首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acaricidal effects of an active constituent derived from Petroselinum sativum seeds and its derivatives were determined using impregnated fabric disk bioassay against Dermatophagoides farinae , Dermatophagoides pteronyssinus , and Tyrophagus putrescentiae and compared with that of synthetic acaricide. The acaricidal constituent of P. sativum was isolated by various chromatographic techniques and identified as apiol. On the basis of LD(50) values against D. farinae and D. pteronyssinus, apiol (0.81 and 0.94 μg/cm(2)) was 12.4 and 10.2 times more toxic than benzyl benzoate (10.0 and 9.58 μg/cm(2)), respectively. In acaricidal studies of apiol derivatives, 3,4-methylenedioxybenzonitrile (0.04, 0.03, and 0.59 μg/cm(2)) was 250, 319, and 20.7 times more toxic than benzyl benzoate (10.0, 9.58, and 12.2 μg/cm(2)) against D. farinae, D. pteronyssinus, and T. putrescentiae. In structure-activity relationships, the acaricidal activities of apiol derivatives could be related to allyl (-C(3)H(5)) and methoxy (-OCH(3)) functional groups. Furthermore, apiol and its derivatives could be useful for natural acaricides against these three mite species.  相似文献   

2.
The acaricidal activity of clove (Eugenia caryophyllata) bud oil-derived eugenol and its congeners (acetyleugenol, isoeugenol, and methyleugenol) against adults of Dermatophagoides farinae and Dermatophagoides pteronyssinus was examined using direct contact application and fumigation methods and compared with those of benzyl benzoate and N,N-diethyl-m-toluamide (DEET). Responses varied according to compound, dose, and mite species. On the basis of LD(50) values, the compound most toxic to D. farinae adults was methyleugenol (0.94 microg/cm(2)) followed by isoeugenol (5.17 microg/cm(2)), eugenol (5.47 microg/cm(2)), benzyl benzoate (9.22 microg/cm(2)), and acetyleugenol (14.16 microg/cm(2)). Very low activity was observed with DEET (37.59 microg/cm(2)). Against D. pteronyssinus adults, methyleugenol (0.67 microg/cm(2)) was much more effective than isoeugenol (1.55 microg/cm(2)), eugenol (3.71 microg/cm(2)), acetyleugenol (5.41 microg/cm(2)), and benzyl benzoate (6.59 microg/cm(2)). DEET (17.85 microg/cm(2)) was least toxic. These results indicate that the lipophilicity of the four phenylpropenes plays a crucial role in dust mite toxicity. The typical poisoning symptom of eugenol and its congeners was a similar death symptom of the forelegs extended forward together, leading to death without knockdown, whereas benzyl benzoate and DEET caused death following uncoordinated behavior. In a fumigation test with both mite species, all four phenylpropenes were much more effective in closed containers than in open ones, indicating that the mode of delivery of these compounds was largely due to action in the vapor phase. Eugenol and its congeners merit further study as potential house dust mite control agents or as lead compounds.  相似文献   

3.
The acaricidal activity of materials derived from the rhizome of Cnidium officinale against adults of Dermatophagoides farinae and Dermatophagoides pteronyssinus was examined using direct contact application and fumigation methods and compared with that of benzyl benzoate and N,N-diethyl-m-toluamide (DEET). The active constituent of the Cnidium rhizome was identified as butylidenephthalide by spectroscopic analyses. Responses varied with dose. On the basis of 24-h LD(50) values, the acaricidal activity of butylidenephthalide (6.77 microg/cm(2)) against D. farinae adults was comparable to that of benzyl benzoate (8.54 microg/cm(2)). Very low activity was observed with DEET (37.59 microg/cm(2)). Against D. pteronyssinus adults, butylidenephthalide (6.46 microg/cm(2)) and benzyl benzoate (6.68 microg/cm(2)) were equitoxic. DEET (17.98 microg/cm(2)) was relatively inactive. The typical poisoning symptom of butylidenephthalide was lethargy of treated mites, leading to death without knockdown, whereas benzyl benzoate and DEET caused death following uncoordinated behavior. In a fumigation test with both mite species, butylidenephthalide was much more effective in closed containers than open ones. Naturally occurring C. officinale rhizome-derived materials merit further study as potential house dust mite control agents or lead compounds.  相似文献   

4.
The acaricidal activities of materials derived from the root bark of Paeonia suffruticosa against adults of Dermatophagoides farinae and Dermatophagoides pteronyssinus were examined using direct contact and fumigation bioassays and compared with those of benzyl benzoate, dibutyl phthalate, and N,N-diethyl-m-toluamide (deet), widely used acaricides. The active constituents of Paeonia root bark were identified as paeonol and benzoic acid by spectroscopic analyses. On the basis of 24-h LD50 values, the acaricidal activities of paeonol (7.82 microg/cm3) and benzoic acid (6.58 microg/cm3) against adult D. farinae were comparable to that of benzyl benzoate (7.72 microg/cm3) but higher than those of deet (36.34 microg/cm3) and dibutyl phthalate (33.92 microg/cm3). Against adult D. pteronyssinus, the acaricidal activities of paeonol (7.08 microg/cm3) and benzyl benzoate (7.22 microg/cm3) were comparable to that of benzyl benzoate (7.14 microg/cm3). Deet and dibutyl phthalate were less effective. In fumigation tests with both mite species, paeonol and benzoic acid were much more effective in closed containers than open ones, indicating that the effect of these compounds was largely a result of action in the vapor phase. Neither benzyl benzoate, deet, nor dibutyl phthalate exhibited fumigant toxicity. Paeonia root bark-derived materials, particularly paeonol and benzoic acid, merit further study as potential acaricides or lead compounds for the control of D. farinae and D. pteronyssinus.  相似文献   

5.
Acaricidal activities of components derived from Foeniculum vulgare fruit oil against Dermatophagoides farinae and Dermatophagoides pteronyssinus were examined using direct contact application and compared with that of the commercial repellent benzyl benzoate. The major biologically active constituent of Foeniculum fruit oil was characterized as (+)-fenchone by spectroscopic analyses. On the basis of LD(50) values, the compound most toxic to D. farinae was p-anisaldehyde (11.3 mg/m(2)) followed by (+)-fenchone (38.9 mg/m(2)), (-)-fenchone (41.8 mg/m(2)), benzyl benzoate (89.2 mg/m(2)), thymol (90.3 mg/m(2)), and estragol (413.3 mg/m(2)). Against D. pteronyssinus, p-anisaldehyde (10.1 mg/m(2)) was much more effective than benzyl benzoate (67.5 mg/m(2)), thymol (68.5 mg/m(2)), and estragol (389.9 mg/m(2)). These results indicate that the acaricidal activity of F. vulgare fruit oil likely results from (+)-fenchone and p-anisaldehyde. (+)-Fenchone was 20.3 times more abundant in the oil than p-anisaldehyde. (+)-Fenchone and p-anisaldehyde merit further study as potential house dust mite control agents or as lead compounds.  相似文献   

6.
Allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) were isolated from Sinapis alba L. seeds and their effects against Dermatophagoides farinae and D. pteronyssinus were evaluated using the impregnated fabric disk method. The LD 50 values of their compounds and derivatives were then compared with those of a commercial acaricide, benzyl benzoate. On the basis of the LD 50 values against D. farinae, PEITC (0.21 microg/cm(2)) was the most toxic, followed by benzyl isothiocyanate (0.55 microg/cm(2)), phenyl isothiocyanate (1.09 microg/cm(2)), butyl isothiocyanate (1.24 microg/cm(2)), and AITC (1.36 microg/cm(2)); acetyl isothiocyanate (195.01 microg/cm(2)) was the least toxic. In addition, the acaricidal effects of AITC and PEITC against D. farinae were 7.4- and 47.8-fold greater than those of benzyl benzoate, respectively. Against D. pteronyssinus, PEITC was the most toxic (0.19 microg/cm(2)), followed by benzyl isothiocyanate (0.77 microg/cm(2)), phenyl isothiocyanate (1.37 microg/cm(2)), butyl isothiocyanate (1.50 microg/cm(2)), and AITC (2.88 microg/cm(2)); acetyl isothiocyanate (168.82 microg/cm(2)) was the least toxic. AITC and PEITC were 3.3- and 50.4-fold more active than benzyl benzoate against D. pteronyssinus, respectively. Taken together, these findings indicate that AITC, PEITC, and partial derivatives may be useful as preventive agents against dust mites. In addition, these results indicate that structure-activity is related to the aromatic structure, the number of carbon atoms, and the compounds hydrophobicity.  相似文献   

7.
Acaricidal activities of materials derived from Chamaecyparis obtusa leaves against Dermatophagoides farinae and Dermatophagoides pteronyssinus were examined using the dry film method and compared with that of commercial benzyl benzoate and N,N-diethyl-m-toluamide (DEET). The active constituent of the C. obtusa leaves was identified as beta-thujaplicin (C10H12(O2)) by spectroscopic analyses. Responses varied with dose. On the basis of a 24 h LC50 value, acaricidal activity against D. farinaewas more pronounced with beta-thujaplicin (72.2 mg/m2) than benzyl benzoate (89.9 mg/m2) and DEET (377 mg/m2). Acaricidal activity against D. pteronyssinus was more pronounced in beta-thujaplicin (62.1 mg/m2) than benzyl benzoate (72.4 mg/m2) and DEET (193 mg/m2). These results indicate that acaricidal activity of C. obtusa leaves likely results from by beta-thujaplicin. Beta-thujaplicin merits further study as potential house dust mite control agents or lead compounds.  相似文献   

8.
The acaricidal activity of materials derived from rhizome of Atractylodes ovata (Atractylodes macrocephala) toward adult Dermatophagoides farinae and Dermatophagoides pteronyssinus was examined using fabric-circle residual contact and vapor-phase toxicity bioassays. Results were compared with those of the currently used acaricides: benzyl benzoate, dibutyl phthalate, and N,N-diethyl-m-toluamide (Deet). The active principles of A. ovata rhizome were identified as the sesquiterpenoids, atractylenolide III (1) and atractylon (2), by spectroscopic analysis. In fabric-circle residual contact bioassays with adult D. farinae, atractylenolide III (LD50, 103.3 mg/m2) and atractylon (136.2 mg/m2) were five and four times more toxic than Deet and 1.7- and 1.3-fold more active than dibutyl phthalate, respectively, based on 24 h LD50 values. These compounds were less toxic than benzyl benzoate (LD50, 45.8 mg/m2). Against adult D. pteronyssinus, atractylenolide III (LD50, 73.8 mg/m2) and atractylon (72.1 mg/m2) were eight times more active than Deet and 2.5-fold more toxic than dibutyl phthalate. These compounds were slightly less effective than benzyl benzoate (LD50, 46.0 mg/m2). In vapor-phase toxicity tests with both mite species, atractylenolide III and atractylon were effective in closed but not in open containers. These results indicate that the effect of these sesquiterpenoids was largely a result of action in the vapor phase. Naturally occurring atractylenolide III and atractylon merit further study as potential house dust mite control agents or leads because of their great activity as a fumigant.  相似文献   

9.
Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.  相似文献   

10.
A series of novel spirocyclic tetronic acid derivatives containing an oxalyl moiety was designed and synthesized via the key intermediate 3-(2,4,6-trimethyl)-2-oxo-1-oxaspiro[4.4]-decyl-3-en-4-ol. The target compounds were identified by (1)H NMR and elemental analysis or high-resolution mass spectrum (HRMS). The results of bioassays indicated that most of the target compounds possessed excellent acaricidal activities against carmine spider mite larvae and eggs. Especially, diisopropylamino oxalyl compound 7g and piperidine oxalyl compound 7h were 1.4- and 2.3-fold as high as the activities of commercial Spiromesifen, respectively, against spider mite eggs. Moreover, most of the target compounds exhibited insecticidal activities against Lepidoptera pest. Interestingly, compounds containing alkylamino-substituted oxalyl moiety showed obvious selectivity between spider mite larvae and eggs because the activities against spider mite eggs of 7g and 7h were 25-fold those against spider mite larvae, whereas Spiromesifen had no significant differences in these activities. This meant that the introduction of an oxalyl moiety to spirocyclic tetronic acid might lead to novel biological activity characteristics.  相似文献   

11.
A series of novel 2-aryl-pyrrole derivatives containing ester groups were synthesized, and their structures were characterized by (1)H NMR spectroscopy and elemental analysis. The insecticidal activities against oriental armyworm, mosquito, diamondback moth, green rice leafhopper, and bean aphids and acaricidal activities against spider mite of these new compounds were evaluated. The results of bioassays indicated that some of these title compounds exhibited excellent insecticidal and acaricidal activities. The insecticidal activities against oriental armyworm of compounds IVa, IVd, IVe, IVf, IVg, IVi, IVk, and IVp were equal to commercialized Chlorfenapyr, and the insecticidal activities of most of compounds IVb, IVc, IVd, IVf, IVg, IVj, IVk, IVl, IVs, IVt, IVu, IVw, IVx, IVz, and Chlorfenapyr against mosquito at 0.10 mg kg (-1) were 100%, and the acaricidal activities of compounds IVd, IVe, IVf, IVg, IVh, IVi, and IVk were equal or superior to Chlorfenapyr. Especially, the results indicated that the acaricidal activity of [4-bromo-2-(4-chlorophenyl)-3-cyano-5-(trifluoromethyl)pyrrol-1-yl]methyl 3-methylbutanoate ( IVg) against spider mite was 2.65-fold as high as that of Chlorfenapyr from the value of LC 50.  相似文献   

12.
Benzene may occur in foods due to the oxidative decarboxylation of benzoate in the presence of hydroxyl radicals. This study investigated factors influencing benzene formation in liquid model systems. The type of buffer, other sources of hydroxyl radical formation in food (photo oxidation of riboflavin and lipid oxidation), transition metal ion concentrations, and the inhibitory effect of antioxidants were tested in benzoate containing model systems. Regarding the hydroxyl radical sources tested, the highest benzene formation was observed in light exposed model systems containing ascorbic acid, Cu(2+), and riboflavin in Na-citrate buffer (1250 ± 131 μg kg(-1)). In practice, it seems that the combination ascorbic acid/transition metal ion remains the biggest contributor to benzene formation in food. However, the concentration of Cu(2+) influences significantly benzene formation in such a system with highest benzene yields observed for Cu(2+) 50 μM (1400 μg kg(-1)). The presence of antioxidants with metal chelation or reduction properties could prevent completely benzene formation.  相似文献   

13.
Milbemycins have received considerable interest in agricultural chemistry due to a special action mode, extremely high activity against arachnoide pests, low toxicity to mammals, and environmentally benign characteristics. Two series of novel milbemycin analogues (4Ia-6IIc) containing alkyl and aryl groups at the 4'- and 13-positions were designed and synthesized by five schemes. These analogues were identified by (1)H NMR, (13)C NMR, and elemental analysis (or HRMS). Their insecticidal activities against carmine spider mite, oriental armyworm, and black bean aphid were evaluated. The results showed that all of the title compounds had low acaricidal activity against carmine spider mite. However, most of them exhibited good insecticidal activities against oriental armyworm and black bean aphid at a concentration of 200 mg L(-1). The most potent substituents of 2,2-dimethylbutanoyl (4Ib), phenylacetyl (4IIm), and (Z)-1-(methoxyimino)-1-phenylacetyl (4IIn) exhibited the highest larvicidal activities, and its insecticidal LC(50) values against oriental armyworm were 0.250, 0.204, and 0.350 mg L(-1), while its insecticidal LC(50) values against black bean aphid were 0.150, 0.070, and 0.120 mg L(-1), respectively. These substituents provided some hints for further investigation on structure modification.  相似文献   

14.
It was reported that Df-protease from house dust mite (Dermatophagoides farinae) catalyzes the activation of the kallikrein-kinin system in human plasma and is closely associated with mite-induced allergy. Therefore, to prevent the release of kinin by Df-protease, the inhibitory activity of polyphenols including catechins and flavonols was tested in vitro and in vivo. Among them, myricetin and epigallocatechin gallate (EGCg) effectively inhibited the amidase activity of Df-protease with K(i) values of 1 x 10(-)(8) and 6 x 10(-)(4) M, respectively. The kinin release in human plasma was extensively inhibited by the addition of EGCg in comparison with myricetin. Enhancement of vascular permeability in guinea pigs caused by Df-protease was markedly suppressed by EGCg.  相似文献   

15.
The objectives of this research were to study the effects of high intensity (0.5, 0.75, and 1.0 mW/cm (2)), dose (0.5, 1.0, and 1.5 J/cm (2)), and postharvest time (1 and 4 days) on the vitamin D 2 formation in Portabella mushrooms ( Agaricus bisporus) as a result of UV-B exposure, as well as the vitamin D 2 degradation in treated mushrooms during storage. Within each intensity application, dose had the largest effect where more exposure converted more vitamin D 2 from ergosterol. Similar dose across each intensity application resulted in similar vitamin D 2 concentration. Practical commercial production requires as short a treatment time as possible, and intensity was a major factor from this standpoint where the time it took to achieve a similar vitamin D 2 concentration for similar dose exposure was significantly reduced as intensity increased. By using an intensity of 1.0 mW/cm (2) at a dose of 0.5 J/cm (2), the concentration of vitamin D 2 produced was 3.83 microg/g dry solids of mushrooms in 8 min, whereas using an intensity of 0.5 mW/cm (2) at a dose of 0.5 J/cm (2), the concentration of vitamin D 2 produced was 3.75microg/g dry solids of mushrooms in 18 min. Also, postharvest time did not have a significant effect on vitamin D 2 formation in mushrooms that were treated 1 and 4 days after harvest. Vitamin D 2 degraded in treated mushrooms during storage by apparent first-order kinetics, where the degradation rate constant was 0.025 h (-1). The information provided in this study will help mushroom producers develop commercial-scale UV treatment processes to add value to their crop while improving consumer health.  相似文献   

16.
A series of 3 H-pyrazolo[3,4-d][1,2,3]triazin-4-one derivatives were synthesized as candidate herbicides by diazotization of different 5(3)-amino- N-phenyl-1 H-pyrazole-4-carboxamide derivatives prepared by the reaction of substituted 5(3)-amino-pyrazole-4-carbonyl chloride with a substituted aniline. Their structures were identified by (1)H NMR and elemental analyses. The isomers D and E were isolated, and their structures were identified by two-dimensional NMR analyses (heteronuclear single quantum coherence and heteronuclear multiple-bond correlation) and single-crystal X-ray diffraction analysis. The bioassay results showed that some of the title compounds exhibited both excellent herbicidal activity at a dose of 93.75 g/ha and strong inhibition against protoporphyrinogen oxidase activity in vitro. The structure-activity relationship showed that D16 possessed the highest activities both in vivo and in vitro when the N-substituted group of the pyrazole ring was allyl and the N-substituted group of benzooxazinone was propargyl.  相似文献   

17.
Thirty-eight new ester derivatives of carabrol were designed, synthesized, and characterized by (1)H and (13)C NMR and HR-ESI-MS. Their antifungal activities against the fungal pathogen Colletotrichum lagenarium were evaluated using a spore germination assay. Of these 38 ester derivatives, 16 showed higher antifungal activity than that of carabrol and 7 showed higher antifungal activity than that of carabrone. It was found that the C-4 position of carabrol was a key position involving its antifungal activity, which showed the variation of 50% inhibition concentration (IC(50)) from 2.70 to 52.33 μg/mL. When substituted by the phenyl ring, the ester derivatives with electron-attracting groups showed higher activity than those with electron-donating ones. Two ester derivatives, carabryl 4-cynaobenzoate (II-17, IC(50) 2.70 μg/mL) and carabryl 4-isopropylbenzoate (II-27, IC(50) 2.82 μg/mL), showed only slightly lower antifungal activity than that of the positive control chlorothalonil (IC(50) 0.87 μg/mL) and have been identified as promising leads for development of new environmentally friendly fungicides.  相似文献   

18.
A novel A-seco limonoid was isolated from methanolic extract of Croton jatrophoides and designated as zumsin. This compound showed potent antifeedant activity against two lepidopteran larvae, pink bollworm, Pectinophora gossypiella (PC(50) = 1 microg/cm(2), PC(95) = 8 microg/cm(2)), and fall armyworm, Spodoptera frugiperda (PC(50) = 2 microg/cm(2), PC(95) = 16 microg/cm(2)). The structure of zumsin was determined as 1 using a variety of spectroscopic methods including nuclear magnetic resonance, mass spectrometry, and circular dichroism. The structure consists of an A'-B trans-fused ring while dumsin (2), a constituent of the same source, maintains an A'-B cis-fused ring, and suggests two unique biosynthetic processes after A ring oxidative expansion.  相似文献   

19.
This paper reports the development of a novel electrochemical assay for xanthohumol (XN) by square-wave adsorptive-stripping voltammetry (SWAdSV) with a hanging mercury drop electrode. The method showed good repeatability (CV < 2%) and linearity (between 10 and 250 μg L(-1)), as well as suitable limits of detection (2.6 μg L(-1)) and quantification (8.8 μg L(-1)). The method was applied for the quantification of this compound in spent hops, and the results obtained were compared with the HPLC-UV method. XN contents determined by the SWAdSV method were 16 ± 1 and 100 ± 4 μg L(-1) for aqueous and methanolic extracts, respectively. The developed new methodology considerably reduces the analysis time, approximately from 25 min (HPLC-UV method) to 7 min, enabling a high sample throughput. In addition, the detection and quantification limits were approximately 5-fold lower than those obtained with the chromatographic method.  相似文献   

20.
The yeast Saccharomyces cerevisiae was used in a high-throughput bioassay to identify phenolic agents for control of the aflatoxigenic fungus Aspergillus flavus. Veratraldehyde, 1, cinnamic acid, 5, and the respective benzoic acid derivatives vanillin, 2, vanillic acid, 3, and vanillylacetone, 4, and cinnamic acid derivatives o-coumaric acid, 6, m-coumaric acid, 7, and p-coumaric acid, 8, showed significant antifungal activities (from highest to lowest, 2, 5 > 1 > 6, 7 > 4 > 3, 8) in the yeast system, with caffeic acid, 9, having little to no effect. Antifungal activity levels against A. flavus were similar. This similarity in antifungal activity demonstrated the usefulness of the S. cerevisiae bioassay for screening antifungal compounds. Assays using deletion mutants of yeast identified signal transduction and antioxidative stress response genes important to fungal tolerance. Targeting the antioxidative stress response system with certain compounds (e.g., 4) in combination with strobilurin fungicides had a synergistic effect against both fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号