首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  涛等 《山东林业科技》2014,(1):99-102
作为环境因子,风与树木的关系较其他因子复杂,树木对风胁迫的响应与适应是植物逆境生理生态学研究的热点和难点。本文综述了不同叶形树种叶片气体交换对风胁迫的响应差异,总结发现风对不同叶形树种叶片气体交换影响的研究结论差异较大,有的甚至截然相反,表明了不同叶形树种叶片气体交换对风胁迫响应的复杂性。同时分析了由叶形引起的微环境、边界层导度和理化特征对叶片气孔交换的影响。  相似文献   

2.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

3.
Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.  相似文献   

4.
We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.  相似文献   

5.
Reeves I  Emery RJ 《Tree physiology》2007,27(11):1635-1645
Seasonal patterns of cytokinins (CKs) and microclimate were examined in the upper, middle and lower canopy layers of mature Acer saccharum Marsh. (sugar maple) trees to elucidate the potential role of CKs in the mediation of gas exchange. The upper canopy showed a distinctly dissimilar microclimate from the middle and lower canopy layers with higher photosynthetically active radiation and wind speed, but showed no corresponding differences in transpiration (E) or stomatal conductance (g(s)). Although E and g(s) tended to be higher in the upper canopy than in the middle and lower canopies, the differences were not significant, indicating regulation beyond the passive response to changes in microclimate. The upper canopy accumulated significantly higher concentrations of CKs, predominantly as ribosides, and all canopy layers showed distinct seasonal patterns in CK profiles. Multiple regression models showed significant relationships between both g(s) and E and foliar CK concentration, although these relationships varied among canopy layers. The relationships were strongest in the middle and lower canopy layers where there was less fluctuation in leaf water status and less variability in abiotic variables. The relationships between gas exchange parameters and leaf CK concentration began to decouple near the end of the growing season as foliar phytohormone concentrations changed with the approach of dormancy.  相似文献   

6.
Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (P(n)) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher P(n) than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf P(n) inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf P(n) was significantly higher in the morning than later during the day. This reduction in leaf P(n) is generally attributed to stomatal closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf P(n) were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO(2) emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 micromol m(-2) s(-1)). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon requirements at PPF values commonly experienced in the field (200 to 500 micromol m(-2) s(-1)).  相似文献   

7.
Relationships between CO(2) assimilation at light saturation (A(max)), nitrogen (N) content and weight per unit area (W(A)) were studied in leaves grown with contrasting irradiances (outer canopy versus inner canopy) and N supply rates in field-grown nectarine trees Prunus persica L. Batsch. cv. Fantasia. Both A(max) and N content per unit leaf area (N(A)) were linearly correlated to W(A), but leaves in the high-N treatment had higher N(A) and A(max) for the same value of W(A) than leaves in the low-N treatment. The curvilinear relationship between photosynthesis and total leaf N was independent of treatments, both when expressed per unit leaf area A(maxA) and N(A)) and per unit leaf weight (A(maxW) and N(W)), but the relationship was stronger when data were expressed on a leaf area basis. Both A(maxA) and N(A) were higher for outer canopy leaves than for inner canopy leaves and A(maxW) and N(W) were higher for leaves in the high-N treatment than for leaves in the low-N treatment. The relationship between A(max) and N resulted in a similar photosynthetic nitrogen-use efficiency at light saturation (A(max)NUE) for both N and light treatments. Photosynthetic nitrogen-use efficiency was similar among treatments throughout the whole light response curve of photosynthesis. Leaves developed in shade conditions did not show higher N-use efficiency at low irradiance. At any intercellular CO(2) partial pressure (C(i)), photosynthetic CO(2) response curves were higher for outer canopy leaves and, within each light treatment, were higher for the high-N treatments than for the low-N treatments. Consequently, most of the differences among treatments disappeared when photosynthesis was expressed per unit N. However, slightly higher assimilation rates per unit N were found for outer canopy leaves compared with inner canopy leaves, in both N treatments. Because higher daily irradiance within the canopies of the low-N trees more than compensated for the lower photosynthetic performances of these leaves compared to the leaves of high-N trees, daily carbon gain (and N-use efficiency on a daily assimilation basis) per leaf was higher for the low-N treatment than for the high-N treatment in both outer and inner canopy leaves.  相似文献   

8.
Photosynthetic rate, nitrogen concentration and morphological properties of canopy leaves were studied in 18 trees, comprising five dipterocarp species, in a tropical rain forest in Sarawak, Malaysia. Photosynthetic rate at light saturation (Pmax) differed significantly across species, varying from 7 to 18 micro mol m(-2) s(-1). Leaf nitrogen concentration and morphological properties, such as leaf blade and palisade layer thickness, leaf mass per area (LMA) and surface area of mesophyll cells per unit leaf area (Ames/A), also varied significantly across species. Among the relationships with leaf characteristics, Pmax had the strongest correlation with leaf mesophyll parameters, such as palisade cell layer thickness (r2 = 0.76, P < 0.001) and Ames/A (r2 = 0.73, P < 0.001). Leaf nitrogen concentration and Pmax per unit area also had a significant but weaker correlation (r2 = 0.46, P < 0.01), whereas Pmax had no correlation, or only weakly significant correlations, with leaf blade thickness and LMA. Shorea beccariana Burck, which had the highest P(max) of the species studied, also had the thickest palisade layer, with up to five or more layers. We conclude that interspecific variation in photosynthetic capacity in tropical rain forest canopies is influenced more by leaf mesophyll structure than by leaf thickness, LMA or leaf nitrogen concentration.  相似文献   

9.
We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.  相似文献   

10.
Kosugi Y  Matsuo N 《Tree physiology》2006,26(9):1173-1184
Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.  相似文献   

11.
Cottonwoods (Populus spp.) are dioecious phreatophytes of hydrological and ecological importance in riparian woodlands throughout the Northern Hemisphere. In streamside zones of southern Alberta, groundwater and soil water typically decline between May and September. To understand how narrowleaf cottonwoods (Populus angustifolia James) are adapted to this seasonal decrease in water availability, we measured photosynthetic gas exchange, leaf reflectance, chlorophyll fluorescence and stable carbon isotope composition (delta(13)C) in trees growing in the Oldman River valley of southern Alberta during the 2006 growth season. Accompanying the seasonal recession in river flow, groundwater table depth (Z(gw)) declined by 1.6 m, but neither mean daily light-saturated net photosynthetic rate (A(max)) nor stomatal conductance (g(s)) was correlated with this change. Both A(max) and g(s) followed a parabolic seasonal pattern, with July 24 maxima of 15.8 micromol m(-2) s(-1) and 559 mmol m(-2) s(-1), respectively. The early summer rise in A(max) was related to an increase in the chlorophyll pool during leaf development. Peak A(max) coincided with the maximum quantum efficiency of Photosystem II (F(v)/F(m)), chlorophyll index (CI) and scaled photochemical reflectance index (sPRI), but occurred one month after maximum volumetric soil water (theta(v)) and minimum Z(gw). In late summer, A(max) decreased by 30-40% from maximum values, in weak correlation with theta(v) (r(2) = 0.50). Groundwater availability limited late-season water stress, so that there was little variation in mean daily transpiration (E). Decreasing leaf nitrogen (% dry mass), CI, F(v)/F(m) and normalized difference vegetation index (NDVI) were also consistent with leaf aging effects. There was a strong correlation between A(max) and g(s) (r(2) = 0.89), so that photosynthetic water-use efficiency (WUE; A(max)/E) decreased logarithmically with increasing vapor pressure deficit in both males (r(2) = 0.75) and females (r(2) = 0.95). The male:female ratio was unequal (2:1, chi(2) = 16.5, P < 0.001) at the study site, but we found no significant between-sex differences in photosynthetic gas exchange, leaf reflectance or chlorophyll fluorescence that might explain the unequal ratio. Females tended to display lower NDVI than males (P = 0.07), but mean WUE did not differ significantly between males and females (2.1 +/- 0.2 versus 2.5 +/- 0.2 mmol mol(-1)), and delta(13)C remained in the -28.8 to -29.3 per thousand range throughout the growth season, in both sexes. These results demonstrate changes in photosynthetic and water-use characteristics that collectively enable vigorous growth throughout the season, despite seasonal changes in water supply and demand.  相似文献   

12.
Solari LI  Johnson S  DeJong TM 《Tree physiology》2006,26(10):1333-1341
We investigated relationships between tree water status, vegetative growth and leaf gas exchange of peach trees growing on different rootstocks under field conditions. Tree water status was manipulated by partially covering (0, approximately 30 and approximately 60%) the tree canopies on individual days and then evaluating the effects of tree water status on vegetative growth and leaf gas exchange. Early morning stem water potentials were approximately -0.4 MPa for trees in all treatments, but mean midday values ranged from -1.1 to -1.7 MPa depending on rootstock and canopy coverage treatment. Relative shoot extension growth rate, leaf conductance, transpiration rate and net CO2 exchange rate differed significantly among trees in the different rootstocks and canopy coverage treatments. Shoot extension growth rate, leaf conductance, leaf transpiration rate and leaf net CO2 exchange rate were linearly correlated with midday stem water potential. These relationships were independent of the rootstock and canopy coverage treatments, indicating that tree water relations are probably directly involved in the mechanism that imparts vegetative growth control by selected peach rootstocks.  相似文献   

13.
Intraspecific variability in morphological and ecophysiological leaf traits might be theorized to be present in declining populations,since they seem to be exposed to stress and plasticity could be advantageous.Here we focused on declining Persian oaks(Quercus brantii Lindl.var.persica(Jaub and Spach)Zohary)in the Zagros Mountains of western Iran,representing the most important tree species of this region.We selected trees with contrasting crown dieback,from healthy to severely defoliated,to investigate the relationships between canopy dieback and leaf morphology,water content and pigments.We also measured esterase and peroxidase,as enzymatic antioxidants and indicators of contrasting genotypes.Trees showing moderate to severe defoliation showed higher leaf mass area(LMA),reduced relative water content(RWC),and lower stomatal density(SD).Increasing LMA indicates a more sclerophyllic structure,according to drier conditions.We did not find significant differences in leaf pigments(chlorophyll a and b,and carotenoids)among crown dieback classes,suggesting that Persian oak trees are able to maintain accurate photochemical efficiency,while reduced RWC and SD suggest hydraulic limitations.Our results do not provide a consistent pattern as regards enzymatic antioxidant defense in Persian oak.Morphological leaf traits would be important drivers of future adaptive evolution in Persian oak,leading to smaller and thicker leaves,which have fitness benefits in dry environments.Nonetheless,drought responses may be critically affecting carbon uptake,as photosynthetic compounds are less effectively used in leaves with higher sclerophylly.  相似文献   

14.
We investigated the effects of regulated deficit irrigation (RDI) during the pre-harvest period (kernel-filling stage) on water relations, leaf development and crop yield in mature almond (Prunus dulcis (Mill.) D.A. Webb cv. Cartagenera) trees during a 2-year field experiment. Trees were either irrigated at full-crop evapotranspiration (ETc=100%) (well-irrigated control treatment) or subjected to an RDI treatment that consisted of full irrigation for the full season, except from early June to early August (kernel-filling stage), when 20% ETc was applied. The severity of water stress was characterized by measurements of soil water content, predawn leaf water potential (Psipd) and relative water content (RWC). Stomatal conductance (gs), net CO2 assimilation rate (A), transpiration rate (E), leaf abscission, leaf expansion rate and crop yield were also measured. In both years, Psipd and RWC of well-irrigated trees were maintained above -1.0 MPa and 92%, respectively, whereas the corresponding values for trees in the RDI treatment were -2.37 MPa and 82%. Long-term water stress led to a progressive decline in gs, A and E, with significant reductions after 21 days in the RDI treatment. At the time of maximum stress (48 days after commencement of RDI), A, gs and E were 64, 67 and 56% lower than control values, respectively. High correlations between A, E and gs were observed. Plant water status recovered within 15 days after the resumption of irrigation and was associated with recovery of soil water content. A relatively rapid and complete recovery of A and gs was also observed, although the recovery was slower than for Psipd and RWC. Severe water stress during the kernel-filling stage resulted in premature defoliation (caused by increased leaf abscission) and a reduction in leaf growth rate, which decreased tree leaf area. Although kernel yield was correlated with leaf water potential, RDI caused a nonsignificant 7% reduction in kernel yield and had no effect on kernel size. The RDI treatment also improved water-use efficiency because about 30% less irrigation water was applied in the RDI treatment than in the control treatment. We conclude that high-cropping almonds can be successfully grown in semiarid regions in an RDI regime provided that Psipd is maintained above a threshold value of -2 MPa.  相似文献   

15.
Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO(2) assimilation (A(max)), dark respiration (R(d)) and the proportional change in R(d) per 10 °C change in temperature (Q(10) of R(d)) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. A(max) and R(d) were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of A(max) and R(d) expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in A(max) in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q(10) of R(d) did not differ significantly between leaf cohorts; however, failure to account for distinct R(d) between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in A(max) in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as R(d) and nutrient resorption during senescence. Accounting for leaf age as a source of variation of R(d) improves the estimation of foliar respiratory carbon release at the stand scale.  相似文献   

16.
Populus hybrid TT32 lines produced from 15 treatment tissue culture regimes exhibited somaclonal variation in morphological and gas exchange parameters. Within four years of regeneration, discrete lines showing statistically validated superior, or inferior, growth performance relative to the parental reference clone were identified. Significant differences in the ratio of leaf length/width between treatment lines provided the earliest reliable indicator of the divergence in overall growth performance. Despite discernible variation in leaf phenotype among primary regenerants and secondary propagules within individual lines, the leaf length/width ratio was identified as a potential parameter for predicting growth performance. Its subsequent use led to the recognition of four distinct leaf morphotypes; cordate, ovate, reniform and oval. Two or more of these morphotypes were distributed within each of the original 15 treatment lines. Regrouping the data on the basis of leaf morphotype resulted in a clear segregation of the morphological traits, and revealed differences that were not readily apparent by statistical analysis based on treatment groups. The demonstration of similar relative performances by individual morphotypes with respect to a range of growth and gas exchange parameters confirmed that variation in leaf morphology was indicative of differential photosynthetic performance. Somaclonal variants with a leaf morphology was indicative of differential photosynthetic performance. Somaclonal variants with a leaf morphotype closest to that of the parental line showed the highest overall potential for selection, suggesting that the greatest benefits accrue from a minimal disturbance of the parental leaf phenotype.  相似文献   

17.
Diurnal courses of gas exchange were measured over a 1-year period in fully expanded current-year leaves in the upper (sun-exposed, 18 m above ground) and the lower (shaded, 12 m above ground) canopy of Laurus azorica (Seub.) Franco, a major canopy species of the Canarian laurel forest in Tenerife, Canary Islands, Spain. Laurus azorica exhibited high leaf plasticity in gas exchange characteristics, with a maximum carbon assimilation rate (Amax) of shade leaves about 50% that of sun leaves. This difference reflects the high leaf area index (LAI) of the stand and the correspondingly sharp light attenuation with increasing canopy depth. In sun leaves, Amax peaked at about 11 micromol m-2 s-1 and maximum transpiration (E) was about 8 mmol m-2 s-1, which corresponded with a maximum stomatal conductance (gs) of about 650 mmol m-2 s-1. Mean maximum instantaneous water-use efficiency (WUE) was 1.5 mmol mol-1 and the mean maximum A/gs was 20-35 micromol mol-1. Mean minimum internal CO2 concentration (Ci) was 225 micromol mol-1. Although high air vapor pressure deficit (VPD) caused a small decrease in gs, it remained high enough to maintain relatively high A and E. These gas exchange characteristics indicate a non-conservative use of water, which is appropriate for a species subject to droughts that are mild or of short duration. In this respect, Laurus azorica differs from its congener, L. nobilis L., of the Mediterranean region and other shrubs growing in Mediterranean-type climates in California and Chile that have to withstand more severe or more prolonged droughts.  相似文献   

18.
Ishida A  Toma T  M 《Tree physiology》1999,19(2):117-124
We tested the hypothesis that, in tropical pioneer tree species, vertical leaf angle contributes to high carbon gain because it minimizes damage caused by high irradiances. Diurnal changes in leaf gas exchange and chlorophyll fluorescence were measured in east-facing (EL), west-facing (WL) leaves, and in leaves artificially held horizontal (HL) in the uppermost canopy of Macaranga conifera (Zoll.) Muell. Arg. Maximum values of net photosynthetic rate (P(n)) for EL and HL reached 12 &mgr;mol m(-2) s(-1), whereas maximum P(n) for WL was only 6 &mgr;mol m(-2) s(-1). Midday depressions of P(n) and stomatal conductance occurred at high photosynthetic photon flux densities (PPFD), especially for HL. Photosystem II quantum yield (DeltaF/F(m)') of HL for a given PPFD at the leaf surface was lower in the afternoon than in the morning. Values of DeltaF/F(m)' for HL measured at dusk were lower than those measured just before dawn, suggesting that HL suffered from high light and heat load. Variations in the morphology and physiology of the canopy leaves were associated with different light environments, and there was circumstantial evidence of a transitional point at a PPFD of about 20-30% of full sunlight. Maximum P(n) and nitrogen (N) content were higher in upper canopy leaves than in lower canopy leaves, and the differences were mainly associated with differences in lamina thickness. We conclude that the vertical leaf angle and thick lamina of the top canopy leaves contributed to enhance total carbon gain of the whole plant.  相似文献   

19.
Daily variations in net gas exchange, chlorophyll a fluorescence and water relations of mature, sun-acclimated grapefruit (Citrus paradisi Macfady.) and orange (Citrus sinensis L. Osbeck) leaves were determined in tree canopies either shaded with 50% shade screens or left unshaded (sunlit). Mean daily maximum photosynthetic photon flux density (PPFD) under shade varied from 500 to 700 micromol m-2 s-1 and was sufficient to achieve maximum net CO2 assimilation rates (A CO2). Responses of grapefruit and orange leaves to shading were remarkably similar. At midday, on bright clear days, the temperatures of sunlit leaves were 2-6 degrees C above air temperature and 1-4 degrees C above the temperatures of shaded leaves. Although midday depressions of stomatal conductance (gs) and A CO2 were observed in both sunlit and shaded leaves, shaded leaves had lower leaf-to-air vapor pressure differences (D) along with higher gs, A CO2 and leaf water-use efficiency than sunlit leaves. Estimated stomatal limitation to A CO2 was generally less than 25% and did not differ between shaded and sunlit leaves. Leaf intercellular CO2 partial pressure was not altered by shade treatment and did not change substantially with increasing D. Radiation and high temperature stress-induced non-stomatal limitation to A CO2 in sunlit leaves was greater than 40%. Reversible photoinhibition of photosystem II efficiency was more pronounced in sunlit than in shaded leaves. Thus, non-stomatal factors play a major role in regulating A CO2 of citrus leaves during radiation and high temperature stress.  相似文献   

20.
Eight-year-old lychee (Litchi chinensis Sonn.) trees, cv. 'Bengal,' growing in krasnozem soil were subjected to soil water deficit from one month before flowering until harvest by covering the ground with polyethylene sheeting and withholding irrigation. The ratio of daytime stomatal conductance of unirrigated to irrigated trees decreased 20% during the three months of increasing water deficit. Predawn leaf water potentials of irrigated trees averaged about -0.3 MPa throughout the period, whereas they declined progressively to -0.9 MPa in unirrigated trees. Minimum daytime leaf water potential in the unirrigated trees decreased from -1.0 to -1.1 MPa at the beginning of the drought period to -2.2 to -2.4 MPa after three months, and calculated whole-plant conductance did not change with decreasing availability of water. The calculated soil-root water potential declined to less than -1.0 MPa in unirrigated trees. Capacitance effects on the relationship between leaf water potential and transpiration were significant only at low transpiration rates. Although unirrigated trees reduced soil water content at 0-30 cm depths to an equivalent water potential of -1.0 MPa, fruit shedding was significantly less than in irrigated trees. Water deficit had no effect on the fresh weight of pericarp, but caused increased seed size and decreased fresh weight of flesh, resulting in fruit from unirrigated trees being 16% lower in total fresh weight per fruit than fruit from irrigated trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号