 concentration and allow some deposition and (re-)mobilisation at the first hours of the day and morning rush hour, respectively, while particle number concentration responds immediately to anthropogenic sources. PCA confirmed the dependence of particle number concentration also on meteorological variables, e.g. mixing layer height, wind speed or atmospheric pressure, showing the important influence of regional meteorology on local pollution conditions. Modena can be considered a representative test area of the effect of the meteorological regime for the Central Po Valley on atmospheric particle concentration patterns, characterised by steady high-background concentration.  相似文献   

17.
A spatially, temporally and chemically resolved emission inventory for particulate matter and gaseous species from anthropogenic and natural sources was created for the Greater Athens Area (GAA; base year, 2007). Anthropogenic sources considered in this study include combustion (industrial, non-industrial, commercial and residential), industrial production, transportation, agriculture, waste treatment and solvent use. The annual gaseous pollutants (????x, SOx, non-methane volatile organic compounds (NMVOCs), CO and ????3) and particulate matter (PM2.5 and PM2.5?C10) emissions were derived from the UNECE/EMEP database for most source sectors (SNAP 1?C9; 50?×?50 km2) and their spatial resolution was increased using surrogate spatial datasets (land cover, population density, location and emissions of large point sources, emission weighting factors for the GAA; 1?×?1 km2). The emissions were then temporally disaggregated in order to provide hourly emissions for atmospheric pollution modelling using monthly, daily and hourly disintegration coefficients, and additionally the chemical speciation of size-segregated particles and NMVOCs emissions was performed. Emissions from agriculture (SNAP 10) and natural emissions of particulate matter from the soil (by wind erosion) and the sea surface and of biogenic gaseous pollutants from vegetation were also estimated. During 2007 the anthropogenic emissions of CO, SOx, NOx, NMVOCs, NH3, PM2.5 and PM2.5?C10 from the GAA were 151,150, 57,086, 68,008, 38,270, 2,219, 9,026 and 3,896 Mg, respectively. It was found that road transport was the major source for CO (73.3%), NMVOCs (31.6%) and NOx (35.3%) emissions in the area. Another important source for NOx emissions was other mobile sources and machinery (23.1%). Combustion for energy production and transformation industries was the major source for SOx (38.5%), industrial combustion for anthropogenic PM2.5?C10 emissions (59.5%), whereas non-industrial combustion was the major source of PM2.5 emissions (49.6%). Agriculture was the primary NH3 source in the area (72.1%). Natural vegetation was found to be an important source of VOCs in the area which accounted for approximately the 5% of total VOCs emitted from GAA on a typical winter day. The contribution of sea-salt particles to the emissions of PM2.5 was rather small, whereas the emissions of resuspended dust particles exceeded by far the emissions of PM2.5 and PM2.5?C10 from all anthropogenic sources.  相似文献   

18.
辽宁西北部主要绿化树种对空气颗粒物滞留能力研究   总被引:1,自引:0,他引:1  
采用洗脱法测定了辽西北地区阜新市15种常见绿化树种单位叶面积滞留粗颗粒物(TSP)及细颗粒物(PM_(2.5))的质量,分析比较了15种树种叶片去除TSP和PM_(2.5)能力以及随着空间变化的规律。结果表明:(1)不同树种单位叶面积TSP和PM_(2.5)滞留量均存在显著差异,变化范围分别为3.68~5.94g/m~2和0.47~0.92g/m~2,树种间滞留能力的差值可达2倍左右。(2)在同一个功能区不同树种滞留TSP和PM_(2.5)的差异由树冠高度(绿篱灌木乔木)和叶表面粗糙度(叶表面沟槽宽度的不同可能是沟槽宽度过宽和过窄均不利于叶片捕集颗粒物,且颗粒物滞留量随沟槽深度增加而增大)以及叶片比叶重(比叶重大的滞尘量大)等所引起。(3)在不同功能区同一树种单位叶面积滞留TSP量的排序为工业区商业交通区露天矿区清洁区,而PM_(2.5)滞留量则无明显差异。乔木中新疆杨、灌木中紫丁香的单位叶面积滞留量与单株滞留量都较高,起到明显的降尘作用,是沙尘频发的辽西北地区城市绿化树种的优先之选。  相似文献   

19.
李松  罗绪强  李恋  万红燕 《水土保持通报》2015,35(4):202-205,212
[目的]研究中国PM2.5的空间分布特征及其影响因素,为区域可持续发展提供科学依据。[方法]利用2014年2月25日上午9时和3月23日9时来自国家环保部的PM2.5时均浓度值,以GIS为平台利用双三次B样条方法,以中国陆疆国界为内插区域,模拟两个时相PM2.5浓度的空间分布,并在此基础上对比分析了中国和美国PM2.5浓度标准的差异,进一步分析荒漠化、降水、风速和经济增长水平对PM2.5浓度空间分异的影响。[结果]模拟结果表明,京、津为中心的华北地区是中国PM2.5污染严重的区域,珠三角是另一个污染较严重的区域,西藏、新疆和贵州等西部省区是中国PM2.5浓度较低,空气质量较好的区域。[结论]我国各地区PM2.5浓度与区域经济发展水平表现出显著的相关性。  相似文献   

20.
Mobile sources are significant contributors to ambient particulate matter (PM) in the United States. As the emphasis shifts from PM10 to PM2.5, it becomes particularly important to account for the mobile source contribution to observed particulate levels since these sources may be the major contributor to the fine particle fraction. This is due to the fact that most mobile source mass emissions have an aerodynamic diameter less than 2.5 µm, while the particles of geological origin that tend to dominate the PM10 fraction generally have an aerodynamic diameter greater than 2.5 µm. A common approach to assess the relative contributions of sources to observed particulate mass concentrations is the application of source apportionment methods. These methods include material balance, chemical mass balance (CMB), and multivariate receptor models. This paper describes a number recent source attribution studies performed in the United States in order to evaluate the range of the mobile source contribution to observed PM. In addition, a review of the methods used to apportion source contributions to ambient particulate loadings is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号