首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Evaluation of a portable blood gas analyzer, (StatPal II, Unifet, Inc, La Jolla, CA) was performed using tonometered solutions and equine blood. Samples were analyzed by the StatPal II and either an Instrument Laboratory IL1306 (Lexington, MA) or a Radiometer ABL50 blood gas analyzer (Radiometer America Inc., Westlake, OH). Comparison of the StatPal II and the IL1306 was done by analysis of 3 tonometered solutions (acidic, normal, and alkalotic) and 27 equine venous blood samples. Blood pH, Pco2, Po2, and [HCO3-] values were altered by IV infusion of 5% sodium bicarbonate or exercising the horses on a treadmill. Comparison of the StatPal II and the Radiometer was performed by analysis of 78 blood samples collected from Standard-bred horses before a race. Data were analyzed for the venous blood samples using a paired two-tailed Student's t test and Bland-Altman plots, with significance set at P < .05. The coefficients of variation for pH, Pco2, Po2, and [HCO3-] values of the tonometered solutions analyzed by the StatPal II ranged from 0.067% to 0.087%, 2% to 3.21 %, 1.21 % to 2.67%, and 0.267% to 0.828%, respectively. Comparison of the equine blood samples analyzed by the StatPal II and the IL1306 demonstrated statistically significant, but clinically irrelevant differences in pH, Pco2, and Po2, but not [HCO3-]. There were statistically significant, but clinically irrelevant differences between the StatPal II and the Radiometer for pH, Pco2, and [HCO3-], but not for Po2-It is concluded that the StatPal II provides reproducible and acceptable analysis of equine venous blood gas samples.  相似文献   

2.
Chemical restraint is an important tool for the management and medical care of both captive and free-ranging rhinoceroses. Current anesthetic protocols for the white rhinoceros (Ceratotherium simum) are reported to cause varying degrees of hypertension, tachycardia, muscular stiffness and fasciculation, acidosis, and, most importantly, respiratory depression with resulting hypoventilation, hypoxia, and hypercapnea. To assist in the assessment and development of new and improved anesthetic techniques for the white rhinoceros, the following cardiopulmonary reference parameters for standing, unrestrained white rhinoceroses were generated (mean +/- standard error [minimum maximum]): heart rate = 39 +/- 0.8 beats/min (32-42), respiratory rate = 19 +/- 0.6 breaths/min (16-23), corrected indirect systolic blood pressure = 160 +/- 2.9 mm Hg (146-183), corrected indirect diastolic blood pressure = 104 +/- 2.3 mm Hg (88-117), corrected indirect mean blood pressure = 124 +/- 2.2 mm Hg (108-135), end tidal CO2 = 45.1 +/- 0.7 mm Hg (41.7-48.0), rectal temperature = 36.8 +/- 0.1 degrees C (36.6-37.2), arterial blood pH = 7.391 +/- 0.007 (7.346-7.431), arterial partial pressure of oxygen = 98.2 +/- 1.4 mm Hg (90.2-108.6), arterial partial pressure of CO2 = 49.0 +/- 0.9 mm Hg (44.4-53.7), base excess = 3.5 +/- 0.4 mmol/L (1.9-5.9), bicarbonate = 29.3 +/- 0.4 mmol/L (27.3-32.2), and arterial hemoglobin oxygen saturation (SaO2) = 97.2 +/- 0.1% (96.6-98.0).  相似文献   

3.
OBJECTIVE: To compare the ability of a sidestream capnograph and a mainstream capnograph to measure end-tidal CO2 (ETCO2) and provide accurate estimates of PaCO2 in mechanically ventilated dogs. DESIGN: Randomized, double Latin square. ANIMALS: 6 healthy adult dogs. PROCEDURE: Anesthesia was induced and neuromuscular blockade achieved by IV administration of pancuronium bromide. Mechanical ventilation was used to induce conditions of standard ventilation, hyperventilation, and hypoventilation. While tidal volume was held constant, changes in minute volume ventilation and PaCO2 were made by changing the respiratory rate. Arterial blood gas analysis was performed and ETCO2 measurements were obtained by use of either a mainstream or a sidestream capnographic analyzer. RESULTS: A linear regression model and bias analysis were used to compare PaCO2 and ETCO2 measurements; ETCO2 measurements obtained by both capnographs correlated well with PaCO2. Compared with PaCO2, mainstream ETCO2 values differed by 3.15 +/- 4.89 mm Hg (mean bias +/- SD), whereas the bias observed with the sidestream ETCO2 system was significantly higher (5.65 +/- 5.57 mm Hg). Regardless of the device used to measure ETCO2, bias increased as PaCO2 exceeded 60 mm Hg. CONCLUSIONS AND CLINICAL RELEVANCE: RelevancehAlthough the mainstream cas slightly more accurate, both methods of ETCO2 measurement correlated well with PaCO2 and reflected changes in the ventilatory status. However, ETCO2 values > 45 mm Hg may inaccurately reflect the severity of hypoventilation as PaCO2 may be underestimated during conditions of hypercapnia (PaCO2 > 60 mm Hg).  相似文献   

4.
Fourteen adult beavers (Castor canadensis) weighing 16.5 +/- 4.14 kg (mean +/- SD) were anesthetized for surgical implantation of radio telemetry devices. Beavers were anesthetized with diazepam (0.1 mg/kg) and ketamine (25 mg/kg) administered IM, which provided smooth anesthetic induction and facilitated tracheal intubation. Anesthesia was maintained with halothane in oxygen via a semiclosed circle anesthetic circuit. Values for heart rate, respiratory rate, esophageal temperature, direct arterial blood pressure, end-tidal halothane concentration, and end-tidal CO2 tension were recorded every 15 minutes during the surgical procedure. Arterial blood samples were collected every 30 minutes to determine pH, PaO2, and PaCO2. Values for plasma bicarbonate, total CO2, and base excess were calculated. Ventilation was spontaneous in 7 beavers and controlled to maintain normocapnia (PaCO2 approx 40 mm of Hg) in 7 others. Vaporizer settings were adjusted to maintain a light surgical plane of anesthesia. Throughout the surgical procedure, all beavers had mean arterial pressure less than 60 mm of Hg and esophageal temperature less than 35 C. Mean values for arterial pH, end-tidal CO2, PaO2, and PaCO2 were significantly (P less than 0.05) different in spontaneously ventilating beavers, compared with those in which ventilation was controlled. Respiratory acidosis during halothane anesthesia was observed in spontaneously ventilating beavers, but not in beavers maintained with controlled ventilation. All beavers recovered unremarkably from anesthesia.  相似文献   

5.
OBJECTIVE: To evaluate a combined transcutaneous carbon dioxide pressure (tcPCO(2)) and pulse oximetry sensor in sheep and dogs. ANIMALS: 13 adult sheep and 11 adult dogs. PROCEDURES: During inhalation anesthesia, for the first 10 minutes following sensor placement, arterial blood gas was analyzed and tcPCO(2) was recorded every 2 minutes. Subsequently, the animals were hyper-, normo-, and hypoventilated. The simultaneously obtained tcPCO(2) and PaCO(2) values were analyzed by use of Bland-Altman statistical analysis. RESULTS: Mean +/- SD overall difference between tcPCO(2) and PaCO(2) 10 minutes after sensor application was 13.3 +/- 8.4 mm Hg in sheep and 8.9 +/- 12 mm Hg in dogs. During hyper-, normo-, and hypoventilation, mean difference (bias) and precision (limits of agreement [bias +/- 2 SD]) between tcPCO(2) and PaCO(2) values were 13.2 +/- 10.4 mm Hg (limits of agreement, -7.1 and 33.5 mm Hg) in sheep and 10.6 +/- 10.5 mm Hg (limits of agreement, -9.9 and 31.2 mm Hg) in dogs, respectively. Changes in PaCO(2) induced by different ventilation settings were detected by the tcPCO(2) sensor with a lag (response) time of 4.9 +/- 3.5 minutes for sheep and 6.2 +/- 3.6 minutes for dogs. CONCLUSIONS AND CLINICAL RELEVANCE: The tcPCO(2) sensor overestimated PaCO(2) in sheep and dogs and followed changes in PaCO(2) with a considerable lag time. The tcPCO(2) sensor might be useful for noninvasive monitoring of changes but cannot be used as a surrogate measure for PaCO(2).  相似文献   

6.
White rhinoceros anaesthetised with etorphine and azaperone combination develop adverse physiological changes including hypoxia, hypercapnia, acidosis, tachycardia and hypertension. These changes are more marked in field-anaesthetised rhinoceros. This study was designed to develop a technique to improve safety for field-anaesthetised white rhinoceros by tracheal intubation and oxygen insufflation. Twenty-five free-ranging white rhinoceros were anaesthetised with an etorphine and azaperone combination for translocation or placing microchips in their horns. Once anaesthetised the rhinoceros were monitored prior to crating for transportation or during microchip placement. Physiological measurements included heart and respiratory rate, blood pressure and arterial blood gas samples. Eighteen rhinoceros were intubated using an equine nasogastric tube passed nasally into the trachea and monitored before and after tracheal insufflation with oxygen. Seven rhinoceros were not intubated or insufflated with oxygen and served as controls. All anaesthetised rhinoceros were initially hypoxaemic (percentage arterial haemoglobin oxygen saturation (%O2Sa) = 49% +/- 16 (mean +/- SD) and PaO2 = 4.666 +/- 1.200 kPa (35 +/- 9 mm Hg)), hypercapnic (PaCO2 = 8.265 +/- 1.600 kPa (62 +/- 12 mm Hg)) and acidaemic (pHa = 7.171 +/- 0.073 ). Base excess was -6.7 +/- 3.9 mmol/l, indicating a mild to moderate metabolic acidosis. The rhinoceros were also hypertensive (systolic blood pressure = 21.861 +/- 5.465 kPa (164 +/- 41 mm Hg)) and tachycardic (HR = 107 +/- 31/min). Following nasal tracheal intubation and insufflation, the %O2Sa and PaO2 increased while blood pHa and PaCO2 remained unchanged. Tracheal intubation via the nose is not difficult, and when oxygen is insufflated, the PaO2 and the %O2Sa increases, markedly improving the safety of anaesthesia, but this technique does not correct the hypercapnoea or acidosis. After regaining their feet following reversal of the anaesthesia, the animals' blood gas values return towards normality.  相似文献   

7.
The accuracy of a portable blood gas analyzer (OPTI 1) was evaluated using canine blood and aqueous control solutions. Sixty-four arterial blood samples were collected from 11 anesthetized dogs and were analyzed for pH, partial pressure of carbon dioxide (PCO2) partial pressure of oxygen (PO2), and bicarbonate concentration ([HCO3-]) values by the OPTI 1 and a conventional blood gas analyzer (GASTAT 3). The conventional analyzer was considered as a standard against which the OPTI 1 was evaluated. Comparison of OPTI 1 results with those of GASTAT 3 by linear regression analysis revealed a high degree of correlation with the GASTAT 3 (r = .90-.91). The mean +/- SD of the differences between OPTI 1 and GASTAT 3 values was -0.008 +/- 0.017 for pH, -0.88 +/- 3.33 mm Hg for PCO2, 3.71 +/- 6.98 mm Hg for PO2, and -0.34 +/- 1.45 mEq/L for [HCO3-]. No statistically significant difference was found between the OPTI 1 and the GASTAT 3. Agreement between these 2 methods is within clinically acceptable ranges for pH, PCO2, PO2, and [HCO3-]. The coefficients of variation for measured pH, PCO2, and PO2 values of 3 aqueous control solutions (acidic, normal, and alkalotic) analyzed by the OPTI 1 ranged from 0.047 to 0.072% for pH, 0.78 to 1.81% for PCO2, and 0.73 to 2.77% for PO2. The OPTI 1 is concluded to provide canine blood gas analysis with an accuracy that is comparable with that of conventional benchtop blood gas analyzers.  相似文献   

8.
The effects of sevoflurane on anesthesia induction, recovery, ventricular pressures, heart rate, ventricular pH, blood gas values, and electrolytes were evaluated in desert tortoises (Gopherus agassizii). Tortoises were orotracheally intubated while awake and ventilated manually with 3-7% sevoflurane in oxygen (1 L/min) to achieve desired expired sevoflurane concentrations. Data, consisting of induction time, recovery time, systolic, diastolic, and mean ventricular pressures, heart rate, ventricular pH, blood gas values, and electrolytes, were collected prior to anesthesia and sequentially at 2.50% and 3.75% expired sevoflurane as measured at the junction of the endotracheal tube and the breathing circuit. Blood pressure was measured and blood samples were collected through a 25-ga needle passed through a cardiac access port that was placed while the tortoises were in dorsal recumbency. Mean (+/-SE) induction time was 2.55+/-0.55 min, recovery time was 27.58+/-7.55 min, and duration of anesthesia was 105+/-12 min. Mean (+/-SD) values for systolic, diastolic, and mean ventricular pressures in awake tortoises were 28+/-3 mm Hg, 22+/-2 mm Hg, and 24+/-2 mm Hg, respectively. Sevoflurane (2.5% expired) significantly decreased systolic (14+/-3 mm Hg), diastolic (12+/-1 mm Hg), and mean (13+/-1 mm Hg) ventricular pressures compared with those of awake tortoises. Ventricular pressures did not decrease further with increasing depth of anesthesia. Heart rate (32+/-4 beats/min) did not change significantly under sevoflurane anesthesia. Sevoflurane administration increased ventricular PO2 but did not change Na+, K+, or iCa++ concentrations. Sevoflurane appears to provide safe and effective anesthesia with rapid induction and recovery.  相似文献   

9.
The cardiopulmonary effects of eucapnia (arterial CO2 tension [PaCO2] 40.4 +/- 2.9 mm Hg, mean +/- SD), mild hypercapnia (PaCO2, 59.1 +/- 3.5 mm Hg), moderate hypercapnia (PaCO2, 82.6 +/- 4.9 mm Hg), and severe hypercapnia (PaCO2, 110.3 +/- 12.2 mm Hg) were studied in 8 horses during isoflurane anesthesia with volume controlled intermittent positive pressure ventilation (IPPV) and neuromuscular blockade. The sequence of changes in PaCO2 was randomized. Mild hypercapnia produced bradycardia resulting in a significant (P < 0.05) decrease in cardiac index (CI) and oxygen delivery (DO2), while hemoglobin concentration (Hb), the hematocrit (Hct), systolic blood pressure (SBP), mean blood pressure (MBP), systemic vascular resistance (SVR), and venous admixture (QS/QT) increased significantly. Moderate hypercapnia resulted in a significant rise in CI, stroke index (SI), SBP, MBP, mean pulmonary artery pressure (PAP), Hct, Hb, arterial oxygen content (CaO2), mixed venous oxygen content (CvO2), and DO2, with heart rate (HR) staying below eucapnic levels. Severe hypercapnia resulted in a marked rise in HR, CI, SI, SBP, PAP, Hct, Hb, CaO2, CvO2, and DO2. Systemic vascular resistance was significantly decreased, while MBP levels were not different from those during moderate hypercapnia. No cardiac arrhythmias were recorded with any of the ranges of PaCO2. Norepinephrine levels increased progressively with each increase in PaCO2, whereas plasma cortisol levels remained unchanged. It was concluded that hypercapnia in isoflurane-anesthetized horses elicits a biphasic cardiopulmonary response, with mild hypercapnia producing a fall in CI and DO2 despite an increase in MBP, while moderate and severe hypercapnia produce an augmentation of the cardiopulmonary performance and DO2.  相似文献   

10.
Measurements of jejunal, ileal, and large colon (pelvic flexure) surface O2 tension (PSO2) were made in halothane-anesthetized horses with a nonheated miniature oxygen polarographic electrode. Assisted ventilation with 100% O2 was used to maintain PaCO2 tension at 50 +/- 8 mm of Hg while mean arterial blood pressure was maintained greater than or equal to 70 mm of Hg. Mean +/- SD PSO2 for the intestinal segments were: jejunum (horses 1 to 4), 71 +/- 20 mm of Hg; ileum (horses 1 to 4), 61 +/- 8 mm of Hg; and pelvic flexure of the large colon (horses 1 to 10), 55 +/- 13 mm of Hg. The response of the sensor to intestinal ischemia was studied in the large colon of an additional 12 halothane-anesthetized horses, using 4 types of vascular occlusion: venous (4 horses); arterial and venous (4 horses); venous and intramural vascular obstruction (2 horses); and arterial, venous, and intramural obstruction (2 horses). Venous and arterial occlusions were maintained for 30, 60, 90, and 120 minutes, whereas intramural obstruction combined with either type of vascular obstruction was studied for 60 to 120 minutes. After vascular occlusion, PSO2 decreased to 8 +/- 7 mm of Hg for venous obstruction, 4 +/- 3 mm of Hg for arterial and venous obstruction, 6 +/- 0 mm of Hg for intramural and venous obstruction, and 3 +/- 0 mm of Hg after intramural and arterial and venous obstruction. Thirty minutes after release of the clamps, the PSO2 increased to greater than or equal to 50% of the preoccluded large colon value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE: To evaluate the relationship between end-tidal partial pressure of CO(2) (ETCO(2)) and PaCO(2) in isoflurane-anesthetized harp seals. ANIMALS: Three 5-month-old 25- to 47-kg harp seals (Phoca groenlandica). PROCEDURES: PaCO(2) was determined in serial arterial samples from isoflurane-anesthetized seals and compared with concomitant ETCO(2) measured with a side-stream microstream capnograph. Twenty-four paired samples were subjected to linear regression analysis and the Bland-Altman method for assessment of clinical suitability of the 2 methods (ie, PaCO(2) and ETCO(2) determinations). The influence of ventilation rate per minute (VR) on the ETCO(2) to PaCO(2) difference (P[ET-a] CO(2)) was examined graphically. RESULTS: The correlation coefficient between the 2 measurements was 0.94. The level of agreement between ETCO(2) and PaCO(2) varied considerably. Values of ETCO(2) obtained with a VR of < 5 underestimated PaCO(2) to a greater degree (mean bias, -4.01 mm Hg) and had wider limits of agreement of -13.10 to 5.07 mm Hg (-4.01 mm Hg +/- 1.96 SD), compared with a VR of > or = 5 (mean bias, -2.24 mm Hg; limits of agreement, -7.79 to 3.30 mm Hg). CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that a microstream sidestream capnograph provides a noninvasive, sufficiently accurate estimation of PaCO(2) with intermittent positive ventilation at a VR > or = 5 in anesthetized harp seals.  相似文献   

12.
OBJECTIVE: To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. SAMPLE POPULATION: Convenience plasma samples of 5 male and 5 female healthy adult cats. PROCEDURE: Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. RESULTS: Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. CONCLUSIONS AND CLINICAL RELEVANCE: These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.  相似文献   

13.
The relationship between end-tidal partial pressure of carbon dioxide (PETCO2), arterial partial pressure of carbon dioxide (PaCO2), and blood pH in isoflurane-anesthetized raptors was evaluated. PaCO2 and pH were determined in serial arterial samples from isoflurane anesthetized birds and compared with concurrent end-tidal partial pressure of carbon dioxide measured with a Microstream sidestream capnograph. Forty-eight paired samples, taken from 11 birds of prey (weighing 416-2,062 g), were used to determine correlations coefficients between PaCO2 and PETCO2, and between PETCO2 and pH. Limits of agreement between PaCO2 and PETCO2 also were calculated. Strong correlations were observed between PaCO2 and PETCO2 (r = 0.94; P < 0.0001) as well as between PETCO2 and pH (r = -0.90; P < 0.0001). However, the level of agreement between PaCO2 and PETCO2 varied considerably. Low values of PETCO2, ranging from 18 to 29 mm Hg, exceeded the concomitantly measured values of PaCO2 by an average of 6.0 mm Hg (6.0 +/- 1.9 mm Hg; mean +/- SD). Conversely, high values of PETCO2, ranging from 50 to 63 mm Hg, were on average 7.6 mm Hg (7.6 +/- 9.8 mm Hg) lower than values of PaCO2. In the 30 to 49 mm Hg range for PETCO2, the difference between PETCO2 and PaCO2 was on average 1.0 mm Hg (1.0 +/- 8.5 mm Hg). These results suggest that the capnograph used provided a sufficiently accurate estimation of arterial partial pressure of carbon dioxide for birds weighing > 400 g and receiving manual positive ventilation with a Bain system. In our study, the linear relationship observed between the pH and the end-tidal partial pressure of carbon dioxide suggested that the monitoring of end-tidal partial pressure of carbon dioxide also can be useful to prevent respiratory acidosis.  相似文献   

14.
The i-STAT portable clinical analyzer (PCA) was evaluated for performance in avian species. With the EG7+ cartridge, which provided results for hydrogen ion concentration, oxygen tension, carbon dioxide tension, sodium, potassium, ionized calcium, hematocrit, and various calculated parameters, analytical accuracy and precision were tested by comparing obtained values to those of established traditional blood gas and chemistry analyzers. Deming's regression and bias plots were used to compare i-STAT results with those obtained by laboratory professionals using benchtop analyzers. The reliability of the i-STAT PCA with EG7+ cartridges was good, with 0-5.7% system failures in measured values. Regression statistics were good for all blood gas analytes and acceptable for electrolytes and calculated parameters, except for potassium and base excess, for which the regression data or the discrepancy between the methods was too large. The system was reliable and easy to use and had an overall acceptable accuracy in avian species. These features, together with portability and small required blood volumes, make the i-STAT suitable for point-of-care use in critical avian patients, although single values require careful interpretation.  相似文献   

15.
OBJECTIVE: To evaluate the effects of metabolic acidosis and changes in ionized calcium (Ca2+) concentration on PaO2 in dogs. ANIMALS: 33 anesthetized dogs receiving assisted ventilation. PROCEDURE: Normal acid-base status was maintained in 8 dogs (group I), and metabolic acidosis was induced in 25 dogs. For 60 minutes, normocalcemia was maintained in group I and 10 other dogs (group II), and 10 dogs were allowed to become hypercalcemic (group III); hypocalcemia was then induced in groups I and II. Groups II and IV (5 dogs) were treated identically except that, at 90 minutes, the latter underwent parathyroidectomy. At intervals, variables including PaO2, Ca2+ concentration, arterial blood pH (pHa), and systolic blood pressure were assessed. RESULTS: In group II, PaO2 increased from baseline value (96 +/- 2 mm Hg) within 10 minutes (pHa, 7.33 +/- 0.001); at 60 minutes (pHa, 7.21 +/- 0.02), PaO2 was 108 +/- 2 mm Hg. For the same pHa decrease, the PaO2 increase was less in group III. In group I, hypocalcemia caused PaO2 to progressively increase (from 95 +/- 2 mm Hg to 104 +/- 3 mm Hg), which correlated (r = -0.66) significantly with a decrease in systolic blood pressure (from 156 +/- 9 mm Hg to 118 +/- 10 mm Hg). Parathyroidectomy did not alter PaO2 values. CONCLUSIONS AND CLINICAL RELEVANCE: Induction of hypocalcemia and metabolic acidosis each increased PaO2 in anesthetized dogs, whereas acidosis-induced hypercalcemia attenuated that increase. In anesthetized dogs, development of metabolic acidosis or hypocalcemia is likely to affect ventilatory control.  相似文献   

16.
Positive end-expiratory pressure (PEEP) was applied in 74 anesthetized, ventilated horses during colic surgery, to attempt to increase arterial oxygen tensions. In 28 horses with an initial PaO2 less than 70 mm of Hg, PEEP increased PaO2 values to a mean of 173 +/- 24 mm of Hg. Arterial oxygen content increased from 14.1 +/- 0.05 ml/dl to 17.2 +/- 0.05 ml/dl. In the remaining 46 horses, PEEP increased PaO2 from a mean value of 101 +/- 6 mm of Hg to 194 +/- 15 mm of Hg, and arterial oxygen content increased from 14.9 +/- 0.09 ml/dl to 16.9 +/- 0.07 ml/dl. Cardiovascular depression and decrease in arterial blood pressure was observed after the application of PEEP in 54 horses. These 54 horses required use of pressors (n = 8), inotropes (n = 32), or both (n = 14) to keep the mean arterial blood pressure greater than 60 mm of Hg. Combined with pharmacologic support of blood pressure, PEEP could be a useful clinical treatment of arterial hypoxemia in horses.  相似文献   

17.
Tracheal, bronchial, and renal flow were studied in 8 healthy ponies at rest and during exercise performed on a treadmill at a speed setting of 20.8 km/h and 7% grade (incline) for 30 minutes. Blood flow was determined with 15-microns-diameter radionuclide-labeled microspheres that were injected into the left ventricle when the ponies were at rest, and at 5, 15, and 26 minutes of exertion. Heart rate and mean aortic pressure increased from resting values (40 +/- 2 beats/min and 124 +/- 3 mm of Hg, respectively) to 152 +/- 8 beats/min and 133 +/- 4 mm of Hg at 5 minutes of exercise, to 169 +/- 6 beats/min and 143 +/- 5 mm of Hg at 15 minutes of exercise, and to 186 +/- 8 beats/min, and 150 +/- 5 mm of Hg at 26 minutes of exercise. Tracheal blood flow at rest and during exercise remained significantly (P less than 0.05) less than bronchial blood flow. Tracheal blood flow increased only slightly with exercise. Vasodilation caused bronchial blood flow to increase throughout exercise. Pulmonary arterial blood temperature of ponies also increased significantly (P less than 0.05) with exercise and a significant (P less than 0.005) correlation was found between bronchial blood flow and pulmonary arterial blood temperature during exertion. At 5 minutes of exercise, renal blood flow was unchanged from the resting value; however, renal vasoconstriction was observed at 15 and 26 minutes of exercise. We concluded that bronchial circulation of ponies increased with exercise in close association with a rise in pulmonary arterial blood temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The equine blood oxyhemoglobin dissociation curve has been traced in its entirety in standard conditions and the effects of temperature, pH and 2,3-diphosphoglycerate on this curve have been measured. When compared to that of human blood, the curve showed a higher oxygen affinity of hemoglobin (23.8 +/- 0.8 versus 26.6 mm Hg). The effect of the pH, expressed by d log P50/dpH, was found to be identical in man and horse (-0.47). The effect of temperature, however, expressed by d log P50/dT, proved to be lower in the horse (0.016 versus 0.024). The P50 showed an increase of 1 mm Hg each time 2,3-diphosphoglycerate was experiencing an elevation of 4 mumol/gHb in the horse. The results obtained from this experiment are intended for the replacement of the values related to the human blood which have been found to be somewhat inadequate for the horse blood, when the data of blood gases are given in algorithms.  相似文献   

19.
Acid-base abnormalities frequently are present in sick dogs. The mechanism for an acid-base disturbance can be determined with the simplified strong ion approach, which requires accurate values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma weak acids (K(a)). The aims of this study were to experimentally determine A(tot) and K(a) values for canine plasma. Plasma was harvested from 10 healthy dogs; the concentrations of quantitatively important strong ions (Na+, K+, Ca2+, Mg2+, Cl-, L-lactate) and nonvolatile buffer ions (total protein, albumin, phosphate) were determined; and the plasma was tonometered with CO2 at 37 degrees C. Strong ion difference (SID) was calculated from the measured strong ion concentrations, and nonlinear regression was used to estimate values for A(tot) and K(a), which were validated with data from an in vitro and in vivo study. Mean (+/- SD) values for canine plasma were A(tot) = (17.4 +/- 8.6) mM (equivalent to 0.273 mmol/g of total protein or 0.469 mmol/g of albumin); K(a) = (0.17 +/- 0.11) x 10(-7); pK(a) = 7.77. The calculated SID for normal canine plasma (pH = 7.40; P(CO2) = 37 mm Hg; [total protein] = 64 g/L) was 27 mEq/L. The net protein charge for normal canine plasma was 0.25 mEq/g of total protein or 0.42 mEq/g of albumin. Application of the experimentally determined values for A(tot), K(a), and net protein charge should improve understanding of the mechanism for complex acid-base disturbances in dogs.  相似文献   

20.
Cardiopulmonary function values were determined before and after surgical removal of adult heartworms in 25 dogs with spontaneous and 4 dogs with drug-induced caval syndrome (CS). Fifteen dogs with spontaneous CS (recovery group) and 4 dogs with drug-induced CS (drug-induced CS group) recovered after removal, and 10 dogs with spontaneous CS were euthanatized or died (nonsurviving group). Before heartworm removal, injected radiographic contrast medium was regurgitated from the right ventricle to the right atrium. Mean pulmonary arterial pressure and total pulmonary resistance were not statistically different between the recovery and nonsurviving groups of dogs, but the end-diastolic right ventricular pressure (mean +/- SD, 6.9 +/- 9.1 mm of Hg) and the a (8.7 +/- 9.2 mm of Hg)- and v (6.3 +/- 8.5 mm of Hg)-waves of the right atrial pressure curve in the recovery group were less, respectively, than the end-diastolic right ventricular pressure (17.3 +/- 6.0 mm of Hg) and the a (15.8 +/- 6.1 mm of Hg)- and v (21.4 +/- 6.9 mm of Hg)-waves in dogs of the nonsurviving group. After heartworm removal, contrast medium regurgitation disappeared, and cardiac output of the right ventricle increased in dogs of the recovery (from 2.08 +/- 0.72 to 2.38 +/- 0.68 L/min; P less than 0.05) and drug-induced CS (from 1.42 +/- 0.19 to 1.88 +/- 0.26 L/min, P less than 0.05) groups. However, regurgitation remained, and cardiac output did not increase in some dogs of the nonsurviving group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号