首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
先对负载敏感液压系统中重要元件进行阐述,后对不同类型的负载敏感液压系统基本原理进行介绍,便于全面认识、理解和掌握负载敏感技术。最后给出负载敏感技术在拖拉机液压系统上的应用实例分析,对负载敏感技术在国内拖拉机液压系统上的推广与应用具有一定的指导意义。  相似文献   

2.
液压变压器及其在液压系统中的节能应用   总被引:3,自引:0,他引:3  
液压变压器是在恒压网络二次调节系统下发展起来的液压元件。阐述了液压变压器的节能思想,介绍了两种典型液压变压器的工作原理与特点,并对液压变压器的应用进行了论述。提出一种采用液压变压器的液压节能系统.对其工作原理及能量流分配进行了分析,在同一载荷下对比了几种典型液压系统的装机功率,结果表明采用液压变压器的液压系统,明显降低了系统的装机功率。液压变压器应用到多执行机构液压系统中,不仅降低了系统能耗.同时也简化了液压系统。  相似文献   

3.
基于ADAMS的挖掘机液压系统仿真技术   总被引:11,自引:7,他引:4  
对挖掘机液压系统进行理论建模分析,研究在ADAMS中建立液压系统仿真模型,以及液压系统和机械系统动力学模型的关联集成技术。进行基于机构动力学解算的挖掘机液压系统仿真,在空载和加载工况下进行试验和仿真分析,通过对仿真与试验数据的对比,验证了利用该方法建立的挖掘机液压系统模型的精确性。  相似文献   

4.
以高速冲床的液压控制系统作为研究对象,对该液压系统的动态性能进行研究。首先对液压控制系统进行数学模型建立和动态分析,然后利用Simulate软件对该液压控制系统的频率与时域特性进行分析。结果表明:高速冲床液压控制系统在快降行程、冲压行程、返回行程中都稳定,但是高速液压冲床在快降行程、冲压行程、返回行程时的阶跃响应调节时间偏长,超调量过大,严重影响了冲床在冲压过程中的快速性及稳定性。  相似文献   

5.
曹敏 《南方农机》2019,(13):113-114
某钢铁制造企业连铸机大包滑动水口液压系统和出坯翻钢液压系统,在生产过程中发生了溢流阀和单向阀等液压元件故障失控现象,致整套液压系统失压,整条生产线瘫痪停产,针对这些故障现象,文章对设备的液压系统进行了分析,提出并实施对连铸机大包滑动水口液压系统和出坯翻钢液压系统的供压源控制阀块进行改造,通过改造后,经运行检验,取得了良好效果。  相似文献   

6.
在液压系统的使用过程中,关系到很多方面技术的应用,特别是液压系统油液清洁及管路冲洗技术,这对于液压系统的运行具有十分重要的意义,本文主要对液压系统可能产生的危害以及液压系统已经存在的污染物的种类、产生污染的主要原因进行了研究,最后提出解决措施。希望本文的研究能够促进液压系统使用寿命的延长。  相似文献   

7.
液压系统故障会影响拖拉机的正常工作,给使用带来困难。本文对拖拉机液压系统常见故障:液压系统进入空气、油泵供油不足或无油压、液压系统工作时油温过高、分配器手柄不能回位故障进行了分析及介绍了故障的排除方法。  相似文献   

8.
液压驱动链锯是林木联合采育机采育头的关键执行部件,用于采伐锯切原木,完成伐木过程的造材作业。为了对比采育头串、并联锯切液压系统的优劣,在获得采育头锯切作业性能参数的基础上,对采育头锯切机构进行虚拟样机建模,对锯切作业过程进行研究与分析。基于AMEsim软件平台构建了采育头锯切作业的串联液压系统、并联液压系统的仿真模型,进行液压作业仿真,对仿真结果进行对比与分析,发现并联系统的功率利用率高于串联系统。   相似文献   

9.
SD7高驱动推土机底盘液压系统主要由底盘液压系统油泵、变速箱控制阀、转向与制动控制阀、顺序阀、变矩器出口溢流阀、滤油器及各种连接管路组成.本文对SD7高驱动推土机底盘液压系统挂挡后车不能行驶、底盘系统油温过高、推土无力三种液压系统故障诊断和排查进行了简单分析.  相似文献   

10.
挖掘机液压系统中最常见的故障就是液压系统的发热故障问题。液压系统发热会影响其液压系统的正常运行,并产生一系列的问题,严重干扰着挖掘机的工作。因此,必须对挖掘机液压系统发热故障的影响因素进行分析和了解,及时的进行预防,减少液压系统发热带来的负面影响,以此来推动挖掘机技术的发展,增强企业的效益。  相似文献   

11.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

12.
In Mexico, corn production, part of which is sweet corn, is mainly destined for human consumption. In the present work, the morphological quality of sweet corn ears was assessed in response to four levels of soil moisture tension indicating irrigation start (−5, −30, −55, and −80 kPa) and three levels of phosphate fertilization (60, 80 and 100 kg ha−1) in carstic soils in the south-east of Mexico. A factorial experimental design with three replicates was used. The following variables were determined: fresh weight (SCFWh), dry weight (SCDWh), diameter (SCDh), and length (SCLh) of sweet corn ears, all without husk, as well as number of kernels (NKxE), number of unfilled kernels (NUK), number of rows (NRxE), and dry kernel weight per ear (DKW). Yield of fresh (YFSCh) and dry (YDSCh) sweet corn ears, both without husk, and the harvest index (HI) were also determined. HI did not show significant statistical differences among irrigation or fertilization treatments. Regarding the other variables, the effect of the more humid treatments (−5 and −30 kPa) and the effect of the higher phosphorus doses (80 and 100 kg ha−1) were statistically equal (P ≤ 0.01) with the lowest NUK and the highest values of all other variables; therefore, irrigation start at soil moisture tension of −30 kPa and phosphate fertilization application of 80 kg ha−1 are recommended. At this level of soil moisture, the mean values over the three fertilization levels and all the replicates, obtained for SCFWh, SCDh, SCLh and NKxE were 198.5 g, 4.39 cm, 26.72 cm and 467 grains, respectively. According to the regression models, moisture tensions from −11.8 to −24.0 kPa, and phosphate fertilization doses from 87.7 to 102.2 kg ha−1 minimize NUK and maximize the values of the rest of the variables. The highest irrigation water use efficiency was found in the moisture tension treatment of −30 kPa with an increase of 27 kg ha−1 ears for each millimeter of applied irrigation water.  相似文献   

13.
Grapevines are extensively grown in the semiarid and arid regions, but little information is available on the variability of energy partitioning and resistance parameters for the vineyard. To address this question, an eddy covariance system was applied to measure energy balance over a vineyard in northwest China during 2005-2006. Result indicated that 2-year average Bowen ratio (β) of vineyard was 1.0, canopy resistance (rc) 289.3 s m−1, aerodynamic resistance (ra) 9.7 s m−1 and climatological resistance (ri) 117 s m−1. This implied that the annual energy was split almost equally between sensible heat and latent heat. Compared to the corresponding values in other ecosystems reported by Wilson et al. [Wilson, K.B., Baldocchi, D.D., Aubinet, M., Berbigier, P., Bernhofer, C., Dolman, H., Falge, E., Field, C., Goldstein, A., Granier, A., Grelle, A., Halldor, T., Hollinger, D., Katul, G., Law, B.E., Lindroth, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., Verma, S., Vesala, T., Wofsy, S., 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resource Research 38, 1294-1305.], the vineyard had a higher β, rc and ri than deciduous forests, corn and soybean, and grassland. Such difference was mainly attributed to (1) serious water stress in 2005, which resulted in a greater rc up to 364.4 s m−1; (2) sparse canopy with row spacing of 2.9 m and plant spacing of 1.8 m; (3) warm-dry climate and high attitude (1581 m) along with higher ri and lower psychrometer (54 Pa K−1) in the arid region of northwest China. These characters of vineyard revealed varying process of energy partitioning and surface resistance, and provided a scientific basis in understanding and modeling water and energy balance for the vineyard in the semiarid and arid regions.  相似文献   

14.
The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.  相似文献   

15.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

16.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

17.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

18.
The seasonal and annual variability of sensible heat flux (H), latent heat flux (LE), evapotranspiration (ET), crop coefficient (Kc) and crop water productivity (WPET) were investigated under two different rice environments, flooded and aerobic soil conditions, using the eddy covariance (EC) technique during 2008-2009 cropping periods. Since we had only one EC system for monitoring two rice environments, we had to move the system from one location to the other every week. In total, we had to gap-fill an average of 50-60% of the missing weekly data as well as those values rejected by the quality control tests in each rice field in all four cropping seasons. Although the EC method provides a direct measurement of LE, which is the energy used for ET, we needed to correct the values of H and LE to close the energy balance using the Bowen ratio closure method before we used LE to estimate ET. On average, the energy balance closure before correction was 0.72 ± 0.06 and it increased to 0.99 ± 0.01 after correction. The G in both flooded and aerobic fields was very low. Likewise, the energy involved in miscellaneous processes such as photosynthesis, respiration and heat storage in the rice canopy was not taken into consideration.Average for four cropping seasons, flooded rice fields had 19% more LE than aerobic fields whereas aerobic rice fields had 45% more H than flooded fields. This resulted in a lower Bowen ratio in flooded fields (0.14 ± 0.03) than in aerobic fields (0.24 ± 0.01). For our study sites, evapotranspiration was primarily controlled by net radiation. The aerobic rice fields had lower growing season ET rates (3.81 ± 0.21 mm d−1) than the flooded rice fields (4.29 ± 0.23 mm d−1), most probably due to the absence of ponded water and lower leaf area index of aerobic rice. Likewise, the crop coefficient, Kc, of aerobic rice was significantly lower than that of flooded rice. For aerobic rice, Kc values were 0.95 ± 0.01 for the vegetative stage, 1.00 ± 0.01 for the reproductive stage, 0.97 ± 0.04 for the ripening stage and 0.88 ± 0.03 for the fallow period, whereas, for flooded rice, Kc values were 1.04 ± 0.04 for the vegetative stage, 1.11 ± 0.05 for the reproductive stage, 1.04 ± 0.05 for the ripening stage and 0.93 ± 0.06 for the fallow period. The average annual ET was 1301 mm for aerobic rice and 1440 mm for flooded rice. This corresponds to about 11% lower total evapotranspiration in aerobic fields than in flooded fields. However, the crop water productivity (WPET) of aerobic rice (0.42 ± 0.03 g grain kg−1 water) was significantly lower than that of flooded rice (1.26 ± 0.26 g grain kg−1 water) because the grain yields of aerobic rice were very low since they were subjected to water stress.The results of this investigation showed significant differences in energy balance and evapotranspiration between flooded and aerobic rice ecosystems. Aerobic rice is one of the promising water-saving technologies being developed to lower the water requirements of the rice crop to address the issues of water scarcity. This information should be taken into consideration in evaluating alternative water-saving technologies for environmentally sustainable rice production systems.  相似文献   

19.
Free-drainage or “open” substrate system used for vegetable production in greenhouses is associated with appreciable NO3 leaching losses and drainage volumes. Simulation models of crop N uptake, N leaching, water use and drainage of crops in these systems will be useful for crop and water resource management, and environmental assessment. This work (i) modified the TOMGRO model to simulate N uptake for tomato grown in greenhouses in SE Spain, (ii) modified the PrHo model to simulate transpiration of tomato grown in substrate and (iii) developed an aggregated model combining TOMGRO and PrHo to calculate N uptake concentrations and drainage NO3 concentration. The component models simulate NO3-N leached by subtracting simulated N uptake from measured applied N, and drainage by subtracting simulated transpiration from measured irrigation. Three tomato crops grown sequentially in free-draining rock wool in a plastic greenhouse were used for calibration and validation. Measured daily transpiration was determined by the water balance method from daily measurements of irrigation and drainage. Measured N uptake was determined by N balance, using data of volumes and of concentrations of NO3 and NH4+ in applied nutrient solution and drainage. Accuracy of the two modified component models and aggregated model was assessed by comparing simulated to measured values using linear regression analysis, comparison of slope and intercept values of regression equations, and root mean squared error (RMSE) values. For the three crops, the modified TOMGRO provided accurate simulations of cumulative crop N uptake, (RMSE = 6.4, 1.9 and 2.6% of total N uptake) and NO3-N leached (RMSE = 11.0, 10.3, and 6.1% of total NO3-N leached). The modified PrHo provided accurate simulation of cumulative transpiration (RMSE = 4.3, 1.7 and 2.4% of total transpiration) and cumulative drainage (RMSE = 13.8, 6.9, 7.4% of total drainage). For the four cumulative parameters, slopes and intercepts of the linear regressions were mostly not statistically significant (P < 0.05) from one and zero, respectively, and coefficient of determination (r2) values were 0.96-0.98. Simulated values of total drainage volumes for the three crops were +21, +1 and −13% of measured total drainage volumes. The aggregated TOMGRO-PrHo model generally provided accurate simulation of crop N uptake concentration after 30-40 days of transplanting, with an average RMSE of approximately 2 mmol L−1. Simulated values of average NO3 concentration in drainage, obtained with the aggregated model, were −7, +18 and +31% of measured values.  相似文献   

20.
In 2004 and 2005, the feasibility of agricultural use of saline aquaculture wastewater for irrigation of Jerusalem artichoke and sunflower was conducted in the Laizhou region using saline aquaculture wastewater mixed with brackish groundwater at different ratios. Six treatments with different electrical conductivities (EC) were included in the experiment: CK1 (rainfed), CK2 (irrigation with freshwater, EC of 0.02 dS m−1), and saline aquaculture wastewater (EC of 39.2 dS m−1) mixed with brackish groundwater (EC of 4.4 dS m−1) at volumetric ratios of 1:1, 1:2, 1:3, and 1:4 with corresponding EC of 22.0, 16.1, 13.2, and 11.4 dS m−1. Soil electrical conductivity (ECe) in the saline aquaculture wastewater irrigation treatments was significantly higher (P ≤ 0.05) than that in the rainfed or freshwater irrigation treatments, and the maximum value occurred in the 22.0 dS m−1 treatment. The sodium adsorption ratio (SAR) ranged from 4.1 to 11.7 mmol1/2 L−1/2 and increased with decreasing salinity of irrigation water. The biomass of Jerusalem artichoke significantly decreased (P ≤ 0.05) when irrigated with saline aquaculture wastewater compared to the rainfed or freshwater irrigation treatments; however, the effect of salinity on root biomass was much smaller than the aerial parts. Concomitantly, the highest tuber yield of Jerusalem artichoke occurred in the 11.4 dS m−1 treatment, while the highest seed yield of sunflower occurred in the rainfed treatment. Additionally, nitrogen and phosphorus concentrations of Jerusalem artichoke were significantly higher in the 11.4 dS m−1 treatment than the other treatments. This study demonstrated that properly diluted saline aquaculture wastewater can be used successfully to irrigate Jerusalem artichoke with higher economic yield and nutrient removal, but not sunflower due to the difference in salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号