共查询到12条相似文献,搜索用时 89 毫秒
1.
利用鲜肉的近红外光谱中少量特征波长对其pH值进行预测,可以大幅度降低模型复杂性和计算量,对开发无损检测装置, 实施肉品生产加工过程中pH值监测有重要意义。该文通过连续投影算法(SPA)选择特征波长建立简单多元线性回归模型(SPA-MLR),并对比了SPA-MLR模型与全波段(5 000~10 440 cm-1)偏最小二乘回归模型(PLSR)及逐步线性回归(SMLR)、遗传算法(GA)选择特征波长所建模型的性能。结果表明经连续投影算法提取37个特征波长建立的模型,所用变量数仅占全波段的2.6%,校正集相关系数0.870,校正集均方根误差为0.094,验证集相关系数0.892,验证集均方根误差为0.085;性能与经多元散射校正预处理的PLSR模型接近,但采用变量数明显减少,优于逐步线性回归和遗传算法选择特征波长建立的模型,表明该方法可较好的选择特征波长,建立简单的预测模型。 相似文献
2.
基于高光谱技术的霉变稻谷脂肪酸含量无损检测 总被引:1,自引:1,他引:1
脂肪酸含量是表征稻谷霉变信息的重要指标。为了解决传统化学分析法测定稻谷脂肪酸含量有损、费时、低效等问题,该文研究应用高光谱技术实施霉变稻谷脂肪酸含量无损检测的方法。研究选取人工制备的不同霉变时期的稻谷样本作为研究对象,利用高光谱仪结合理化试验方法测定其相应的光谱信息和脂肪酸含量,运用移动窗口平滑法(savitzky-golay,SG)和一阶微分(first derivation,FD)对光谱数据进行预处理,采用连续投影算法(successive projections algorithm,SPA)提取反映稻谷脂肪酸含量变化的光谱特征波段,应用回归分析法建立基于特征波段光谱反射值的稻谷脂肪酸含量预测模型,对比分析不同光谱预处理方法的模型预测效果。研究结果显示,原始光谱数据通过SG平滑和一阶微分处理后,分别经SPA方法优选出了14和10个光谱特征波段;采用SG-SPA-MLR(multivariable linear regression)方法构建的模型质量和稻谷脂肪酸含量预测效果均优于FD-SPA-MLR模型,校正时其内部交叉验证的相关系数RCV和均方根误差RMSECV分别为0.9419、11.9646 mg/(100 g);预测时其外部验证的相关系数RP和均方根误差RMSEP分别为0.9366、12.3550 mg/(100 g),模型对不同霉变时期的稻谷脂肪酸含量均具有较强的预测能力。研究表明,利用高光谱技术对稻谷脂肪酸含量实施无损检测具有可行性,可为将来快速检测稻谷霉变提供参考依据。 相似文献
3.
种子的筛选和鉴别是农业育种过程中的关键环节。该文基于近红外高光谱成像技术(874~1 734 nm)结合化学计量学方法以及图像处理技术实现杂交稻种的品系鉴别及可视化预测。采集了3类不同品系共2 700粒杂交水稻的高光谱图像,用SPXY算法,按照2∶1的比例划分建模集和预测集。基于水稻样本的光谱特征,采用主成分分析(PCA)方法初步探究3类样本的可分性。采用连续投影算法(SPA),提取出7个特征波长:985.08、1 106、1 203.55、1 399.04、1 463.19、1 601.81、1 645.82 nm。基于特征波长和全波段光谱,建立了偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型。试验结果表明,所建模型判别效果较好,识别正确率均达到了90%以上,其中,SVM模型的判别效果优于PLS-DA模型,基于全谱的判别分析模型结果优于基于特征波长的判别模型。结合SPA-SVM校正模型和图像处理技术,生成样本预测伪彩图,可以直观的鉴别不同品系的水稻种子。结果表明,近红外高光谱成像技术可以实现杂交稻的品系识别及可视化预测,为农业育种过程中种子的快速筛选及鉴定提供了新思路。 相似文献
4.
基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值 总被引:1,自引:0,他引:1
在植物叶绿素特征波长变量筛选过程中,与叶绿素关系较弱的波长变量极易被忽略,导致这些弱信息变量包含叶绿素的有效信息丢失,因此,确定叶片光谱中弱信息变量对揭示叶绿素高光谱响应规律具有重要意义。该研究以江汉平原大豆鼓粒期的叶片为研究对象,采集80组大豆叶片高光谱和SPAD(soil and plant analyzer development)值,分析SPAD值与大豆叶片反射率相关关系和光谱波长变量自相关关系,基于迭代和保留信息变量法(iteratively retains informative variables,IRIV)筛选大豆叶片的特征波长变量,建立偏最小二乘回归(partial least squares regression,PLSR)和支持向量机(support vector machine,SVM)模型估测SPAD值。结果表明,大豆叶片SPAD值与光谱反射率在可见光波段具有极显著负相关,在近红外波段存在不显著的正相关性(P0.01);可见光、近红外2波段的波长变量之间相关性较弱,但2波段内变量之间的相关性较强;基于IRIV算法确定了大豆叶绿素的特征波长变量,利用特征波长变量建立的估测模型的估测能力高于仅利用强信息波长变量建立的估测模型,表明弱信息变量对估测叶片SPAD值具有重要意义;IRIV-SVM模型估测能力最优,验证集R2和相对分析误差(RPD)分别为0.73、1.82。该文尝试证明了光谱中弱信息变量的重要性,为揭示叶片高光谱响应机理提供了理论依据。 相似文献
5.
柑桔叶片黄龙病光谱特征选择及检测模型 总被引:2,自引:4,他引:2
为探索高光谱技术诊断黄龙病及分类的可行性,通过变量筛选方法组合为高维数据实用化提供参考。采集柑桔叶片高光谱图像并进行普通(polymerase chain reaction,PCR)鉴别分为轻度、中度、重度、缺锌和正常5类样品。用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,组合遗传算法(genetic algorithm,GA)和连续投影算法(successive projections algorithm,SPA)筛选变量,对数据进行降维。结合极限学习机(extreme learning machine,ELM)和最小二乘支持向量机(least squares support vector machine,LS-SVM)构建柑桔黄龙病判别模型。对预测样品进行诊断分类,来评价模型判别能力。经对比发现,UVE组合SPA筛选变量后的LS-SVM模型效果最好,该模型以Link_kernel函数为核函数,惩罚因子(γ)最小为1.07,误判率最低为0。用全谱作输入变量时LS-SVM模型复杂程度最高且预测能力最差,误判率最高为11.9%,可能是包含无用信息和冗余信息变量造成的。研究显示,UVE组合SPA筛选变量,结合LS-SVM对柑桔黄龙病诊断并分类具有一定可行性,为高维度数据实用化提供一定参考价值。 相似文献
6.
基于多特征融合的电子鼻鉴别玉米霉变程度 总被引:2,自引:6,他引:2
为了提高电子鼻检测玉米霉变程度的正确率,该文探究了电子鼻信号不同特征组合的表征对霉变玉米鉴别结果的影响。首先,运用电子鼻对霉变玉米的5组样本训练集与测试集进行测试,获得测试信号。其次,分别提取测试信号的积分值(integral value,INV)、平均微分值(average differential value,ADV)、相对稳态平均值(relative steady-state average value,RSAV)作为特征值,5组训练集与测试集均分别采用3种单一的特征值或其组合特征值来表征。然后,运用Fisher判别分析(fisher discriminant analysis,FDA)分别对5组训练集进行判别分析,并用对应的测试集进行检验。FDA分析结果指出,电子鼻测试信息分别在单一特征和2个特征组合表征下,不同霉变程度玉米是不能有效分开的,但在2个特征组合表征下的鉴别正确率比单一特征有所提高;当用3个特征组合来表征测试信息时,FDA鉴别能力得到提高,鉴别正确率在96%以上。另外,借助于WilksΛ统计量考察了电子鼻中每个传感器测试信号表征的差异性,对3个特征组合的表征情况进行了表征变量筛选。FDA分析结果显示,筛选前后的鉴别结果非常相近,最低鉴别正确率均在96%以上,这说明不同传感器需要不同的特征表征,以体现其差异性,由此也减少了计算的复杂性。研究结果表明,用多特征融合模式可更有效地表征电子鼻对霉变玉米的响应信息,有利于提高霉变玉米的鉴别正确率。同时,该研究成果也不失一般性,为电子鼻信号表征提供了一种新思路。 相似文献
7.
为研究高光谱技术检测霉变玉米中黄曲霉毒素B_1含量的可行性,选择5种不同霉变程度的玉米为试验材料,利用高光谱图像采集系统获得了250个霉变玉米样本的高光谱数据,并进行多元散射校正(MSC)预处理;运用偏最小二乘回归(PLSR)系数来选择特征波长,筛选出7个特征波长,然后利用Fisher判别分析(FDA)分别对全波长和特征波长下霉变玉米进行鉴别分析。结果表明,5组样本在全光谱波段下的FDA鉴别正确率在85%~88%之间,而在特征光谱下的FDA鉴别正确率均在98%以上,说明特征波长能较好地表征不同霉变等级的玉米。神经网络模型优于PLSR模型,其预测集相关系数和均方根误差分别为0.999 9、0.180 9。因此,可认为利用高光谱技术来检测不同霉变程度玉米中的黄曲霉毒素B_1含量是可行的。本研究结果为高光谱鉴别其他农产品提供了重要参考。 相似文献
8.
基于高光谱成像的苹果轻微损伤检测有效波长选取 总被引:5,自引:5,他引:5
为了确定可用于苹果早期轻微损伤检测的有效波长,以具有代表性的阿克苏苹果为研究对象,采用高光谱成像技术和分段主成分分析方法对损伤发生仅为半小时之内的苹果进行损伤检测研究,对比分析不同光谱区域主成分分析对识别结果的影响,优选出识别光谱区域(780~1000nm)。基于此光谱区域结合主成分图像权重系数获取2个有效波长(820和970nm),并利用这2个波长和全局阈值理论开发了多光谱轻微损伤提取算法。利用独立测试集中25个正常苹果和25个损伤苹果对算法的性能进行评估,结果表明,正常果的识别率为100%,损伤果的识别率为96%,整体检测精度为98%。该研究所获得的有效波长可为开发基于多光谱成像技术的苹果损伤检测系统提供参考。 相似文献
9.
10.
针对青香蕉早期轻微碰撞损伤无法用肉眼和RGB图像识别的问题,研究利用光谱数据与图像信息,实现青香蕉早期轻微碰伤的检测和碰伤程度区分。通过高光谱成像仪获取碰撞损伤试验样品的光谱数据和图像信息,对原始光谱数据进行预处理和异常样本的剔除。通过特征波长提取,获取特征波长下的低维图像中创面区域像素点的分布数据,同时结合全像素点下的光谱反射率数据,将其作为BP神经网络模型的训练集和测试集,建立青香蕉碰撞损伤程度界定的无损检测模型。试验结果表明,利用高光谱技术可以识别肉眼不可见的轻微碰撞损伤,形成的BP神经网络检测模型的总体识别准确率为95.06%,并且可输出碰伤等级的可视化图像。研究为开发青香蕉碰伤快速无损检测系统提供理论依据。 相似文献
11.
对沙壤土、黏壤土进行水分入渗试验,确定4种熵方程(E-Horton、E-Kostiakov、E-Philip、E-GreenAmpt)系数并标定了一般方程(Horton、Kostiakov、Philip、Green-Ampt)系数。根据所得到的方程计算相应的入渗率,并与试验观测数据进行比较。结果表明:在沙壤土中,E-Horton、E-Kostiakov、E-Philip方程能较好地反映土壤水分入渗规律,E-Green-Ampt方程高估了土壤水分入渗率。在黏壤土中,4种熵方程拟合效果均较差。与一般方程比较,基于信息熵方法的土壤水分入渗方程更适于沙质土壤,因为该方法不需要标定方程的参数,简便可行,而且较好地反映了参数的物理意义,为优化灌溉提供理论依据。 相似文献
12.
基于信息熵与AHP模型的小区域泥石流危险性评价方法 总被引:1,自引:0,他引:1
以白龙江流域为研究区域,在收集资料和野外勘察的基础上,选取地形地貌因子和地质因子作为泥石流危险性评价因子,并以栅格单元作为评价单元,对研究区内外动力环境因子进行了分析。在此基础上,基于信息熵与AHP模型分别建立了研究区泥石流危险性评价模型。结果表明:基于信息熵模型的泥石流危险等级分布与基于AHP模型的危险性等级分布呈现出整体上相似,局部地区有差异的规律,但基于信息熵模型的评价分区结果与泥石流实际分布情况更为吻合。在大区域范围内,基于信息熵模型的泥石流危险性评价分区具有良好的可塑性和实用性,在地质灾害预测方面具有重要的作用。 相似文献