首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Leaf litter decomposition of Cunninghamia lanceolata, Michelia macclurei, and their mixture in the corresponding stands in subtropical China was studied using the litterbag method. The objective was to assess the influence of native evergreen broadleaved species on leaf litter decomposition. The hypotheses were: (1) M. macclurei leaf litter with lower C/N ratio and higher initial N concentration decomposed faster than C. lanceolata litter, (2) decomposition rates in litter mixtures could be predicted from single-species decay rates, and (3) litters decomposed more rapidly at the site that contained the same species as in the litterbag. The mass loss of leaf litter was positively correlated with initial N concentration and negatively correlated with C/N ratio. The decomposition rate of M. macclurei leaf litter was significantly higher than that of C. lanceolata needle litter in the pure C. lanceolata stand. Contrary to what would be predicted, the litter mixture decomposed more slowly than expected based on the results from component species decomposing alone. There was no significant difference in litter decomposition rate between different habitats.  相似文献   

2.
Improved fallows with leguminous trees have been developed in Southern Africa as a viable alternative to inorganic fertilizers but the changes in soil properties that are responsible for crop productivity improvement and implications of mixing litter and fresh leaves from the same tree species on soil fertility are not fully understood. Our objectives were to quantify (1) some changes in soil properties that are responsible for crop production improvement under improved fallow systems; (2) the N mineralization patterns of mixtures of litter and fresh leaves from the same tree species. The treatments used in the study were 2-year planted Sesbania sesban (sesbania) and Cajanus cajan (cajanus) and controls of natural fallow, continuous fertilized and unfertilized maize. At fallow clearing sesbania contributed 56 kg N ha–1 through litter and fresh leaves. Sesbania (fresh leaves + litter) showed high N mineralization after 10 weeks compared to the mixture of cajanus fresh leaves with litter. Maize yields were significantly correlated with preseason NO3-N and total inorganic-N content of the top 20-cm soil layer. Soil penetrometer resistance at 4 weeks after planting was lowest in the sesbania land-use system (2.2 Mpa), whereas the highest percentage of water-stable aggregates at fallow clearing and crop harvest was in sesbania (83%) and cajanus (77%), respectively. The improved soil conditions and N contribution of sesbania and cajanus fallows to the subsequent maize crop was evidenced by increased maize yields of between 170–200% over maize without fertilizer.  相似文献   

3.
This study aimed to investigate the effect of inoculation with plant growth-promoting Rhizobium and Pseudomonas species on NaCl-affected maize. Two cultivars of maize (cv. Agaiti 2002 and cv. Av 4001) selected on the basis of their yield potential were grown in pots outdoors under natural conditions during July. Microorganisms were applied at seedling stage and salt stress was induced 21 days after sowing and maintained up to 50% flowering after 120 days of stress. The salt treatment caused a detrimental effect on growth and development of plants. Co-inoculation resulted in some positive adaptative responses of maize plants under salinity. The salt tolerance from inoculation was generally mediated by decreases in electrolyte leakage and in osmotic potential, an increase in osmoregulant (proline) production, maintenance of relative water content of leaves, and selective uptake of K ions. Generally, the microbial strain acted synergistically. However, under unstressed conditions, Rhizobium was more effective than Pseudomonas but under salt stress the favorable effect was observed even if some exceptions were also observed. The maize cv. Agaiti 2002 appeared to be more responsive to inoculation and was relatively less tolerant to salt compared to that of cv. Av 4001.  相似文献   

4.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

5.

Purpose  

Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China.  相似文献   

6.
Trigeneric hybrids may help establish evolutionary relationships among different genomes present in the same cellular-genetic background, and also offers the possibility to transfer different alien characters into cultivated wheat. In this study, a new trigeneric hybrid involving species from the Triticum, Psathyrostachys and Secale was synthesized by crossing wheat-P. huashanica amphiploid (PHW-SA) with wheat-S. cereale amphiploid (Zhongsi 828). The crossability of F1 hybrid was high with 35.13%, and the fertility was 41.95%. The morphological characteristics of F1 plants resembled the parent Zhongsi 828. The trigeneric hybrids pollen mother cells (PMCs) regularly revealed averagely 19.88 univalents, 9.63 ring bivalents, 3.97 rod bivalents, 0.60 trivalents and 0.03 tetravalents per cell. Multivalents consisted of trivalents and tetravalents can be observed in 52.7% of cells. A variation of abnormal lagging chromosome, micronuclei and chromosome bridge were formed at anaphase I and telophase II. The mean chromosomes number of F2 progenies was 2n = 46.13, and the distribution range was 42–53. GISH results revealed that most F2 plants had 6–12 S. cereale chromosomes, and only 0–2 P. huashanica chromosomes were detected. The results indicated that S. cereale chromosomes can be preferentially transmitted in the F2 progenies of trigeneric hybrid than P. huashanica chromosomes. A survey of disease resistances revealed that the stripe rust resistance from the PHW-SA were completely expressed in the F1 and some F2 plants. The trigeneric hybrid could be a useful bridge for the transference of P. huashanica and S. cereale chromatins to common wheat.  相似文献   

7.
A pot experiment was conducted to evaluate the influence of pre-inoculation of cucumber plants with each of the three arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus mosseae, and Glomus versiforme on reproduction of the root knot nematode Meloidogyne incognita. All three AM fungi tested significantly reduced the root galling index, which is the percentage of total roots forming galls. Numbers of galls per root system were significantly reduced only in the G. intraradices + M. incognita treatment. The number of eggs per root system was significantly decreased by AM fungus inoculation, no significant difference among the three AM fungal isolates. AM inoculation substantially decreased the number of females, the number of eggs g−1 root and of the number of eggs per egg mass. The number of egg masses g−1 root was greatly reduced by inoculation with G. mosseae or G. versiforme. By considering plant growth, nutrient uptake, and the suppression of M. incognita together, G. mosseae and G. versiforme were more effective than G. intraradices.  相似文献   

8.
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.  相似文献   

9.
Neglected and underutilized species often play a vital role in securing food and livestock feed, income generation and energy needs of rural populations. In spite of their great potential little attention has been given to these species. This increases the possibility of genetic erosion which would further restrict the survival strategies of people in rural areas. Ziziphus spina-christi is a plant species that has edible fruits and a number of other beneficial applications that include the use of leaves as fodder, branches for fencing, wood as fuel, for construction and furniture making, and the utilization of different parts e.g. Fruits, leaves, roots and bark in folk medicine. Moreover, the plant is adapted to dry and hot climates which make it suitable for cultivation in an environment characterized by increasing degradation of land and water resources. Lack of research in Z. spina-christi hinders its successful improvement and promotion. Therefore, studies are needed to fully exploit this species. This article aims at summarizing information on different aspects of Z. spina-christi to stimulate interest in this crop which is of importance in Sudan and other countries of the semi-arid tropics.
Amina Sirag SaiedEmail:
  相似文献   

10.
Nicotiana section Suaveolentes (Solanaceae) currently includes 28 species and subspecies that are endemic to Australasia and the South Pacific and one African species, N. africana. The section is monophyletic and of allotetraploid origin, but relationships among the species in it and its diploid progenitors are poorly understood. Here we report chromosome numbers for 20 of the 29 taxa from the Suaveolentes, including a count for one recently proposed species for which no number has previously been available. Many of the published chromosome numbers for the Suaveolentes are confirmed in this study. However, six counts were different from the published numbers including n = 15 for N. maritima and N. suaveolens, which is a new chromosome number for the genus. Nicotiana goodspeedii and N. rotundifolia were n = 16, and the same number was found in the suggested species N. sp. ‘Corunna’. Nicotiana suaveolens contains polyploid races of n = 32 and here we report the probable existence of an n = 31 race as well. Karyotypic variation within species and within the section is apparently much greater than previously thought and further investigation is warranted.  相似文献   

11.
Two methods of N transfer between plants—by litter decomposition and root-to-root exchange—were examined in mixed plantations of N-fixing and non-fixing trees. Nitrogen transfers from decaying litters were measured by placing 15N-labelled litters from four actinorhizal tree species around shoots of containerized Prunus avium. Nitrogen transfers by root-to-root exchanges were measured after foliar NO3-15N fertilization of Alnus subcordata and Elaeagnus angustifolia growing in containers in association with P. avium. During the first 2 years of litter decomposition, from 5–20% of the N, depending on the litter identity, was released and taken up by P. avium. N availability in the different litters was strongly correlated with the amount of water-soluble N, which was highest in leaves of E. angustifolia. In the association between fixing and non-fixing plants, 7.5% of the A. subcordata N and 25% of E. angustifolia N was transferred to P. avium by root exchange. These results showed that the magnitude of N transfers by root exchange depended on the associated N2-fixing species. Among the species investigated, E. angustifolia displayed the highest capacity for exudating N from roots as well as for releasing N from litters. These qualities make this tree a promising species for enhancing wood yields in mixed stands.  相似文献   

12.
Root colonization and mitigation of NaCl stress on wheat seedlings were studied by inoculating seeds with Azospirillum lipoferum JA4ngfp15 tagged with the green fluorescent protein gene (gfp). Colonization of wheat roots under 80 and 160 mM NaCl stress was similar to root colonization with this bacterial species under non-saline conditions, that is, single cells and small aggregates were mainly located in the root hair zone. These salt concentrations had significant inhibitory effects on development of seedlings, but not on growth in culture of gfp-A. lipoferum JA4ngfp15. Reduced plant growth (height and dry weight of leaves and roots) under continuous irrigation with 160 mM NaCl was ameliorated by bacterial inoculation with gfp-A. lipoferum JA4ngfp15. Inoculation of plants subjected to continuous irrigation with 80 mM NaCl or to a single application of either NaCl concentration (80 or 160 mM NaCl) did not mitigate salt stress. This study indicates that, under high NaCl concentration, inoculation with modified A. lipoferum reduced the deleterious effects of NaCl; colonization patterns on roots were unaffected and the genetic marker did not induce undesirable effects on the interaction between the bacterium and the plants.  相似文献   

13.
Cropping in low fertility soils, especially those poor in N, contributes greatly to the low common bean (Phaseolus vulgaris L.) yield, and therefore the benefits of biological nitrogen fixation must be intensively explored to increase yields at a low cost. Six field experiments were performed in oxisols of Paraná State, southern Brazil, with a high population of indigenous common bean rhizobia, estimated at a minimum of 103 cells g–1 soil. Despite the high population, inoculation allowed an increase in rhizobial population and in nodule occupancy, and further increases were obtained with reinoculation in the following seasons. Thus, considering the treatments inoculated with the most effective strains (H 12, H 20, PRF 81 and CIAT 899), nodule occupancy increased from an average of 28% in the first experiment to 56% after four inoculation procedures. The establishment of the selected strains increased nodulation, N2 fixation rates (evaluated by total N and N-ureide) and on average for the six experiments the strains H 12 and H 20 showed increases of 437 and 465 kg ha–1, respectively,in relation to the indigenous rhizobial population. A synergistic effect between low levels of N fertilizer and inoculation with superior strains was also observed, resulting in yield increases in two other experiments. The soil rhizobial population decreased 1 year after the last cropping, but remained high in the plots that had been inoculated. DGGE analysis of soil extracts showed that the massive inoculation apparently did not affect the composition of the bacterial community.  相似文献   

14.
The round melon Praecitrullus fistulosus (Stocks) Pangalo has been cultivated in Asia since ancient times and has been considered an underexploited crop in the western world. In the USA, there is an increased interest in using P. fistulosus as a commercial vegetable, and possibly as a rootstock for grafting watermelon, melon, or cucumber. However, the taxonomic classification of P. fistulosus is incomplete and for many years it has been considered a close relative of watermelon [Citrullus lanatus subsp. vulgaris (Schrad. ex Eckl. et Zeyh.) Fursa] and was previously classified as Citrullus lanatus subsp. fistulosus (Stocks) Duthie et J.B. Fuller. Here, we used two sets of DNA markers to assess the genetic similarity of P. fistulosus in relation to Citrullus spp. {including Citrullus lanatus subsp. vulgaris, C. lanatus subsp. lanatus, Citroides group [also known as C. lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.], and C. colocynthis (L.) Schrad.}, Cucumis spp. (including C. melo, C. sativus, C. anguria, C. meeusei, C. zeyheri), Benincasa hispida (Thunb.) Cogn., Lagenaria siceraria (Mol.) Standl. and Cucurbita spp. (including C. moschata Duchesne and the winter squash C. maxima Duchesne). The first marker set comprised 501 markers that were produced by 38 primer pairs derived from watermelon expressed sequenced tags (ESTs) containing simple sequence repeat (SSR) motifs (designated as EST-SSR primers; produced 311 markers), and by 18 primer pairs derived from ESTs that do not contain SSR motives (designated here as EST-PCR primers; produced 190 markers). The second marker set comprised 628 markers that were produced by 18 sequence related amplified polymorphism (SRAP) primer pairs. The phylogenetic data indicated that among these cucurbit species, the wax gourd B. hispida is the closest to the P. fistulosus. Pollen observations, using light microscopy, indicated that each of the cucurbit genera examined here has unique pollen morphology. The Cucurbita spp. have globular pollen grains with a stigmatic surface. The L. siceraria has polygonal pollen grains with symmetrical boundaries, while the Citrullus spp. and Cucumis spp. have ovular (conical) and triangular shaped pollen grains (respectively). The B. hispida and P. fistulosus have spherical or semispherical pollen grains. These pollen features appear to be in agreement with the phylogenetic relationships of these two species based on DNA markers. Analysis with 12 SRAP primer pairs revealed low genetic diversity among 18 United States Plant Introductions (PIs) of P. fistulosus, indicating the need to expand the germplasm collection of this cucurbit crop.  相似文献   

15.
The genus Arachis is divided into nine taxonomic sections. Section Arachis is composed of annual and perennial species, while section Heteranthae has only annual species. The objective of this study was to investigate the genetic relationships among 15 Brazilian annual accessions from Arachis and Heteranthae using RAPD markers. Twenty-seven primers were tested, of which nine produced unique fingerprintings for all the accessions studied. A total of 88 polymorphic fragments were scored and the number of fragments per primer varied from 6 to 17 with a mean of 9.8. Two specific markers were identified for species with 2n = 18 chromosomes. The phenogram derived from the RAPD data corroborated the morphological classification. The bootstrap analysis divided the genotypes into two significant clusters. The first cluster contained all the section Arachis species, and the accessions within it were grouped based upon the presence or absence of the ‘A’ pair and the number of chromosomes. The second cluster grouped all accessions belonging to section Heteranthae.  相似文献   

16.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

17.
Jarrah (Eucalyptus marginata Donn ex Smith) forest grows on poor soils with low stores of plant-available nutrients. We evaluated the impact of fertilizers on nutrient cycling in soil under Jarrah forest using a field study with three rates of P (0, 50, 200 kg P ha–1) and three rates of N (0, 100, 200 kg N ha–1) in a full factorial design. Litterfall was significantly increased by N application (30% relative to controls) in the first 2 years after treatment and by P application in the second year. The amounts of N, P, K, Ca and Mg in litterfall were also increased significantly by both N and P fertilizer. Although fertilizer treatments did not affect the total amount of litter accumulated on the forest floor over 4–5 years after application, there were large treatment differences in the amounts of N and P stored in the forest floor. Microbial respiration in litter was significantly greater (19%) on P-treated plots relative to controls, but this increase did not translate into increased decomposition rates as measured in long-term (5-year) mesh-bag studies. The results indicate that factors other than nutrition are mainly responsible for controlling the rate of decomposition in this ecosystem. Application of P, in particular, resulted in substantial accumulation of P in forest floor litter over 5 years. This accumulation was partly a result of the deposition of P in litterfall, but was also probably a result of translocation of P from the mineral soil. During the 5-year decomposition study, there was no net release of P from leaf litter and, at the highest rate of P application, the amounts of P stored in forest floor litter were more than four-fold greater than in fresh litter. Regular fire, a common phenomenon in these ecosystems, may be an important P-mobilizing agent for enhancing plant P uptake in these forests.  相似文献   

18.
Kobresia grasslands on the Tibetan Plateau comprise the world’s largest pastoral alpine ecosystem. Overgrazing-driven degradation strongly proceeded on this vulnerable grassland, but the mechanisms behind are still unclear. Plants must balance the costs of releasing C to soil against the benefits of accelerated microbial nutrient mineralization, which increases their availability for root uptake. To achieve the effect of grazing on this C-N exchange mechanism, a 15NH4+ field labeling experiment was implemented at grazed and ungrazed sites, with additional treatments of clipping and shading to reduce belowground C input by manipulating photosynthesis. Grazing reduced gross N mineralization rates by 18.7%, similar to shading and clipping. This indicates that shoot removal by grazing decreased belowground C input, thereby suppressing microbial N mining and overall soil N availability. Nevertheless, NH4+ uptake rate by plants at the grazed site was 1.4 times higher than at the ungrazed site, because plants increased N acquisition to meet the high N demands of shoot regrowth (compensatory growth: grazed > ungrazed). To enable efficient N uptake and regrowth, Kobresia plants have developed specific traits (i.e., efficient above-belowground interactions). These traits reflect important mechanisms of resilience and ecosystem stability under long-term moderate grazing in an N-limited environment. However, excessive (over)grazing might imbalance such C-N exchange and amplify plant N limitation, hampering productivity and pasture recovery over the long term. In this context, a reduction in grazing pressure provides a sustainable way to maintain soil fertility, C sequestration, efficient nutrient recycling, and overall ecosystem stability.  相似文献   

19.
Grains of 80 accessions of nine species of wild Triticum and Aegilops along with 15 semi-dwarf cultivars of bread and durum wheat grown over 2 years at Indian Institute of Technology, Roorkee, were analyzed for grain iron and zinc content. The bread and durum cultivars had very low content and little variability for both of these micronutrients. The related non-progenitor wild species with S, U and M genomes showed up to 3–4 folds higher iron and zinc content in their grains as compared to bread and durum wheat. For confirmation, two Ae. kotschyi Boiss. accessions were analyzed after ashing and were found to have more than 30% higher grain ash content than the wheat cultivars containing more than 75% higher iron and 60% higher zinc than that of wheat. There were highly significant differences for iron and zinc contents among various cultivars and wild relatives over both the years with very high broad sense heritability. There was a significantly high positive correlation between flag leaf iron and grain iron (r = 0.82) and flag leaf zinc and grain zinc (r = 0.92) content of the selected donors suggesting that the leaf analysis could be used for early selection for high iron and zinc content. ‘Chinese Spring’ (Ph I ) was used for inducing homoeologous chromosome pairing between Aegilops and wheat genomes and transferring these useful traits from the wild species to the elite wheat cultivars. A majority of the interspecific hybrids had higher leaf iron and zinc content than their wheat parents and equivalent or higher content than their Aegilops parents suggesting that the parental Aegilops donors possess a more efficient system for uptake and translocation of the micronutrients which could ultimately be utilized for wheat grain biofortification. Partially fertile to sterile BC1 derivatives with variable chromosomes of Aegilops species had also higher leaf iron and zinc content confirming the possibility of transfer of required variability. Some of the fertile BC1F3 and BC2F2 derivatives had as high grain ash and grain ash iron and zinc content as that of the donor Aegilops parent. Further work on backcrossing, selfing, selection of fertile derivatives, leaf and grain analyses for iron and zinc for developing biofortified bread and durum wheat cultivars is in progress. Nidhi Rawat, Vijay K. Tiwari, and Neelam Singh have contributed equally to the work.  相似文献   

20.
The diversity of 51 representative populations of the 5 Aegilops species from Moroccan collection was analyzed using 22 RAPD primers. We investigated the associations among these 5 Aegilops species (A. geniculata Roth (UUMM), A. triuncialis L. (UUCC), A. ventricosa Tausch (DDNN), A. peregrina (Hackel) Maire et Weiller (UUMM) and A. neglecta Req. ex Bert. subsp. recta (Zhuk.) K. Hammer (UUMMNN)); some diploid species considered as their ancestors; accessions of some neighboring countries and also accessions of Triticums. A total of 650 polymorphic RAPD fragments were amplified. A dendrogram was constructed using the un-weighed pair group method arithmetic average (UPGMA) and Jaccard`s similarity coefficient. The UPGMA clustering showed a regrouping to the level species with high level of the structuration of the diversity at A. geniculata. We confirm as reported by other authors, the proximity of N genome to U genome and C genome to M genome and also the difference between the genomes M and N. Thus, the phylogeny between the species and the different genomes were retracted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号