首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双唑草腈的除草活性及对水稻的安全性   总被引:2,自引:0,他引:2  
本文采用室内整株生测法测定了1.8%双唑草腈颗粒剂的除草活性及对不同水稻品种的安全性。在杂草出苗前、1叶期和2叶期以有效成分145.8g/hm2的剂量撒施1.8%双唑草腈颗粒剂对水稻田常见杂草稗草、鸭舌草、耳叶水苋和异型莎草的鲜重抑制率均在92%以上,药后3d杂草表现叶片干枯、黄化、僵苗等中毒症状,其见效速度明显快于对照药剂25g/L五氟磺草胺油悬浮剂。在水稻播后苗前或1叶期施用,其在‘南粳9108’(粳稻)、‘K两优10’(杂交稻)和稗草间的选择性指数均大于4,对水稻安全。  相似文献   

2.
The absorption, translocation and metabolism of the selective pre- or early post- emergence herbicide epronaz (N-ethyl-N-propyl-3-propylsulphonyl-1,2,4-triazole-1-carboxamide) were investigated using selected crop and weed species. The pattern of tolerance to epronaz of both germinating seeds and 10-day-old plants grown in nutrient solution, was found to be soybean (Glycine max L.) > maize (Zea mays L.) > cotton (Gossypium hirsutum L.) > rice (Oryza sativa L.) > barnyard grass [Echinochloa crus-galli (L.) Beauv.]. In all species, absorption and translocation of 14C from a nutrient solution containing [14C]epronaz (0.02 μCi ml?1) increased with time. Autoradiographic and liquid scintillation analysis indicated the presence of radioactivity in the apical regions of all species after 4 h. Interspecies variation in uptake and distribution did not appear to be a major factor explaining selectivity, although the resistance of cotton may be partly due to compartmentalisation of 14C in the lysigenous glands in stem and leaves. Analysis of extracts from plants treated with [14C]epronaz indicated the presence of epronaz, its major degradation product [3-propylsulphonyl-l,2,4-triazole (BTS 28 768)] and certain unknown radio-labelled compounds. The major metabolite (Unknown I) was believed to be a conjugate of certain plant components with either epronaz or BTS 28 768. The rate of formation of Unknown I corresponded to the relative resistance and susceptibility to epronaz of soybean, rice and barnyardgrass. The level of the herbicide remained much higher in cotton than in the other species, possibly reflecting compartmentalisation and inactivation of epronaz in the lysigenous glands. For maize, high levels of uptake, exudation and degradation in the nutrient solution were recorded.  相似文献   

3.
The effects of dimethazone [FMC 57020; 2-(2-chlorophenyl)methyl-4,4-dimethyl-3-isoxalidinone] on the growth and ultrastructure of cowpea (Vigna unguiculata L.) were examined. Seeds were imbibed in 0.5 mM dimethazone for 1 day and grown for 4 to 5 subsequent days in darkness without the herbicide. The herbicide stunted etiolated hypocotyl growth and retarded greening under 150 μmol · m−2 · sec−1 white light. No effects of dimethazone on the in vivo absorption spectrum of the etiolated primary leaf was detected. The herbicide caused some reduction and disorganization of prothylakoids in etiplasts. After 3 hr of white light chlorophyll accumulation was greatly reduced in treated leaves and ultrastructural development of the chloroplasts of herbicide-treated tissues appeared to be retarded. Pronounced thylakoid disruption was noticed in some cells after 12 hr, was more common after 24 hr, and was found in all cells by 72 hr. Maximally affected plastids lacked thylakoids, had irregular envelopes, and contained numerous vesicles.  相似文献   

4.
Pot experiments were conducted to evaluate the level of imazamox tolerance in five red rice ( Oryza sativa L.) and four barnyardgrass (three Echinochloa crus-galli (L.) Beauv. and one Echinochloa oryzoides (Ard.) Fritch) morphologically distinct biotypes collected from rice fields in northern Greece. The susceptibility of barnyardgrass biotypes to propanil was also studied. Red rice biotypes were not controlled by imazamox applied at 40 g ha−1. In contrast, 80 g imazamox ha−1 provided 56–84% red rice control (averaged across shoot number and fresh weight reduction). Not all barnyardgrass biotypes were susceptible to imazamox applied postemergence. However, propanil applied at 2.6 kg ha −1 controlled the E. crus-galli biotypes well, but propanil applied at rates of 2.6 and 5.2 kg ha −1 was not effective in reducing the shoot number and fresh weight of the E. oryzoides biotype. Propanil applied at 10.4 kg ha −1 reduced the shoot number and fresh weight of this biotype by 78 and 85%, respectively. In most cases, a linear equation ( y  = % of control, x  = g ha−1) provided the best fit for regressions between red rice or barnyardgrass shoot number or fresh weight and imazamox rates. The results of this study suggest that postemergence application of imazamox is not effective against all red rice and barnyardgrass biotypes found in the rice fields of Greece and that significant variability regarding herbicide efficacy among biotypes might exist.  相似文献   

5.
The objectives of this study were to show that: (a) a herbicide, such as ametryn, which interferes with the photosynthetic electron transport system, causes nitrite to accumulate in illuminated leaves and (b) that nitrite is toxic and contributes to the herbicidal damage and death of the plant. Tests were conducted on wheat seedlings grown on 5 mM nitrate, 5 mM ammonia, and zero nitrogen. Ametryn treatment decreased in vivo and in vitro nitrate reductase activity (NRA) within a 26-hr period. In vivo NRA decreased more rapidly than in vitro NRA. Compared with control tissue, only 3% in vivo NRA remained at the end of 26 hr. The in vivo assay conducted in light confirmed the inhibition of photosynthetic electron flow by ametryn within the leaf tissue. Nitrate-grown, ametryn-treated plants accumulated nitrite and, after 10 days were the only plants that were completely desiccated and dead. Ammonia- and zero-nitrogen, ametryn-treated plants did not accumulate nitrite, were only partially chlorotic after the 10-day period, and were still living. Low levels of NO(X) (NO2 and/or NO) emissions were demonstrated by nitrate-grown ametryn-treated plants.  相似文献   

6.
生长素类除草剂二氯喹啉酸在我国使用了20多年,目前,稻田稗草对二氯喹啉酸产生了抗性,抗二氯喹啉酸稗草逐渐成为我国南北稻区的防除难题。稗草抗二氯喹啉酸机理比较复杂,从稗草感知二氯喹啉酸到产生氰化物的过程是通过生长素信号通路到乙烯信号通路传导的,期间发生了复杂的基因调控和相关酶的从头合成。最新研究认为,稗草主要通过提高氰化物解毒酶——氰丙氨酸合成酶(β-CAS)的活性和控制有毒氰化物的产量产生抗药性。本文综述了二氯喹啉酸的除草机理与稗草对二氯喹啉酸抗性这两个密切相关问题的研究进展。  相似文献   

7.
Responses of acetolactate synthase (ALS) from grass and broadleaf weed to sulfonylurea (SU) herbicide were compared in relation to the leaf position in a seedling and seedling age. The responses of Echinochloa crus-galli (L.) P. Beauv. and Eclipta prostrata L., dominant grass and broadleaf weed in paddy fields in Korea, respectively, to azimsulfuron were examined. In this study, in vivo ALS assay was used to verify the responsibility of selected weed species at different leaf stages to SU-herbicides. The data from in vivo ALS assay could be used for discriminating the degree of tolerance between weeds showed different susceptibility. In E. crus-galli and E. prostrata there was no apparent relationship between the chlorophyll concentrations and herbicide concentrations treated on leaves. Both in E. crus-galli and E. prostrata, the free amino acid concentrations, however, were increased as herbicide concentration increased in the younger leaves. The free amino acid concentrations were generally higher in older leaves than young leaves and were significantly increased concomitantly with increasing herbicide concentration. The ALS activity was decreased rapidly with higher azimsulfuron rates in old but not senescent leaves compared to juvenile leaves. Generally, ALS activity was less sensitive at the early leaf stage than late leaf stage. The activity of ALS in E. prostrata was highly responsive to application time and more susceptible to the herbicide as compared to E. crus-galli. The highest levels of acetoin were observed in the uppermost and youngest leaf in all species tested.  相似文献   

8.
All living organisms spontaneously generate ultraweak photon emissions, which originate from biochemical reactions in cells. Current research uses the ultraweak photon emissions from organisms as a novel tool to investigate the physiological states of plants. In this study, we found ultraweak photon emissions from leaf segments of rice and several paddy weed species treated with a sulfonylurea herbicide. There is a definite difference in photon emissions among plant species, and rice (Oryza sativa), barnyardgrass (Echinochloa crus-galli) and Cyperus serotinus showed extremely strong enhancement of photon emissions. Photon emissions from these three species treated with sulfonylurea herbicide were suppressed when the leaf segments were treated with the cytochrome P450 monooxygenase (P450) inhibitors, piperonyl butoxide and malathion. These results suggest that P450 inhibitors affect the ultraweak photon emissions from plants.  相似文献   

9.
This study investigated the physiological causes of differences in phytotoxic symptoms shown in barnyardgrass from foliar applications of the herbicides fenoxaprop-P-ethyl and cyhalofop-butyl. When these were applied to the third leaves of the whole plant, the chlorosis and desiccation in the third leaf was greater in fenoxaprop-P-ethyl than cyhalofop-butyl. However, initial growth inhibition of the fourth leaf was greater when using cyhalofop-butyl than when using fenoxaprop-P-ethyl. In the shoot regrowth test, regrowth at five days after treatment (DAT) was smaller in cyhalofop-butyl than in fenoxaprop-P-ethyl; the regrowth at 10 DAT exhibited the reverse trend. The chlorosis (decrease of chlorophylls: carotenoids ratio) in barnyardgrass leaf segments that were floated on herbicide solution was greater in the fenoxaprop-P-ethyl treatment. These results indicate that different herbicidal responses induced by the two herbicides are likely to be related to differential translocation and metabolism. The relatively light chlorosis and desiccation in treated leaves, severe cessation of initial growth (but a lower final herbicidal efficacy in the cyhalofop-butyl treatment) are probably related to its rapid translocation to the meristem region from the treated leaf, followed by faster metabolism. In contrast, the relatively greater chlorosis and desiccation compared to inhibition of initial growth in the fenoxaprop-P-ethyl treatment is likely to be related to its relatively slower translocation and metabolism in the treated leaf.  相似文献   

10.
In the present study, the phytotoxic activity of top-soil applied with thenylchlor [2-chloro- N -(3-methoxy-2-thieny)-2',6'-dimethylacetanilide] on the growth of rice ( Oryza sativa L.) was dependent on the emergence depth in soil but its activity on barnyardgrass ( Echinochloa crus-galli (L.) Beauv. var. formosensis Ohwi) was only slightly affected by the emergence depth. However, the phytotoxic activity on barnyardgrass and rice was similar irrespective of the different emergence depths in its treatment to all soil layers. Thenylchlor treatment to the mesocotyl of barnyardgrass induced significant inhibition of shoot elongation, whereas the treatment to the coronal root only inhibited the coronal elongation without inhibiting shoot elongation. Absorption and translocation of 14C-thenylchlor in barnyardgrass were determined in water culture. The different amounts of radioactivity per plant among the treatments to the underground parts were due to the plant part that came in contact with 14C-thenylchlor. The radioactivity per dry weight was found to be higher in the basal part of the shoot than in its upper part in all treatments to the underground parts. It was suggested that the phytotoxic activity of thenylchlor on the growth of barnyardgrass in soil is induced by its accumulation in the basal part of the shoot through translocation. This primarily occurs after the absorption substantially by the mesocotyl from the herbicide-treated layer and additionally by other underground parts.  相似文献   

11.
P. C. LOLAS 《Weed Research》1980,20(4):239-242
Experiments were conducted in the field, greenhouse, and with leaf disks in test tubes to determine whether the herbicides alachlor, metolachlor, and oryzalin, commonly used for weed control in soybeans [Glycine max (L) Mer.] affect in vivo nitrate reductase activity. Plants in the field, growing in soil treated at the recommended rates were sampled at 30 and 60 days after planting. Plants grown in the greenhouse in pots non-treated and treated at the recommended area rates and at 1/2 and 3/2 times these rates were sampled at 20 and 40 days for chemical assay. In addition plants were grown in the greenhouse and sampled at 30 days for chemical assay after direct addition of the herbicide dilutions to the reagent solutions. No differences, statistically significant according to Duncan's test at the 5% level were revealed between controls and any treatment.  相似文献   

12.
Barnyardgrass (Echinochloa crus-galli (L.) Beauv.), an annual species of the family Poaceae, is a major weed problem in rice-producing countries throughout the globe. Synthetic herbicides can effectively control this grass in rice paddies, but the development of resistant biotypes after the continuous use of the same active ingredients has led to low herbicide efficacy and yield losses. In this review, a summary of resistant-barnyardgrass cases in global rice production is reported based on data from the International Herbicide-Resistant Weed Database. The first case of resistant barnyardgrass in rice paddies was to the photosystem-II inhibitor propanil in the late 1980s. Eighty-five (85) out of 116 cases in the period from 1986 to 2022 refer to resistant barnyardgrass (E. crus-galli var. crus-galli, E. crus-galli var. formosensis and E. crus-galli var. zelayensis) in 16 countries. Barnyardgrass has been found resistant to acetolactate synthase (ALS) inhibitors (34 cases), acetyl-CoA carboxylase (ACCase) inhibitors (23 cases), photosystem-II inhibitors (11 cases), auxin mimics/cellulose biosynthesis inhibitors (9 cases), very long chain fatty acid inhibitors (6 cases), and microtubule assembly inhibitors (1 case). The majority of all resistance cases reported to the active ingredients penoxsulam, bispyribac-sodium, and imazamox (ALS inhibitors), cyhalofop-butyl and fenoxaprop-ethyl (ACCase inhibitors), propanil (photosystem-II inhibitors), and quinclorac (auxin mimics/cellulose biosynthesis inhibitors). Although target-site resistance with specific mutations has been identified, non-target site resistance mainly through herbicide detoxification is also of great concern increasing the chance of multiple herbicide resistance evolution. Rotation of herbicides should be adopted concerning the modes of action used as well as the application methods to mitigate resistance evolution of this weed in rice paddies.  相似文献   

13.
The herbicide diclofop-methyl caused an early and pronounced inhibition of the incorporation of [14C]acetate into leaf lipids of the sensitive plant species maize (Zea may L.), wild oat (Avena fatua L.), and barnyardgrass (Echinochloa crus-galli L.). With an EC50 value of approximately 10?7M inhibition was already apparent 0.5–4 hr after herbicide application. The fatty acid biosynthesis of tolerant bean (Phaseolus vulgaris L.), sugar beet (Beta vulgaris L.), and soybean (Glycine max L.) was not affected, with one exception [wheat (Triticum aestivum L.) belongs to the more tolerant species]; the inhibition of fatty acid biosynthesis, however, was in the same order of magnitude as in sensitive plants. More detailed studies showed that in wheat a recovery from inhibition of fatty acid biosynthesis occurred. Four days after herbicide application (0.18 kg diclofop-methyl/ha) in wheat normal fatty acid biosynthesis was restored, whereas in sensitive maize a 60% inhibition was maintained over the whole experimental period (8 days). The results support the view that tolerance of wheat to diclofop-methyl is based on its inactivation in leaves, whereas the tolerance of dicotyledonous species may probably lie at the level of the site of action of diclofop-methyl. In experiments with intact leaves, the inhibition of fatty acid biosynthesis resulted in an enhanced flow of [14C]acetate into organic acids and amino acids. This effect, however, was not always reproducible in experiments with leaf pieces or isolated root tips.  相似文献   

14.
The independent modes of action of diuron and atrazine on the photochemical activities of chloroplasts (In vivo and in vitro) from the leaves of crop plants Pisum sativum and Pennisetum typhoides and the weeds Amaranthus viridis and Cyperus rotundus were investigated. Hill reaction activity (DCPIP photoreduction) of in vivo chloroplasts (chloroplasts isolated from herbicide-sprayed plants) was unaffected by treatment at sublethal or intermediate levels of diuron or atrazine while that of in vitro chloroplasts (chloroplasts incubated in the required herbicidal concentration) was severely inhibited. The ferricyanide catalyzed noncyclic photophosphorylation was markedly reduced in both the in vivo and in vitro chloroplast systems. N-Methyl phenozonium sulfate (PMS)-mediated cyclic photophosphorylation was inhibited in the in vivo system while a pronounced enhancement of activity was noticed in the in vitro chloroplasts. The rate of NADP+ photoreduction was severely inhibited in the in vitro chloroplasts. The unaffected in the in vivo system. The herbicidal effects on the photoreactions of isolated chloroplasts were compared with chloroplasts isolated from herbicide-sprayed plants.  相似文献   

15.
A series of experiments was conducted in the laboratory and greenhouse of the Subtropical Field Science Center, University of the Ryukyus, Japan, from April to October 2015 to assess the allelopathic potential of 50 indigenous Bangladeshi rice varieties by using the donor–receiver bioassay, equal compartment agar method (ECAM), plant residue extract method and pot culture method. Lettuce (Lactuca sativa L.), cress (Lepidium sativum L.), radish (Raphanus sativus L.), barnyard grass (Echinochloa crus‐galli L. Beauv.) and jungle rice (Echinochloa colona L.) were used as the test plants. The highest inhibition effect was given by Boterswar, while the stimulating effect was given by Kartikbalam and Panbira in the donor–receiver bioassay and ECAM tests. Boterswar, Goria, Biron and Kartiksail were selected as the highest allelopathic‐potential varieties by the donor–receiver bioassay and ECAM. In the methanol extract test, Boterswar gave the strongest inhibitory effect on both barnyard grass and jungle rice, while Kartiksail gave the highest inhibitory effect on the jungle rice shoot. The growth parameters and total dry matter of barnyard grass in the greenhouse pot experiment were significantly reduced as a result of the application of aqueous extracts of the selected rice varieties, which was similar to the results of the laboratory experiments. The varieties of Boterswar, Goria, Biron and Kartiksail were selected as the most allelopathic among the 50 indigenous Bangladeshi rice varieties. These rice varieties could be used for the isolation and identification of allelochemicals and to further develop new varieties that are tolerant to weeds.  相似文献   

16.
在旱秧田、水秧田、旱直播田和水直播田的试验中,播前施用五氯酚钠,每公顷5—20公斤,除草效果不够良好。但在插秧本田的试验中,插前每公顷施用五氯酚钠15—30公厅对防除稗草(Echinochloa crusgalli (L.) Beauv.)和球穗莎草(Cyperus globosus All.)的效果极为良好。以在插秧前一天,每公顷施用30公斤效果最好,对稗草和球穗莎草的防除效果分别达到92.7%和79.6%。插后处理,每公顷施用五氯酚钠15公斤,效果也较好。另外的试验,观察了五氯酚钠不同剂型:颗粒剂、混土、溶液等的防除效果。防除稗草用颗粒剂和混土处理要优于溶液处理;防除球穗莎草则以溶液处理为最好。各处理对水稻均无药害,所有用五氧酚钠处理区的产量均高于不除草区,但较两次人工除草的为低。本文讨论了在秧田和直播田用五氯酚钠防除稗草效果较差的原因。  相似文献   

17.
A new, easy, rapid and relatively inexpensive method using microscopy has been developed for the detection of herbicide effects in leaves of grass weed species displaying no visual signs of damage. The method has potential to be used as a tool to indicate future death of grass species due to herbicide exposure by observing phytochemical effects, i.e. early-warning effects. In the present study, Apera spica-venti (L.) Beauv., Bromus hordeaceus L., Alopecurus myosuroides Huds., Lolium perenne L. and Poa annua L. were exposed to lethal rates of four herbicides with different mode of action. The herbicides investigated were the thiocarbamate: prosulfocarb, the sulfonylurea: iodosulfuron, the aryloxyphenoxypropionate: fenoxaprop-P-ethyl and the organophosphate glyphosate. Autofluorescence of leaves was studied under a microscope using ultraviolet and blue light. The fluorescence of leaves treated to enhance flavonoids was also examined. To confirm the results, microspectrofluorometry was performed. Effects indicating future death of the grasses were observed in visually healthy leaves following treatment with prosulfocarb, glyphosate and iodosulfuron. No changes were detected following treatment with fenoxaprop-P-ethyl. After exposure to glyphosate or iodosulfuron, changes in the content of flavonoids and other compounds with a conjugation system and rigid structure and a decrease in the content of chlorophyll were detected in the leaves. Prosulfocarb treatment resulted in changes in the content of flavonoids and other compounds with a conjugation system and rigid structure and an increase in the content of chlorophyll in the leaves. The results obtained from microspectrofluorometry indicated that exposure to prosulfocarb caused a reduction in the flavonoids quercetin, naringenin and/or naringin.  相似文献   

18.
The present study investigated the arsenic (As) remediation potential of barnyard grass (Echinochloa crus‐galli L. Beauv. var. formosensis Ohwi), with a special focus on the behavior of As in the soil in comparison with rice (Oryza sativa L. cv. Nipponbare). For both plants, very little growth inhibition was observed in the As‐contaminated soil. The amount of As in the soil was reduced by the plant's uptake and the level of As in the soil water from the rice‐growing pots was remarkably lower than that in the plant‐free soil water. In the soil with the barnyard grass, the amount of As in the soil water was higher than that in the plant‐free soil water, but the amount of As in the soil and the amount of As that was adsorbed on the soil solid were reduced by the plant's uptake. At the highest As level in the soil (100 mg kg?1), 249.60 and 101.26 µg As pot?1 were taken up by the rice shoot and barnyard grass shoot, respectively, and total amounts of 1468.65 and 1060.57 µg As pot?1 were taken up by the barnyard grass and rice seedlings, respectively. At the same As level in the soil, the As concentrations were 14.99 and 37.76 µg g?1 in the shoot of barnyard grass and rice, respectively, and 486.61 and 339.32 µg g?1 in the root of barnyard grass and rice, respectively. Barnyard grass took up more As than rice, but the As concentration in the shoot of barnyard grass was lower than that in the shoot of rice. A considerable amount of As was taken up by both barnyard grass and rice, suggesting that the plant species have the potential to remediate As‐contaminated soil.  相似文献   

19.
The influence of four different wetting agents on the foliar retention, uptake and herbicidal activity of the glutamine synthetase inhibitor, glufosinate, was examined in growth-chamber experiments on barley (Hordeum vulgare L. cv Roland) and barnyard grass (Echinochloa crus-galli (L.) P.B.) as test species. The non-formulated monoammomum salt, glufosinate-ammonium, was applied as a spray, either alone or mixed with a wetting agent. The dose rates of herbicide and wetting agent were 0.5 g a.i. litre?1 and 2.0 g litre?1, respectively, on barnyard grass, and 2.0 g a.i. litre?1 and 60 g litre?1, respectively, on barley. Herbicide damage, rated 10 days after spraying, was greatest when glufosinate was used with a sodium C12/C14-alcohol-diglycolether sulfate (FAEO-sulfate) and least with polyoxyethylene (POE)(8) tridecyl ether; intermediate effectiveness was obtained with a combination of herbicide and a POE(15) tridecyl ether or POE(15)-tallow amine. The activity of the target enzyme, glutamine synthetase, measured 2 h after spraying, was reduced most when FAEO-sulfate was present and least with POE(8) tridecyl ether. The behaviour of the glufosinate wetting agent solutions on plant foliage was analysed by measurements of spray retention, droplet contact angles and foliar uptake of [14C]glufosinate. The results led, for both grass species, to the conclusion that differential ability of the wetting agents to enhance the permeation of glufosinate from the leaf surface deposit into the leaf tissue was the main factor responsible for the differences in herbicidal effectiveness of the glufosinate/wetting agent combinations used in this study.  相似文献   

20.
We compared photosynthesis and growth of Zea mays L (corn) and four weed species, Setaria viridis (L) Beauv (green foxtail), Echinochloa crus-galli (L) Beauv (barnyardgrass), Abutilon theophrasti Medic (velvetleaf), and Amaranthus retroflexus L (redroot pigweed), following foliar applications with atrazine, mesotrione, or a combination of atrazine and mesotrione in two greenhouse experiments. Plant responses to the three herbicide treatments were compared with responses of untreated plants (control). Photosynthesis on day 14 and dry mass of Z mays was not reduced by any of the herbicide treatments. Photosynthesis and dry mass of E crus-galli, A retroflexus and A theophrasti were significantly reduced by mesotrione and atrazine alone and in combination. Photosynthesis on day 14 and dry mass of large Sviridis plants were not suppressed by either herbicide applied alone. The mesotrione plus atrazine treatment was the most effective treatment for grass weed control because plants did not regain photosynthetic capacity and had significantly lower dry mass. Shoot dry mass of broadleaf weeds was significantly reduced by all three herbicide treatments, except for A retroflexus treated with mesotrione alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号