首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
硝态氮供应下植物侧根生长发育的响应机制   总被引:5,自引:2,他引:3  
旱地土壤上硝态氮是作物吸收和利用的主要无机氮形态。硝态氮不仅是植物营养的主要氮源,而且还可以作为信号物质调节植物根系生长发育。为适应土壤中硝态氮非均衡供应,植物侧根发育往往呈现出可塑性反应。本文综述了植物侧根生长发育对硝态氮供应的响应机制。在拟南芥、玉米、大麦等植物上研究表明,硝态氮对植物侧根发育具有双向调节途径,即:1)局部供应硝态氮,硝态氮自身作为信号物质通过信号传导通路发生作用,对侧根具有伸长的刺激效应,硝态氮转运蛋白AtNRT1.1作用于转录因子ANR1的上游,ANR1的转录调节侧根发育;2)植物组织中高浓度的硝态氮对侧根分裂组织活动具有抑制效应,植物激素如生长素和脱落酸可能参与其中的信号传导过程。近些年来研究发现小RNA也参与调控硝态氮供应下植物侧根发育。  相似文献   

2.
植物体对硝态氮的吸收转运机制研究进展   总被引:5,自引:2,他引:3  
硝态氮是高等植物重要的氮素营养,直接影响植物的生长。植物根系吸收硝态氮并向地上部转运的机制一直是研究者十分关注的问题。近几年的深入研究使得新的现象与结论被揭示,推动了我们对植物体吸收转运硝态氮生理与分子机制的认识。本文综述了近年来国内外关于植物硝态氮吸收转运的生理及分子机制的相关研究结果。通过整理归类植物硝酸盐吸收相关的生理学数据,介绍了影响植物吸收硝态氮的各种因素。基于膜转运体在植物硝态氮吸收转运过程中发挥的重要作用,本文还重点介绍参与该过程的四大基因家族的成员及功能,即硝酸盐转运体1(NRT1)、硝酸盐转运体2(NRT2)、氯离子通道(CLC)和s型阴离子通道(SLAC),以期为后续研究者提供一个较为全面的理论依据。  相似文献   

3.
王波  赖涛  贾莉君  沈其荣 《土壤学报》2008,45(3):555-560
蔬菜中硝酸盐因其对人类健康有不利影响而受到广泛的关注[1~4]。沈其荣等[5]认为植物液泡作为临时的无机离子和养分离子的储存库,在维持细胞质离子浓度的动态稳定的过程中有着很重要的作用。硝态氮是液泡中储存大量离子的成分之一,当外源硝态氮供应不足时,储存于液泡中的硝态氮能被调配出来维持细胞质中硝酸盐浓度的稳定而满足植物对氮的需求。同样也有人提出不同的观点,认为细胞液泡内的硝酸盐离子是不容易被植物再调动的[5],植物在细胞质中同化硝酸盐离子的速度远远超过了硝酸盐离子从液泡中释放进而被植物再利用的速率,仅仅通过调动液泡内的硝酸盐是不能够维持植物的正常生长的。我们先前在水稻、菠菜、小白菜、番茄、生菜等作  相似文献   

4.
赵丽丽  王小利  陈超  董瑞 《核农学报》2020,34(2):240-246
为探究高羊茅(Festuca arundinacea)硝态氮转运蛋白基因(NRT1.1)的表达模式,本研究以黔草1号高羊茅为试验材料,采用RACE和RT-qPCR技术对高羊茅NRT1.1基因的cDNA全长序列进行扩增,并对其不同胁迫处理下的表达情况进行分析。生物信息学分析发现,高羊茅NRT1.1的理论等电点为4.81,平均亲小性为0.919,含有约32.63% α-螺旋、7.63% β-转角和53.73%不规则卷曲。结果表明,NRT1.1基因的cDNA序列全长为2 328 bp,编码606个氨基酸,预测蛋白质分子量为193.9 kDa,且高羊茅NRT1.1与黑麦草NRT1.1氨基酸序列的相似性最高。RT-qPCR表达分析发现,高羊茅叶片NRT1.1受低氮处理0.5~1 h时表达量达到峰值,显著(P< 0.05)高于对照组;在干旱和热处理下,NRT1.1表达量分别在6 h和12 h时达到峰值,且显著(P< 0.05)高于对照组;在盐处理下,仅在6 h时NRT1.1表达量高于对照组,其余时间均受显著(P< 0.05)抑制。本研究结果为解析高羊茅NRT1.1基因的表达模式提供了分子生物学基础。  相似文献   

5.
作物硝态氮转运利用与氮素利用效率的关系   总被引:1,自引:0,他引:1  
【目的】 铵态氮(NH4+)和硝态氮(NO3-)是作物氮素吸收利用的主要形态,旱作作物NO3-的累积与利用是氮素营养研究的主要组成部分,关系到理解作物NO3-的转运和利用关系及作物体内NO3-含量和氮素利用效率(nitrogen utilization efficiency,NUE)高低的问题。主要进展 作物吸收的NO3-分为被作物直接利用、分泌到根外、储存在液泡和向地上部分运输四种途径。其中NO3-短途分配(液泡NO3-分配)和长途转运(地上、地下部NO3-的转运)共同调控着NO3-的利用效率,进而影响作物的NUE。液泡NO3-不能被作物直接利用,只有分配到液泡外细胞质中的NO3-才能被作物迅速代谢和利用;同时有更大比例的NO3-分配到地上部分,使得作物可以充分利用太阳光能进行NO3-代谢和能量转换,从而提高了作物的NUE。此外,液泡对NO3-起到分隔作用,储存在液泡中的NO3-并不能对NO3-转运相关基因(如NR、NO3-长途转运基因NRT1.5和NRT1.8)起到诱导效果;只有分配在液泡外原生质体中的NO3-才能对NO3-诱导基因产生强烈的诱导。因此,作物细胞原生质体中液泡内、外NO3-的分配不仅影响了NO3-的同化利用,而且直接影响了NO3-的长途转运。展望 本文对植物原生质体中液泡内、外NO3-的短途分配和地上、地下部间NO3-的长途转运机制进行了总结,为进一步深入研究作物地上、地下部NO3-长途转运和液泡NO3-短途分配的关系,以及更好地揭示作物NUE对NO3-转运和利用的响应机理提供参考。  相似文献   

6.
水稻磷素吸收与转运分子机制研究进展   总被引:6,自引:4,他引:2  
磷素是植物体内重要的大量元素之一,其含量约占植物干重的 0.2%。由于磷元素作为许多重要生物大分子的关键组分,且参与植物体内许多的生理生化反应,因此植物的生长和发育都离不开磷元素。植物在长期的进化过程中,形成了一套高效地吸收和利用磷素的分子调控机制。本文将重点阐述水稻中无机磷从土壤吸收进根系再转运到地上部并进行分配的分子机制,并对今后的水稻磷素吸收和转运的研究重点进行展望。水稻根系主要通过定位在细胞膜上的磷酸盐转运体 (Phosphate Transporter1,PHT1) 吸收土壤中无机磷。当无机磷被吸收进入根系细胞内部后,通过质外体和共质体两种养分的运输途径,将其运输到根中维管束,并通过PHO1 将无机磷由根系加载到地上部。然后水稻根据其地上部不同组织器官对无机磷的需求进行分配,而多余的无机磷将储存在液泡内,维持细胞内无机磷的平衡。目前对磷酸盐转运体吸收磷素的分子机制研究较为清楚,但对于磷素在植物体内的储存、分配和再利用过程的机制还研究较少。液泡作为水稻无机磷储存的主要部位,对于维持细胞内无机磷的平衡尤其重要;节是水稻营养元素 (包括磷素) 在地上部进行分配的重要部位。但目前对于定位于液泡膜上和节上的磷酸盐转运体的机制研究较少。因此,未来挖掘与解析水稻体内负责磷素储存、分配和再利用的磷酸盐转运体及其作用机制,能为培育磷高效利用的水稻提供新的依据。  相似文献   

7.
氮素是植物生长发育必不可少的大量元素之一,土壤中的硝酸盐是植物获取氮素的主要来源。植物对硝酸盐的吸收与利用是通过一个精密的信号调控网络来实现的,其中硝酸盐转运蛋白在植物体内硝酸盐的运输和分配过程中发挥着重要的作用。通过对氮素利用途径中不同硝酸盐转运基因在硝酸盐的吸收、转运、同化和再利用进行功能鉴定,可以更好地解析硝酸盐在植物体内的吸收机制,从而找到提高植物氮素利用效率的关键环节。因此,综述了植物硝酸盐转运蛋白对土壤中硝酸盐的响应和信号的传递;硝酸盐转运蛋白在植株体内参与硝酸盐的转运、储存和再利用的功能以及硝酸盐在植物育种中的应用,并从对硝酸盐转运基因的单碱基编辑、关键结构域的改造和基因功能鉴定等方面进行展望。综述了有利于揭示硝酸盐转运基因的功能,拓宽植物吸收转运硝酸盐的分子机制认识,为提高植物氮素利用效率、培育氮高效利用农作物品种提供理论支撑。  相似文献   

8.
氮(N)是植物生长发育需要量最大的矿质营养元素,也是作物产量的限制因子。硝态氮(NO3--N)是植物吸收利用氮素的主要形态之一。目前,植物中已报道4个基因家族(NPF、NRT2、CLC和SLAC1/SLAH)参与硝态氮的吸收和利用,其中NPF基因家族成员数量众多且功能多样化,近年来获得较多关注和深入研究。模式植物拟南芥和主要粮食作物水稻、玉米和小麦中,分别含有53、93、79和331个NPF基因。拟南芥NPF家族中已有超过一半成员(31/53)的生物学功能被解析,粮食作物水稻中NPF基因功能亦有较多报道。研究表明,NPF基因广泛参与了植物对氮素的吸收及其调控、转运、分配/再分配等过程,一些成员对于改良和提高作物氮素利用率(nitrogen use efficiency, NUE)具有重要作用。因此,从氮素进入植物体及其在植物体内流动的层面出发,发掘具有重要功能的候选NPF基因,对于解析植物利用氮素的分子机制及其遗传改良具有重要意义。本文综述了模式植物拟南芥以及粮食作物中已报道的NPF基因在氮素吸收和利用中的生物学功能。目前粮食作物玉米中仅有4...  相似文献   

9.
  【目的】  磷素作为植物生长发育过程中必需的大量营养元素之一,因其在土壤中的难移动性使得根系对磷的获取有限。植物为满足其生长对磷素的需求,已经进化出一系列相应的机制提高对内部磷的再利用,以减少磷肥投入,保证产量的同时实现环境友好。本文以植物内部磷的高效利用为核心,重点剖析植物有机磷库与无机磷库中磷素的活化再利用的途径,综述释放出的无机磷在不同组织和器官中的转运过程,并对今后深入研究磷再利用的有关方向作出展望。  主要进展  植物体内磷的存在形式主要包括无机磷和有机磷两种。植物吸收的多余无机磷会被暂时储存在液泡中,并在植物缺磷时外流到胞质以满足植物对磷的需求,位于液泡膜的磷酸盐转运蛋白负责无机磷在液泡和胞质之间的分配。存在于核酸和磷脂中的有机磷在磷缺乏时由酶类(核酸酶、磷脂酶和紫色酸性磷酸酶等)水解并释放无机磷以供植物生长需要。植物遭受低磷胁迫,营养器官(老叶等)中活化的无机磷由多种磷酸盐转运蛋白转运到幼叶等新的生长中心被利用,从而显著提高磷的再利用效率。磷转运蛋白(PHTs)通过调控磷向籽粒的运输降低了磷在禾谷类作物籽粒中的积累,提高了磷利用效率,同时降低环境风险。  展望  现阶段的研究较为详细地阐述了植物体内磷素再活化的生理分子机制,但对磷转运功能蛋白参与特定磷转运过程的相关研究仍不够全面,比如液泡磷能调控细胞磷稳态,目前已鉴定得到的与其外排有关的转运蛋白极少,其调控机制也有待深入探索。国内外关于PHT1、PHT2、PHT3和PHT4蛋白如何将磷素从源器官转运到库器官缺乏系统的研究。无机磷库和有机磷库中磷的利用对植物应对缺磷的贡献也鲜有报道。因此,植物体内与磷再活化后转运利用相关的分子生物学调控机理还需进一步研究。  相似文献   

10.
浮萍吸收不同形态氮的动力学特性研究   总被引:23,自引:0,他引:23  
吸收试验结果表明,浮萍(Spirodela oligorrhiza)吸收铵态氮和硝态氮的动力学特性可用M ichaelis-M enten方程来描述。浮萍对铵态氮的亲和力大于对硝态氮的亲和力,证实了浮萍“优先吸收净化铵态氮”的观点。研究还发现,浮萍吸收硝态氮的最大速率大于吸收铵态氮的最大速率,基于浮萍吸收不同形态氮的动力学特性,提出了构建物理作用(增氧工艺)—微生物(硝化作用)—植物(浮萍)复合污水净化体系的见解。  相似文献   

11.
程丽丽  潘樱  林艳  林仕雄  童再康  张俊红 《核农学报》2020,34(11):2435-2443
为探讨低氮胁迫对不同基因型光皮桦(Betula luminifera)生长及生理生化响应特性,本研究采用裂区设计,以光皮桦G49-3、G50-1和优3组培苗为材料,通过水培培养研究其在正常供氮(CK,15 mmol·L-1 $NO_{3}^{-}$)和低氮胁迫(LN,0.03 mmol·L-1 $NO_{3}^{-}$)条件下的苗期生长及生理生化响应。结果表明,低氮胁迫处理21 d后,3个光皮桦基因型的叶绿素含量、株高、地上部干重、地上氮含量和氮积累量均显著降低,其中G49-3降幅最大,G50-1降幅最小;3个光皮桦基因型根冠比、根系总根长、总表面积和平均直径均增加;叶片过氧化物酶(POD)、超氧化物岐化酶(SOD)和硝酸还原酶(NR)活性降低,G50-1降幅最低。实时荧光定量PCR(RT-qPCR)分析表明,相较于CK,低氮胁迫处理下3个光皮桦基因型叶和根中NRT1.1和NRT1.2均下调表达,而NRT2.1在根中上调表达,说明根中NRT2.1在低氮胁迫下的硝酸盐转运过程中发挥主要作用。综合隶属函数分析显示,G50-1平均隶属函数值(0.73)高于优3(0.44)和G49-3(0.34),表明G50-1耐低氮能力最强,而G49-3对低氮胁迫最敏感。本研究结果揭示了光皮桦响应低氮环境的生理机制,同时表明运用常规遗传改良手段筛选和培育耐低氮、氮高效利用的光皮桦良种是可行的。  相似文献   

12.
13.
硝酸钙在土壤中累积导致植物生长异常是温室栽培中常见的问题之一。高量硝酸钙何以会引起生长异常尚不十分清楚。本文从植物对硝酸根和钙的生理反应方面进行了探讨。植物对硝酸根的吸收与还原可引起根表和根细胞质pH上升,诱导植物缺铁,高量硝酸根对根系细胞质膜硝酸还原酶的诱导可引起亚硝酸根在根表形成,抑制根系尤其是根毛的生长和养分的吸收;细胞质膜硝酸还原酶有可能促进氧化锰在根表还原而利于锰在植物中的累积。高量可溶性钙既抑制其他阳离子的吸收,又通过对液泡膜阳离子/H+交换体的诱导,促进钙、锰、锌等离子在液泡中累积,加剧养分缺乏的程度。高硝态氮引起的高细胞质pH和可溶性有机氮含量等等,既可导致缺素症又可致抗病性下降,可能是病害容易发生的生理学原因。控温不好的温室如塑料大棚,昼夜温差大,易加剧细胞质pH的波动,促进离子或溶质在液泡中的累积,易加剧营养失衡,可能是温室生理障碍易发生的环境因素。  相似文献   

14.
Crop productivity relies heavily on nitrogen (N) fertilization. N is an essential macronutrient limiting the growth and development of plants in agriculture. Both organic and inorganic forms of N are metabolized in plants; nitrate and ammonia are common forms of inorganic N that can be metabolized in all plants. In the last 40 years the amount of synthetic N applied to crops has risen dramatically, resulting in significant increases in yield but with considerable impacts on the environment. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a ‘Second Green Revolution’ and research in the field of nitrogen-use efficiency (NUE) has continued to grow. Nitrogen-use efficiency is inherently a complex trait, as each step-including N uptake, translocation, assimilation, and remobilization-is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of present cultivars. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, carbon (C)/N storage and metabolism, signaling and regulation of N metabolism and translocation, remobilization and senescence. In this review, we present the over view of N metabolism, relation of C/N metabolism and future prospects of improving NUE in crops using various complementary approaches.  相似文献   

15.
16.
The plants growing in natural field conditions do not express their full genetic potential of nitrogen (N) utilization due to a limiting availability of N at later stages of growth. Their full potential is likely to manifest under non-limiting nitrogen supply wherein the high nitrate reductase (HNR) and the low nitrate reductase (LNR) genotypes should differ significantly in their N-utilization efficiencies. In a sand culture experiment, using IC 321157 (HNR) and C 306 (LNR) genotypes of Triticum aestivum L. under controlled conditions, 15-day-old plants were collected in triplicate and analyzed for nitrate content, N-metabolizing enzymes and N harvest. Kinetic studies were conducted to obtain the Km and Vmax values for enzymes. The values for nitrate content, activities of the nitrate- and the ammonium- assimilating enzymes, biomass and N harvest were higher in the HNR than in the LNR genotype. The higher affinities of enzymes to their substrates in the HNR genotype indicated a greater potential of this genotype for N utilization under non-limiting N supply with a well-coordinated system of N uptake and assimilation. The study suggests that the N-utilization efficiency of plants can be improved by exploiting their full genetic potential under non-limiting N supply, which may be achieved by synchronizing the supply with demand during late stages of plant growth. It also shows that the enzymes responsible for N assimilation act in a coordinated way, thus necessitating the need of a holistic approach for the study of the N-metabolic pathways.  相似文献   

17.
Barley (Hordeum vulgare L. cv. Martin) plants grown in solution culture, were exposed to increasing cadmium (Cd) concentration (0, 5, 10, 25, 50, and 100 μM) for a duration of 12 days. The sequence of important biochemical steps of nitrate (NO3) assimilation were studied in roots and shoots as a function of external Cd concentration. Cadmium uptake in roots and shoots increased gradually with Cd concentration in the medium. This Cd accumulation lowered substantially root and shoot biomass. The nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NiR, EC 1.6.6.4) activities declined under Cd stress. Concurrently, tissue NO3 contents and xylem sap NO3 concentration were also decreased in Cd‐treated plants. These results suggest that Cd could exert an inhibitory effect on the assimilatory NO3 reducing system (NR and NiR) through a restriction of NO3 availability in the tissues. We therefore examined, in short‐term experiments (12 h), the impact of Cd on NO3 uptake and the two reductases in nitrogen (N)‐starved plants that were pretreated or not with Cd. It was found that Cd induced inhibition of both NO3 uptake and activities of NR and NiR, during NO3 induction period. The possible mechanisms of Cd action on NO3 uptake are proposed. Further, in Cd‐grown plants, the glutamine synthetase (GS, EC 6.3.1.2) showed a decreasing activity both in shoots and roots. However, increasing external Cd concentration resulted in a marked enhancement of glutamate dehydrogenase (NADH‐GDH, EC 1.4.1.2) activity, coupled with elevated levels of ammonium (NH4 in tissues. On the other hand, the total protein content in Cd‐treated plants declined with a progressive and substantial increase of protease activity in the tissues. These findings indicate that under Cd stress the usual pathway of NH4 assimilation (glutamine synthetase/glutamate synthase) can switch to an alternative one (glutamate dehydrogenase). The changes in all parameters investigated were concentration‐dependent and more marked in roots than shoots. The regulation of N absorption and assimilation by Cd in relation to growth and adaptation to stress conditions are discussed.  相似文献   

18.
[目的]硫是植物生长发育所必需的营养元素之一.硫不仅参与半胱氨酸和蛋白质等初生代谢产物的合成,还参与硫代葡萄糖苷、植保素、植物螯合肽、维生素、辅酶A等次生代谢物质的合成.因此,适量的硫供给可促进植物生长发育,提高作物的产量和品质,增强植物耐受生物和非生物胁迫的能力.[主要进展]植物主要通过根系从土壤吸收硫酸盐,硫酸盐在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号