首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Toxocara canis has extraordinary abilities to survive for many years in the tissues of diverse vertebrate species, as well as to develop to maturity in the intestinal tract of its definitive canid host. Human disease is caused by larval stages invading musculature, brain and the eye, and immune mechanisms appear to be ineffective at eliminating the infection. Survival of T. canis larvae can be attributed to two molecular strategies evolved by the parasite. Firstly, it releases quantities of ‘excretory–secretory’ products which include lectins, mucins and enzymes that interact with and modulate host immunity. For example, one lectin (CTL-1) is very similar to mammalian lectins, required for tissue inflammation, suggesting that T. canis may interfere with leucocyte extravasation into infected sites. The second strategy is the elaboration of a specialised mucin-rich surface coat; this is loosely attached to the parasite epicuticle in a fashion that permits rapid escape when host antibodies and cells adhere, resulting in an inflammatory reaction around a newly vacated focus. The mucins have been characterised as bearing multiple glycan side-chains, consisting of a blood-group-like trisaccharide with one or two O-methylation modifications. Both the lectins and these trisaccharides are targeted by host antibodies, with anti-lectin antibodies showing particular diagnostic promise. Antibodies to the mono-methylated trisaccharide appear to be T. canis-specific, as this epitope is not found in the closely related Toxocara cati, but all other antigenic determinants are very similar between the two species. This distinction may be important in designing new and more accurate diagnostic tests. Further tools to control toxocariasis could also arise from understanding the molecular cues and steps involved in larval development. In vitro-cultivated larvae express high levels of four mRNAs that are translationally silenced, as the proteins they encode are not detectable in cultured larvae. However, these appear to be produced once the parasite has entered the mammalian host, as they are recognised by specific antibodies in infected patients. Elucidating the function of these genes, or analysing if micro-RNA translational silencing suppresses production of the proteins, may point towards new drug targets for tissue-phase parasites in humans.  相似文献   

3.
微小RNA(microRNAs,miRNAs)是一类长度为20~25个核苷酸的非编码RNA,可抑制靶基因转录后表达,进而影响细胞的生长功能。研究表明:miRNAs可通过抑制凋亡、抑制吞噬体溶酶体融合、干扰信号转导、抑制ROS(reactive oxygen species)和RNS(reactive nitrogen species)毒性反应、抑制自噬等机制参与结核分枝杆菌抵抗宿主细胞免疫杀伤的过程。本文简要介绍miRNAs在结核分枝杆菌逃逸宿主细胞免疫杀伤过程中的作用,进一步揭示结核病的发病机制。  相似文献   

4.
The innate immune system provides the host's first line of defence against invading pathogens. Key to the stimulation of the innate immune response is pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs), which recognize microbial-associated molecular patterns (MAMPs). Binding of MAMPs to TLRs triggers a signalling cascade resulting in the production of pro-inflammatory mediators. Central to this TLR signalling pathway are heterotypic protein–protein interactions mediated through Toll/interleukin-1 receptor (TIR) domains found in both the cytoplasmic regions of TLRs and several key adaptor proteins. Interestingly, TIR-domain containing proteins (Tcps) do not seem to be unique to the mammalian TLR system, but occurs in abundance in many biological forms. Recent evidence suggests that pathogenic bacteria have developed a range of ingenuous strategies to evade the host immune mechanisms involving Tcps. There is increasing evidence to suggest that these pathogen-encoded Tcps interfere directly with the TLR signalling pathway and thus inhibit the activation of NF-κB, with different modes of action and roles in virulence. Here, we review the current state of knowledge on the possible roles and mechanisms of action of bacterial encoded Tcp.  相似文献   

5.
In studies to develop an oral rabies vaccine for wildlife, the immune response to and pathogenicity of two types of mutants of rabies viruses were examined. Forty-five small plaque mutants were selected from cultures of ERA rabies virus treated with 8-azaguanine or 5-fluorouracil and tested for pathogenicity in mice. Two of these mutants AZA 1 and AZA 2 (low pathogenicity in mice) were given to skunks by oral (bait), intestinal (endoscope) and intramuscular routes. Additionally, challenge virus standard (CVS) rabies virus and mutants of this and ERA rabies virus (CVS 3766 and 3713, and ERA 3629) that were resistant to neutralization by specific antiglycoprotein monoclonal antibodies (and apathogenic in mice) were tested by various routes in skunks. Skunks given AZA 1 and AZA 2 were challenged at three months postinoculation with street rabies virus. After oral administration, there were very low rates of seroconversion with AZA 1 and AZA 2 and on challenge only 2/7 given AZA 1 and 1/8 given AZA 2 survived. None of the skunks given the other mutants orally seroconverted. AZA 2 produced a high rate of seroconversion (8/8) by the intestinal route and all challenged skunks in this group survived (7/7). All skunks vaccinated intramuscularly with AZA 1 (4/4) or AZA 2 (4/4) developed high levels of rabies neutralizing antibodies and survived challenge. The mutant CVS 3766, while apathogenic when given intracerebrally to adult mice, was consistently pathogenic by this route (and intranasally) in skunks. These results demonstrate that skunks are highly resistant to oral immunization by live rabies virus vaccines and that pathogenicity (by intracerebral route) of the mutant CVS 3766 is markedly different in mice and skunks.  相似文献   

6.
ABSTRACT: Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century.Table of contentsAbstract1. The virus2. History3. Pathogenesis and disease symptoms4. Immunomodulatory proteins of MYXV4.1. MYXV proteins with anti-apoptotic functions4.1.1. Inhibition of pro-apoptotic molecules4.1.2. Inhibition by protein-protein interactions by ankyrin repeat viral proteins4.1.3. Inhibition of apoptosis by enhancing the degradation of cellular proteins4.1.4. Inhibition of apoptosis by blocking host Protein Kinase R (PKR)4.2. MYXV proteins interfering with leukocyte chemotaxis4.3. MYXV serpins that inhibit cellular pro-inflammatory or pro-apoptotic proteases4.4. MYXV proteins that interfere with leukocyte activation4.5. MYXV proteins with sequence similarity to HIV proteins4.6. MYXV proteins with unknown immune function5. Vaccination strategies against myxomatosis5.1. Current MYXV vaccines5.2. Vaccination campaigns to protect European rabbits in the wild6. Applications of myxoma virus for human medicine6.1. MYXV proteins as therapeutics for allograft vasculopathy and atherosclerosis6.2. Applications for MYXV as a live oncolytic virus to treat cancer7. Discussion and Conclusions8. List of AbbreviationsReferencesAuthor DetailsAuthors' contributionsCompeting interestsFigure LegendsAcknowledgements.  相似文献   

7.
Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.  相似文献   

8.
9.
The influenza virus vaccines that are commercially-available for humans, horses and pigs in the United States are inactivated, whole-virus or subunit vaccines. While these vaccines may decrease the incidence and severity of clinical disease, they do not consistently provide complete protection from virus infection. DNA vaccines are a novel alternative to conventional vaccination strategies, and offer many of the potential benefits of live virus vaccines without their risks. In particular, because immunogens are synthesized de novo within DNA transfected cells, antigen can be presented by MHC class I and II molecules, resulting in stimulation of both humoral and cellular immune responses. Influenza virus has been used extensively as a model pathogen in DNA vaccine studies in mice, chickens, ferrets, pigs, horses and non-human primates, and clinical trials of DNA-based influenza virus vaccines are underway in humans. Our studies have focused on gene gun delivery of DNA vaccines against equine and swine influenza viruses in mice, ponies and pigs, including studies employing co-administration of interleukin-6 DNA as an approach for modulating and adjuvanting influenza virus hemagglutinin-specific immune responses. The results indicate that gene gun administration of plasmids encoding hemagglutinin genes from influenza viruses is an effective method for priming and/or inducing virus-specific immune responses, and for providing partial to complete protection from challenge infection in mice, horses and pigs. In addition, studies of interleukin-6 DNA co-administration in mice clearly demonstrate the potential for this approach to enhance vaccine efficacy and protection.  相似文献   

10.
Cellular immune responses of peripheral blood lymphocytes to canine distemper virus and measles virus were determined in vaccinated or infected gnotobiotic dogs, using the technique of syncytia inhibition. Cross-reactivity between viruses was detected in both groups of dogs. Peak responses in vaccinated dogs occurred 11 days after vaccination and declined to base-line levels by 3 weeks, whereas responses in infected dogs were present 30 days after inoculation. Fractionation experiments with peripheral blood lymphocytes indicated that synctia inhibition is probably mediated by T lymphocytes.  相似文献   

11.
Enteric viruses are a major cause of diarrhea in animals and humans. Among them, rotaviruses are one of the most important causes of diarrhea in young animals and human infants. A lack of understanding of mechanisms to induce intestinal immunity and the correlates of protective immunity in neonates has impaired development of safe and effective vaccines against enteric viruses. Studies of candidate vaccines using an adult mouse model of subclinical enteric viral infections often do not predict vaccine efficacy against disease evaluated in neonatal large animals. A series of studies have been conducted using a neonatal gnotobiotic pig model of rotavirus infection and diarrhea to identify correlates of protective immunity and to evaluate traditional and novel vaccine approaches for the induction of mucosal immune responses and protection to enteric viruses. Gnotobiotic pigs recovered from infection with virulent Wa human rotavirus (HRV) (mimic natural infection) had high numbers of intestinal IgA rotavirus-specific primary antibody-secreting cells (ASCs) and memory B-cells (to recall antigen) measured by ELISPOT assay, which correlated with complete protection against rotavirus challenge. Most short-term IgA memory B-cells were resident in the ileum, the major site of rotavirus replication. Spleen, not the bone marrow, was the major resident site for longer-term IgG memory B-cells. Candidate rotavirus vaccines evaluated in pigs for their ability to induce intestinal or systemic ASC and protection against rotavirus infection and diarrhea included attenuated live virus, inactivated virus, and baculovirus-expressed double-layered rotavirus-like particles (2/6-VLPs). In combination with those candidate vaccines, various adjuvants, delivery systems, and immunization routes were tested, including incomplete Freund's adjuvant for i.m. immunization, and a mutant Escherichia coli heat labile enterotoxin R192G (mLT) for i.n. immunization. It was shown that orally administered replicating vaccines were most effective for priming for intestinal IgA ASC and memory B-cell responses, but i.n. administered non-replicating 2/6-VLPs plus mLT were effective as booster vaccines. We conclude that protective immunity depends on the magnitude, location, viral protein-specificity, and isotype of the antibody responses induced by vaccination. Therefore highly effective enteric viral vaccines should: (i) induce sufficient levels of intestinal IgA antibodies; (ii) include viral antigens that induce neutralizing antibodies; and (iii) require the use of effective mucosal adjuvants or antigen delivery systems for non-replicating oral or i.n. vaccines.  相似文献   

12.
基因芯片检测技术在禽类病原检测方面的研究进展   总被引:1,自引:0,他引:1  
《中国兽医学报》2019,(1):188-192
基因芯片是继PCR后发展起来的一项快速、特异性好、敏感性强及高通量等优点的自动化基因检测技术,被广泛地应用于药物筛选、基因研究和疾病诊断检测等方面。随着病原不断发生基因重组,变异等现象,禽类病毒不断逃避免疫保护导致了强毒株的出现。传统的芯片检测方法虽然能够实现病毒的检测,然而昂贵的仪器设备和较长的检测时间严重阻碍了芯片技术在实际生产中的应用。一种低成本、时间短、快速有效的新的基因芯片技术的开发和应用是解决当前禽业产业发展的必要手段。基因芯片检测技术方法的改良及应用已成为目前疾病诊断的研究热点。本研究主要综述了基因芯片检测技术在禽类疾病检测方面的发展现状,并对今后该技术的发展方向和重点作了展望。  相似文献   

13.
DNA疫苗以其独特优点而倍受青睐,但免疫效力较低制约着其广泛应用。本文从佐刺的使用、优化表达载体.优化抗原基因等方面综述了提高DNA疫苗免疫效力的策略,并对DNA疫苗前景进行了展望。  相似文献   

14.
Modulation of host immune responses by protozoal DNA   总被引:1,自引:0,他引:1  
The pathology caused by acute Babesia bovis infection is similar to that seen in severe human malaria caused by Plasmodium falciparum infection, which is related to dysregulated production of inflammatory cytokines and nitric oxide (NO). We have observed induction of NO, inducible nitric oxide synthase (iNOS) and inflammatory cytokines in macrophages by B. bovis. Furthermore, proliferation of lymphocytes from individuals never exposed to certain protozoal pathogens can be induced by crude protozoal parasite extracts. We have repeatedly observed stimulation of naive PBMC from cattle to antigenic extracts of Babesia bovis. Based on recent studies demonstrating the mitogenicity of bacterial and other non-vertebrate DNAs for murine B cells and macrophages, the mitogenic properties of B. bovis DNA were examined. B. bovis and E. coli DNAs induced proliferation of PBMC and purified B cells from non-exposed cattle. Stimulatory activity was reduced by DNase treatment and methylation with CpG methylase, indicating the presence of stimulatory non-methylated CpG motifs in the B. bovis genome. B. bovis and E. coli DNAs enhanced IgG secretion by cultured B cells, stimulating IgG1 and more strongly, IgG2. Several hexameric CpG immunostimulatory sequences (ISS) active for murine B cells were identified in an 11 kb fragment of B. bovis DNA. An oligodeoxyribonucleotide containing one of these (AACGTT), located in the rhoptry associated protein-1 (rap-1) open reading frame, stimulated B cell proliferation. These studies identify a potential mechanism by which protozoal parasites may modulate host immune responses, leading to consequences such as hypergammaglobulinemia and splenomegaly. These results also support the use of ISS as vaccine adjuvants to enhance Type 1 immune responses in cattle.  相似文献   

15.
Simian T-lymphotropic viruses and related human viruses   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
18.
为提高牛病毒性腹泻/粘膜病(BVD/MD)核酸疫苗的免疫效力,本实验应用PCR方法扩增BVD病毒(BVDV) E0基因,构建真核表达质粒pVAX1-E0,转染293T细胞,经RT-PCR和western blot分析显示,转染细胞能够瞬时表达E0蛋白.并分别将pVAX1、pVAX1-E0或将pVAX1-E0分别与一种表达细胞因子基因的重组质粒作为佐剂(pVAX1-IL-2、pVAX1-IL-4及pVAX1-IFN-γ)免疫小鼠,采用间接ELISA法检测免疫小鼠BVDV抗体效价,以MTT法检测免疫小鼠脾淋巴细胞的增殖活性.实验结果表明,与pVAX1-E0相比,接种pVAX1-E0/pVAX1-IL-2小鼠血清E0抗体水平及淋巴细胞增殖水平显著提高(p<0.01),表明细胞因子基因佐剂IL-2能够有效提高BVDV E0核酸疫苗免疫效果,可以刺激小鼠产生良好的免疫应答.  相似文献   

19.
20.
Virulence of six modified-live (ML) infectious laryngotracheitis (ILT) vaccine viruses was compared with that of 11 field isolates (indistinguishable from vaccine viruses by DNA restriction endonuclease analyses) by intratracheal exposure of 4-week-old, specific-pathogen-free chickens. Virulence of ILT viruses was based on an intratracheal pathogenicity index, mortality, and tracheal lesions. Intratracheal pathogenicity indices for ML vaccine viruses ranged from 0.0 to 0.14, while those for field isolates were 0.20 to 0.82. Mortality was a consistent clinical feature of field isolates; all produced mortality, with seven of the 11 isolates causing two or more deaths per inoculation group. In contrast, only one of six ML vaccine viruses produced mortality (one death per inoculation group). In general, tracheal lesions were more severe in chickens inoculated with field isolates and were produced more consistently than in chickens inoculated with vaccine viruses. These studies indicate that virulence of ILT field isolates was greater than that of ML vaccine viruses. Together with previous restriction endonuclease analyses, these findings suggest the possibility that field isolates originated from ML vaccine viruses through reversion to parental-type virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号