首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 75 毫秒
1.
连续投影算法在猪肉pH值无损检测中的应用   总被引:4,自引:4,他引:0       下载免费PDF全文
利用鲜肉的近红外光谱中少量特征波长对其pH值进行预测,可以大幅度降低模型复杂性和计算量,对开发无损检测装置, 实施肉品生产加工过程中pH值监测有重要意义。该文通过连续投影算法(SPA)选择特征波长建立简单多元线性回归模型(SPA-MLR),并对比了SPA-MLR模型与全波段(5 000~10 440 cm-1)偏最小二乘回归模型(PLSR)及逐步线性回归(SMLR)、遗传算法(GA)选择特征波长所建模型的性能。结果表明经连续投影算法提取37个特征波长建立的模型,所用变量数仅占全波段的2.6%,校正集相关系数0.870,校正集均方根误差为0.094,验证集相关系数0.892,验证集均方根误差为0.085;性能与经多元散射校正预处理的PLSR模型接近,但采用变量数明显减少,优于逐步线性回归和遗传算法选择特征波长建立的模型,表明该方法可较好的选择特征波长,建立简单的预测模型。  相似文献   

2.
基于高光谱技术的霉变稻谷脂肪酸含量无损检测   总被引:2,自引:1,他引:1       下载免费PDF全文
脂肪酸含量是表征稻谷霉变信息的重要指标。为了解决传统化学分析法测定稻谷脂肪酸含量有损、费时、低效等问题,该文研究应用高光谱技术实施霉变稻谷脂肪酸含量无损检测的方法。研究选取人工制备的不同霉变时期的稻谷样本作为研究对象,利用高光谱仪结合理化试验方法测定其相应的光谱信息和脂肪酸含量,运用移动窗口平滑法(savitzky-golay,SG)和一阶微分(first derivation,FD)对光谱数据进行预处理,采用连续投影算法(successive projections algorithm,SPA)提取反映稻谷脂肪酸含量变化的光谱特征波段,应用回归分析法建立基于特征波段光谱反射值的稻谷脂肪酸含量预测模型,对比分析不同光谱预处理方法的模型预测效果。研究结果显示,原始光谱数据通过SG平滑和一阶微分处理后,分别经SPA方法优选出了14和10个光谱特征波段;采用SG-SPA-MLR(multivariable linear regression)方法构建的模型质量和稻谷脂肪酸含量预测效果均优于FD-SPA-MLR模型,校正时其内部交叉验证的相关系数RCV和均方根误差RMSECV分别为0.9419、11.9646 mg/(100 g);预测时其外部验证的相关系数RP和均方根误差RMSEP分别为0.9366、12.3550 mg/(100 g),模型对不同霉变时期的稻谷脂肪酸含量均具有较强的预测能力。研究表明,利用高光谱技术对稻谷脂肪酸含量实施无损检测具有可行性,可为将来快速检测稻谷霉变提供参考依据。  相似文献   

3.
基于近红外高光谱成像技术鉴别杂交稻品系   总被引:4,自引:4,他引:0       下载免费PDF全文
种子的筛选和鉴别是农业育种过程中的关键环节。该文基于近红外高光谱成像技术(874~1 734 nm)结合化学计量学方法以及图像处理技术实现杂交稻种的品系鉴别及可视化预测。采集了3类不同品系共2 700粒杂交水稻的高光谱图像,用SPXY算法,按照2∶1的比例划分建模集和预测集。基于水稻样本的光谱特征,采用主成分分析(PCA)方法初步探究3类样本的可分性。采用连续投影算法(SPA),提取出7个特征波长:985.08、1 106、1 203.55、1 399.04、1 463.19、1 601.81、1 645.82 nm。基于特征波长和全波段光谱,建立了偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型。试验结果表明,所建模型判别效果较好,识别正确率均达到了90%以上,其中,SVM模型的判别效果优于PLS-DA模型,基于全谱的判别分析模型结果优于基于特征波长的判别模型。结合SPA-SVM校正模型和图像处理技术,生成样本预测伪彩图,可以直观的鉴别不同品系的水稻种子。结果表明,近红外高光谱成像技术可以实现杂交稻的品系识别及可视化预测,为农业育种过程中种子的快速筛选及鉴定提供了新思路。  相似文献   

4.
于雷  章涛  朱亚星  周勇  夏天  聂艳 《农业工程学报》2018,34(16):148-154
在植物叶绿素特征波长变量筛选过程中,与叶绿素关系较弱的波长变量极易被忽略,导致这些弱信息变量包含叶绿素的有效信息丢失,因此,确定叶片光谱中弱信息变量对揭示叶绿素高光谱响应规律具有重要意义。该研究以江汉平原大豆鼓粒期的叶片为研究对象,采集80组大豆叶片高光谱和SPAD(soil and plant analyzer development)值,分析SPAD值与大豆叶片反射率相关关系和光谱波长变量自相关关系,基于迭代和保留信息变量法(iteratively retains informative variables,IRIV)筛选大豆叶片的特征波长变量,建立偏最小二乘回归(partial least squares regression,PLSR)和支持向量机(support vector machine,SVM)模型估测SPAD值。结果表明,大豆叶片SPAD值与光谱反射率在可见光波段具有极显著负相关,在近红外波段存在不显著的正相关性(P0.01);可见光、近红外2波段的波长变量之间相关性较弱,但2波段内变量之间的相关性较强;基于IRIV算法确定了大豆叶绿素的特征波长变量,利用特征波长变量建立的估测模型的估测能力高于仅利用强信息波长变量建立的估测模型,表明弱信息变量对估测叶片SPAD值具有重要意义;IRIV-SVM模型估测能力最优,验证集R2和相对分析误差(RPD)分别为0.73、1.82。该文尝试证明了光谱中弱信息变量的重要性,为揭示叶片高光谱响应机理提供了理论依据。  相似文献   

5.
柑桔叶片黄龙病光谱特征选择及检测模型   总被引:6,自引:4,他引:2       下载免费PDF全文
为探索高光谱技术诊断黄龙病及分类的可行性,通过变量筛选方法组合为高维数据实用化提供参考。采集柑桔叶片高光谱图像并进行普通(polymerase chain reaction,PCR)鉴别分为轻度、中度、重度、缺锌和正常5类样品。用无信息变量消除算法(uninformative variable elimination,UVE)剔除无关信息,组合遗传算法(genetic algorithm,GA)和连续投影算法(successive projections algorithm,SPA)筛选变量,对数据进行降维。结合极限学习机(extreme learning machine,ELM)和最小二乘支持向量机(least squares support vector machine,LS-SVM)构建柑桔黄龙病判别模型。对预测样品进行诊断分类,来评价模型判别能力。经对比发现,UVE组合SPA筛选变量后的LS-SVM模型效果最好,该模型以Link_kernel函数为核函数,惩罚因子(γ)最小为1.07,误判率最低为0。用全谱作输入变量时LS-SVM模型复杂程度最高且预测能力最差,误判率最高为11.9%,可能是包含无用信息和冗余信息变量造成的。研究显示,UVE组合SPA筛选变量,结合LS-SVM对柑桔黄龙病诊断并分类具有一定可行性,为高维度数据实用化提供一定参考价值。  相似文献   

6.
基于多特征融合的电子鼻鉴别玉米霉变程度   总被引:8,自引:6,他引:2       下载免费PDF全文
为了提高电子鼻检测玉米霉变程度的正确率,该文探究了电子鼻信号不同特征组合的表征对霉变玉米鉴别结果的影响。首先,运用电子鼻对霉变玉米的5组样本训练集与测试集进行测试,获得测试信号。其次,分别提取测试信号的积分值(integral value,INV)、平均微分值(average differential value,ADV)、相对稳态平均值(relative steady-state average value,RSAV)作为特征值,5组训练集与测试集均分别采用3种单一的特征值或其组合特征值来表征。然后,运用Fisher判别分析(fisher discriminant analysis,FDA)分别对5组训练集进行判别分析,并用对应的测试集进行检验。FDA分析结果指出,电子鼻测试信息分别在单一特征和2个特征组合表征下,不同霉变程度玉米是不能有效分开的,但在2个特征组合表征下的鉴别正确率比单一特征有所提高;当用3个特征组合来表征测试信息时,FDA鉴别能力得到提高,鉴别正确率在96%以上。另外,借助于WilksΛ统计量考察了电子鼻中每个传感器测试信号表征的差异性,对3个特征组合的表征情况进行了表征变量筛选。FDA分析结果显示,筛选前后的鉴别结果非常相近,最低鉴别正确率均在96%以上,这说明不同传感器需要不同的特征表征,以体现其差异性,由此也减少了计算的复杂性。研究结果表明,用多特征融合模式可更有效地表征电子鼻对霉变玉米的响应信息,有利于提高霉变玉米的鉴别正确率。同时,该研究成果也不失一般性,为电子鼻信号表征提供了一种新思路。  相似文献   

7.
殷勇  戴松松  于慧春 《核农学报》2019,33(2):305-312
为研究高光谱技术检测霉变玉米中黄曲霉毒素B_1含量的可行性,选择5种不同霉变程度的玉米为试验材料,利用高光谱图像采集系统获得了250个霉变玉米样本的高光谱数据,并进行多元散射校正(MSC)预处理;运用偏最小二乘回归(PLSR)系数来选择特征波长,筛选出7个特征波长,然后利用Fisher判别分析(FDA)分别对全波长和特征波长下霉变玉米进行鉴别分析。结果表明,5组样本在全光谱波段下的FDA鉴别正确率在85%~88%之间,而在特征光谱下的FDA鉴别正确率均在98%以上,说明特征波长能较好地表征不同霉变等级的玉米。神经网络模型优于PLSR模型,其预测集相关系数和均方根误差分别为0.999 9、0.180 9。因此,可认为利用高光谱技术来检测不同霉变程度玉米中的黄曲霉毒素B_1含量是可行的。本研究结果为高光谱鉴别其他农产品提供了重要参考。  相似文献   

8.
基于高光谱成像的苹果轻微损伤检测有效波长选取   总被引:10,自引:5,他引:5       下载免费PDF全文
为了确定可用于苹果早期轻微损伤检测的有效波长,以具有代表性的阿克苏苹果为研究对象,采用高光谱成像技术和分段主成分分析方法对损伤发生仅为半小时之内的苹果进行损伤检测研究,对比分析不同光谱区域主成分分析对识别结果的影响,优选出识别光谱区域(780~1000nm)。基于此光谱区域结合主成分图像权重系数获取2个有效波长(820和970nm),并利用这2个波长和全局阈值理论开发了多光谱轻微损伤提取算法。利用独立测试集中25个正常苹果和25个损伤苹果对算法的性能进行评估,结果表明,正常果的识别率为100%,损伤果的识别率为96%,整体检测精度为98%。该研究所获得的有效波长可为开发基于多光谱成像技术的苹果损伤检测系统提供参考。  相似文献   

9.
孟珊  李新国  焦黎 《土壤通报》2023,54(2):286-294
  目的  为湖滨绿洲土壤高光谱估算土壤电导率值提供方法支持,实现区域土壤盐分快速估测。  方法  利用实测的土壤电导率值与土壤高光谱数据联合分析,采用竞争自适应重加权采样(CARS)、连续投影算法(SPA)、遗传算法(GA)筛选土壤电导率的特征波段,并基于全波段及特征波段构建BP神经网络(BPNN)、支持向量机(SVM)、极限学习机(ELM)三种机器学习算法模型,引入偏最小二乘模型(PLSR)进行对照,比较其模型精度。  结果  研究区土壤电导率值变化范围0.02~17.22 mS cm?1,平均值为2.61 mS cm?1,变异系数为134.87%,呈现强变异性;CARS、SPA、GA算法筛选的特征波段将建模输入量分别压缩至全波段数量的0.87%、1.68%、0.70%,减少建模输入量,提升建模速率,变量方法的选择CARS > SPA > GA;三种机器学习算法模型均优于PLSR模型,决定系数(R2)平均增加20.57%,相对分析误差(RPD)平均增加17.84%,土壤电导率高光谱估算模型以CARS-SVM最优,训练集与验证集R2分别为0.76和0.75,RMSE分别为1.79 和1.68 mS cm?1,RPD分别为2.04和2.00。土层深度20 ~ 30 cm的土壤电导率高光谱估算模型精度最高,训练集与验证集R2分别为0.83和0.84,RMSE分别1.37和1.77 mS cm?1,RPD分别为2.41和2.50。  结论  基于CARS-SVM的土壤电导率高光谱估算模型精度高,估算能力最优,可以为湖滨绿洲土壤电导率估算提供科学参考。  相似文献   

10.
针对青香蕉早期轻微碰撞损伤无法用肉眼和RGB图像识别的问题,研究利用光谱数据与图像信息,实现青香蕉早期轻微碰伤的检测和碰伤程度区分。通过高光谱成像仪获取碰撞损伤试验样品的光谱数据和图像信息,对原始光谱数据进行预处理和异常样本的剔除。通过特征波长提取,获取特征波长下的低维图像中创面区域像素点的分布数据,同时结合全像素点下的光谱反射率数据,将其作为BP神经网络模型的训练集和测试集,建立青香蕉碰撞损伤程度界定的无损检测模型。试验结果表明,利用高光谱技术可以识别肉眼不可见的轻微碰撞损伤,形成的BP神经网络检测模型的总体识别准确率为95.06%,并且可输出碰伤等级的可视化图像。研究为开发青香蕉碰伤快速无损检测系统提供理论依据。  相似文献   

11.
为提高激光拉曼光谱技术对不同霉变程度玉米中的黄曲霉毒素B1(AFB1)和玉米赤霉烯酮(ZEN)检测的准确率,本试验以6个不同霉变等级的玉米样品为研究对象进行拉曼光谱检测.首先采用迭代多项式拟合基线校正方法对原始拉曼光谱进行基线校正,去除荧光背景;然后采用多元散射校正(MSC)、标准正态变量变换(SNV)和高斯-洛伦兹混...  相似文献   

12.
利用近红外高光谱图像技术快速鉴别西瓜种子品种   总被引:12,自引:8,他引:4       下载免费PDF全文
为了研究采用近红外高光谱图像技术对西瓜种子品种快速无损鉴别的可行性,该文采用近红外高光谱图像技术,通过提取西瓜种子的光谱反射率,结合Savitzky-Golay (SG)平滑算法,经验模态分解算法(empirical mode decomposition,EMD)和小波分析(wavelet transform,WT)对提取出的光谱数据进行去除噪声处理,采用连续投影算法(successive projections algorithm,SPA)和遗传-偏最小二乘法(genetic algorithm-partial least squares, GA-PLS)进行特征波长选择。基于全波段光谱建立了偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA),基于特征波长建立了反向传播神经网络(back-propagation neural network,BP NN)判别模型和极限学习机(extreme learning machine,ELM)判别模型。试验结果表明,基于特征波长的BPNN模型和ELM模型的结果优于基于全部波长的PLS-DA模型,基于SG预处理光谱提取的特征波长建立的ELM模型取得最优的判别效果,建模集和预测集的判别正确率均为100%。结果表明应用近红外高光谱成像技术对西瓜种子品种鉴别是可行的,为西瓜种子的品种快速鉴别提供了一种新方法。  相似文献   

13.
准确获取及预测光合色素含量可为精细化种植管理提供数据依据,为探究花生冠层叶片色素吸收特征,该研究以开花下针期的花生冠层叶片为研究对象,以ASD Field Spec4野外便携式高光谱仪采集的光谱数据为数据源,进行花生叶片叶绿素含量和类胡萝卜素含量反演。通过对比7种单一筛选特征波长变量算法及结合4种模型(PLSR、SVR、GBDT和XGBoost)的结果,优选出3种算法进行两两耦合。结果表明:1)在单一算法试验中IRIV、UVE和GA算法结果较优;2)在耦合算法试验中UVE-IRIV、GA-IRIV和GA-UVE方法都能有效降维,且模型稳定性提升。在叶绿素含量反演模型中,GA-IRIV-XGBoost模型精度最高,R2=0.622,RMSE=0.235 mg/g;在类胡萝卜素含量反演模型中,UVE-IRIV-XGBoost模型精度最高,R2=0.575,RMSE=0.056 mg/g;3)比较两种色素反演模型的预测精度,表明叶绿素的预测精度优于类胡萝卜素。该结果可为快速、准确预测花生叶片光合色素含量提供一种方法。  相似文献   

14.
基于高光谱图像光谱与纹理信息的生菜氮素含量检测   总被引:13,自引:10,他引:3       下载免费PDF全文
高光谱图像包含丰富的光谱与图像信息,该文基于此试图构建生菜氮素检测模型。利用高光谱图像采集系统获取可见-近红外(390~1 050 nm)范围内的生菜叶片高光谱图像,同时利用凯氏定氮法获取对应叶片的氮素值。将光谱反射值较大波长图像与反射值较小波长图像相除并用阈值化法构建掩膜图像,获取感兴趣区域(ROI,region of interest)。由于高光谱数据量大、且数据间冗余性强,因此如何有效的提取一些特征波长十分重要。该文采用主成分分析(PCA,principal component analysis)对原始高光谱图像进行处理,根据前3个主成分图像(PC1、PC2、PC3)在全波长下的权重系数分布图选出662.9、711.7、735.0、934.6 nm 4个特征波长及对应的光谱特征,并且分别提取4个特征波长图像、主成分图像PC1、PC2、PC3在ROI下的基于灰度共生矩阵的纹理特征,最后利用支持向量机回归(SVR,support vector machine regression)分别建立生菜叶片基于特征波长光谱特征、特征波长图像与主成分图像的纹理特征及光谱纹理融合特征与对应氮素值之间的关系模型。结果表明,在校正性能指标决定系数R2C上,基于光谱特征+特征波长图像纹理特征的模型较好,R2C=0.996,校正集均方根误差RMSEC为0.034;在预测性能指标决定系数R2P上,基于光谱特征的模型较好,R2P=0.86,预测集均方根误差RMSEP为0.22。该研究结果可为农作物氮素的快速、无损检测提供一定的参考价值。  相似文献   

15.
绿原酸(chlorogenicacid,CGA)是评价金银花品质的重要指标。为了实现金银花贮藏期间CGA含量变化的快速有效检测,该文采集了500个不同贮藏时间(0~20d)的金银花高光谱图像,构建CGA含量的高光谱检测模型。为了提高模型性能,采用savizky-golay卷积平滑(SG),移动窗口平滑(moving average),标准正态变量(standard normal variable,SNV),基线校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信号校正(orthogonal signal correction,OSC)6种预处理方法并建立偏最小二乘回归(partial least squares regression,PLSR)模型,确定SNV方法为最佳预处理方法,其预测集的R2为0.976 6,RMSE为0.271 1%。为了简化校准模型,利用无信息变量消除(uninformative variable elimination,UVE),连续投影算法(successive projections algorithm,SPA),竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)以及UVE-CARS、UVE-SPA等方法对SNV预处理后的光谱提取特征波长。然后,分别基于全光谱数据和所选特征变量数据,建立线性偏最小二乘回归(PLSR)和非线性BP神经网络模型。结果表明:UVE-CARS算法可以有效地减少提取变量个数(共提取26个,仅占全光谱范围的3.2%),PLSR和BP模型的预测集R2分别为0.974 6和0.978 4,RMSE分别为0.286 3%和0.250 3%。非线性BP模型预测结果整体优于线性PLSR模型,在BP模型中,UVE-CARS-BP预测精度最高,预测集的R2和RMSE的值分别为0.978 4, 0.250 3%。综上,基于高光谱成像技术建立的SNV-UVE-CARS-BP模型,可以实现金银花贮藏过程中CGA含量变化的快速无损预测。  相似文献   

16.
针对玉米叶片各区域光谱特性与玉米品种抗倒伏性能之间关系未知的问题,该研究探讨了叶脉区、正常反射区和整片叶的平均光谱对玉米品种抗倒伏性预测效果的影响。试验采集了2018年和2019年8个玉米品种的叶片高光谱图像,使用阈值分割和K-means聚类方法提取各叶片区域的平均光谱数据。用最大相关最小冗余(Max-Relevance and Min-Redundancy,MRMR)特征选择算法,提取各叶片区域平均光谱的抗倒伏和不抗倒伏品种分类特征。使用交叉验证的方式,对MRMR方法选择的特征数量进行优化,并使用支持向量机(Support Vector Machines,SVM)方法建立各叶片区域的抗倒伏性预测光谱模型,用网格搜索法对各模型参数进行优化。两年试验结果显示,各叶片区域约有35~50个可以反映品种抗倒伏性的光谱特征,其中非叶脉区光谱相比叶脉区光谱的抗倒伏特征更多,分类效果更好。参数优化训练后,整叶片、叶脉区和正常反射区的光谱模型对训练集数据的预测正确率达到98.46%、98.52%和100%,正常反射区的光谱模型对测试集数据的分类效果最好,2018年和2019年测试集数据的预测正确率分别达到了91.00%和94.34%。与基于整片叶平均光谱的预测模型相比,基于叶片各区域的光谱特征模型可以排除不平整叶面反射的干扰,有助于提高模型预测结果的稳定性。研究表明,基于正常反射区光谱的预测模型更适用于品种抗倒伏预测,研究结果可为基于玉米叶片光谱预测品种的抗倒伏能力提供借鉴。  相似文献   

17.
玉米全氮含量高光谱遥感估算模型研究   总被引:18,自引:5,他引:13       下载免费PDF全文
该文对不同品种玉米测定了其室内光谱反射率及其对应的全氮含量,采用相关性分析以及单变量线性与非线性拟合分析技术,对全氮含量与原始光谱反射率、光谱反射率一阶微分、一些高光谱特征参数(如红边波长、红边位置以及红边面积等)以及由一阶微分光谱所构建的一些比值植被指数和归一化植被指数之间的关系进行了分析,结果表明:全氮含量与原始光谱在716 nm处具有最大相关系数(r=-0.847),呈极显著负相关,并且基于此波长所构建的对数关系估算模型明显优于线性模型;与光谱反射率一阶微分值在759 nm处具有最大相关系数(r=0.944),呈极显著正相关,并且基于此波长所构建的线性和非线性模型的拟合效果接近;对于所选取的3类高光谱特征变量,全氮含量除了与黄边位置(λy)以及由红边面积和黄边面积所构建的比值植被指数和归一化植被指数的相关性较弱之外,与其余变量均呈极显著相关关系,说明由这些变量对玉米全氮含量进行估算具有可行性;对所建立的各类方程进行精度检验,最终筛选确定由759 nm处的光谱反射率一阶微分值所构建的指数模型作为对玉米全N含量的预测模型最为理想。  相似文献   

18.
基于高光谱的寒地水稻叶片氮素含量预测   总被引:4,自引:2,他引:2       下载免费PDF全文
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号