首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.  相似文献   

2.
Anodic Fenton treatment (AFT) is an electrochemical treatment employing the Fenton reaction for the generation of hydroxyl radicals, strong oxidants that can degrade organic compounds via hydrogen abstraction. AFT has potential use for the remediation of aqueous pesticide waste. The degradation rates of chloroacetanilides by AFT were investigated in this work, which demonstrates that AFT can be used to rapidly and completely remove chloroacetanilide herbicides from aqueous solutions. Acetochlor, alachlor, butachlor, metolachlor, and propachlor were treated by AFT, and parent compound concentrations were analyzed over the course of the treatment time. Degradation curves were plotted and fitted by the AFT kinetic model for each herbicide, and AFT model kinetic parameters were used to calculate degradation rate constants. The reactivity order of these five active ingredients toward hydroxyl radical was acetochlor approximately metolachlor > butachlor approximately alachlor > propachlor. Treatment of the chloroacetanilides by AFT removed the parent compounds but did not completely mineralize them. However, AFT did result in an increase in the biodegradability of chloroacetanilide aqueous solutions, as evidenced by an increase in the 5-day biochemical oxygen demand to chemical oxygen demand ratio (BOD5/COD) to >0.3, indicating completely biodegradable solutions. Several degradation products were formed and subsequently degraded, although not always completely. Some of these were identified by mass spectral analyses. Among the products, isomers of phenolic and carbonyl derivatives of parent compounds were common to each of the herbicides analyzed. More extensively oxidized products were not detected. Degradation pathways are proposed for each of the parent compounds and identified products.  相似文献   

3.
A butachlor-degrading strain, designated FLY-8, was isolated from rice field soil and was identified as Paracoccus sp. Strain FLY-8 could degrade and utilize six chloroacetamide herbicides as carbon sources for growth, and the degradation rates followed the order alachlor > acetochlor > propisochlor > butachlor > pretilachlor > metolachlor. The influence of molecular structure of the chloroacetamide herbicides on the microbial degradation rate was first analyzed; the results indicated that the substitutions of alkoxymethyl side chain with alkoxyethyl side chain greatly reduced the degradation efficiencies; the length of amide nitrogen's alkoxymethyl significantly affected the biodegradability of these herbicides: the longer the alkyl was, the slower the degradation efficiencies occurred. The phenyl alkyl substituents have no obvious influence on the degradation efficiency. The pathway of butachlor complete mineralization was elucidated on the basis of the results of metabolite identification and enzyme assays. Butachlor was degraded to alachlor by partial C-dealkylation and then converted to 2-chloro-N-(2,6-dimethylphenyl)acetamide by N-dealkylation, which subsequently transformed to 2,6-diethylaniline, which was further degraded via the metabolites aniline and catechol, and catechol was oxidized through an ortho-cleavage pathway. This study highlights an important potential use of strain FLY-8 for the in situ bioremediation of chloroacetamide herbicides and their metabolite-contaminated environment.  相似文献   

4.
The acetanilide compounds 2-chloro-2',6'-diethylacetanilide (CDA) and 2-hydroxy-2',6'-diethylacetanilide (HDA) are environmental degradative products of the chloroacetanilide herbicide alachlor. CDA, HDA, and alachlor are ground and surface water contaminants. CDA and HDA are genotoxic in bacterial and mammalian test systems. This paper reports hapten design in the development of two competitive enzyme-linked immunosorbent assays (cELISA) for the detection of CDA and HDA. Chloroacetanilide herbicides and other alachlor metabolites that may be present in environmental samples do not cross-react with the detection of CDA and HDA. Solid-phase extraction of CDA and HDA residues from aqueous samples results in a 1000-fold concentration factor, resulting in an effective detection limit of 15 pg/mL for both assays. The specificity of the cELISAs required preservation of the degree of substitution of the acetanilide moiety in the hapten design. The hapten synthesis strategies are suitable for metabolites of other chloroacetanilide herbicides (i.e., acetochlor, butachlor, metolachlor, and propachlor).  相似文献   

5.
乙草胺和异丙甲草胺在土壤中吸附的研究   总被引:29,自引:1,他引:28  
王琪全  刘维屏 《土壤学报》2000,37(1):95-101
本文研究比较了乙草胺和异丙甲草胺在6种土壤中的吸附,采用Freundlich方程对其吸附等温线进行描述,对Freundlich方程吸附常数Kat和Γ/n的乘积与土壤理化性质的相关性进行了分析,并探讨乙草胺和异丙甲草胺在腐殖酸上的吸附机理。结果表明,乙草胺和异丙甲草胺在土壤中吸附主要受土壤有机质支配,有机质含含量越高越有利于这两种除草剂在土壤上的吸附。异丙甲草胺在土壤中的吸附明显弱于乙草胺。氢键是乙  相似文献   

6.
Atrazine [6-chloro-N-ethyl-N′-(1-methyl)-1,3,5 triazine-2,3-diamine] and alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide] are agricultural herbicides used in large quantities and, as a consequence, are common contaminants in groundwater and surface water. The retention of these herbicides in soils and their degradation in aqueous environments is highly dependent upon their adsorption to solid surfaces. The adsorption of atrazine and alachlor was investigated on three typical Kansas and underlying aquifers known to be vulnerable to contamination. More alachlor was adsorbed to the soils and sediments than atrazine. The adsorption coefficients for atrazine were 2 to 5 times higher for soils than for aquifer sediments. For alachlor, the adsorption coefficients were 4 to 20 times higher for soil than for aquifer solids. Both linear and Freundlich isotherms represented the adsorption data well in all cases. The slope of the Freundlich isotherms, 1/n, was close to one, with the exception of alachlor adsorption onto the Topeka aquifer sediment (1/n = 0.67). The K d values found in these studies were comparable to the lower range of those reported in the literature.  相似文献   

7.
Abstract. Uniform application rates of fertilizers and herbicides may result in over-treating some soils and under-treating others; costs may be unnecessarily large and soil, ground water and surface waters may be contaminated. An alternative is site specific treatment, tailored to individual soil types present in agricultural fields of any size. To study the pollution hazards of the herbicide alachlor, leaching and adsorption experiments used disturbed samples and undisturbed soil columns. Adjoining Ves, Normania and Webster soil series (Udic Haplustoll; Aquic Haplustoll; Typic Haplaquoll) were sampled and analysed for various properties. Ring uniformly 14C-labelled alachlor was used to study adsorption and leaching characteristics in these soils. Results show different alachlor behaviour in topsoil and subsoil layers.  相似文献   

8.
There is increasing concern about modifications to pesticide persistence in soil from the application of organic wastes as fertilizers. This study was conducted to discriminate the multiple effects of biogas residues (BR) amendment, including soil nutrients, soil microbial activity and biodiversity, and adsorption and degradation of chloroacetanilide herbicides (acetochlor, metolachlor, and butachlor). Addition of BR to soil increased the release of organic materials (i.e., dissolved organic carbon, dissolved organic nitrogen, and active phosphorus). It not only stimulated soil microorganisms and caused changes to microorganism diversity but also increased herbicide adsorption. Such multiple effects led to selective decontamination of chloroacetanilide herbicides, depending on herbicide structures and BR amendment levels. Stereoselectivity in degradation of acetochlor and metolachlor with biphasic character was magnified by BR amendment, which was well explained by integrating the impacts of BR amendment. Interestingly, BR amendment induced significant accumulation of herbicidally active aS,CS-metolachlor, facilitating the utilization of herbicidal activity.  相似文献   

9.
This study aimed to design formulations of hydrophobic herbicides, alachlor and metolachlor, by adsorbing them on the clay mineral montmorillonite preadsorbed by the small organic cation phenyltrimethylammonium (PTMA). An adsorption model that considers electrostatics and specific binding and the possibility of cation adsorption above the cation exchange capacity (CEC) could explain and yield predictions for PTMA adsorption in the presence of NaCl concentrations from 0 to 500 mM. Adsorption of alachlor and metolachlor from aqueous solution on a clay mineral preadsorbed by PTMA was determined by GC and modeled by Langmuir equation. Herbicide interactions with the organoclay were studied by Fourier transform infrared spectroscopy. Leaching of herbicides was determined by a bioassay using a column technique and Setaria viridis as a test plant. The adsorbed amounts of alachlor and metolachlor on montmorillonite preadsorbed by PTMA at a loading of 0. 5 mol/kg (Mont-PTMA0.5) were higher than at a loading up to the CEC, that is, 0.8 mol/kg, and were higher than those obtained by using several other organic cations. Herbicide formulations based on Mont-PTMA0.5 yielded the largest shifts of the infrared peaks of the herbicides. These formulations based on Mont-PTMA0.5 gave slower release and showed improved weed control in comparison with formulations based on other organoclays. These formulations maintained herbicidal activity in the topsoil and yielded the most significant reduction in herbicide leaching.  相似文献   

10.
采用批处理恒温振荡法,利用气相色谱一质谱联用仪研究了人工添加不同吸附物质对土壤中乙草胺的吸附/解吸作用。结果表明,人工添加不同吸附物质对土壤中乙草胺的吸附强度和吸附容量不同,不同的添加剂对土壤中乙草胺的吸附/解吸作用均呈现明显的非线性关系,可用Freundlich模型描述。并且随着土壤中添加量的增大,吸附强度增大、吸附容量增大、所得吸附等温线的非线性也逐步增大;另外,添加剂对乙草胺的解吸迟滞作用也随添加剂含量的增高而更加明显。但是不同添加剂对土壤中乙草胺的吸附能力有明显差异,其中煤粉的吸附能力最大,其次是壳聚糖,沸石最小。  相似文献   

11.
We introduced the human cytochrome P450 gene CYP2B6 into rice plants (Oryza sativa L. cv. Nipponbare), and the CYP2B6-expressing rice plants became more tolerant to various herbicides than nontransgenic Nipponbare rice plants. In particular, CYP2B6 rice plants grown in soil showed tolerance to the chloroacetanilide herbicides alachlor and metolachlor. We evaluated the degradation of metolachlor by CYP2B6 rice plants to confirm the metabolic activity of the introduced CYP2B6. Although both CYP2B6 and nontransgenic Nipponbare rice plants could decrease the amount of metolachlor in plant tissue and culture medium, CYP2B6 rice plants could remove much greater amounts. In a greenhouse, the ability of CYP2B6 rice plants to remove metolachlor was confirmed in large-scale experiments, in which these plants appeared able to decrease residual quantities of metolachlor in water and soil.  相似文献   

12.
The impact of two tillage systems, plow tillage (PT) and no-tillage (NT), on microbial activity and the fate of pesticides in the 0–5 cm soil layer were studied. The insecticides carbofuran and diazinon, and the herbicides atrazine and metolachlor were used in the study, which included the incubation and leaching of pesticides from untreated soils and soils in which microorganisms had been inhibited. The mineralization of ring14C labeled pesticides was studied. The study differentiated between biotic and abiotic processes that determine the fate of pesticides in the soil. Higher leaching rates of pesticides from PT soils are explaned by the relative importance of each of these processes. In NT soils, higher microbial populations and activity were associated with higher mineralization rates of atrazine, diazinon and carbofuran. Enhanced transformation rates played an important role in minimizing the leaching of metolachlor and carbofuran from NT soils. The role of abiotic adsorption/retention was important in minimizing the leaching of metolachlor, carbofuran and atrazine from NT soils. The role of fungi and bacteria in the biodegradation process was studied by selective inhibition techniques. Synergistic effects between fungi and bacteria in the degradation of atrazine and diazinon were observed. Carbofuran was also degraded in the soils where fungi were selectively inhibited. Possible mechanisms for enhanced biodegradation and decreased mobility of these pesticides in the upper layer of NT soils are discussed.  相似文献   

13.
The adsorption kinetics and adsorption parameters of metolachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA) and hydroxyatrazine (HA) were investigated in a soil profile in a maize field formed from recent alluvial deposits in a river basin in Greece. We used the batch equilibrium method modified to simulate field conditions as closely as possible for the use and practices related to soil applied pre‐emergence herbicides. Pseudo‐equilibrium times, determined by kinetic studies, were achieved after 16, 16, 24, 24 and 48 hours for metolachlor, DIA, DEA, HA and atrazine, respectively. At pseudo‐equilibrium the percentage of the adsorbed amount increased in the order of DEA (10%) < DIA (14%) < atrazine (27%) < metolachlor (43%) ≪ HA (94%) which indicates that more than 57% of all compounds except for HA are in solution and available for transport to deeper soil layers when conditions similar to those simulated in the laboratory exist in the field. Adsorption isotherms of all compounds and in most of the cases correlated well with the Freundlich model and adsorption coefficients (Kf) decreased with increased soil depth. Principal component and multiple regression analyses confirmed the importance of the soil organic carbon content on the adsorption capacity of soils for all compounds except HA in the plough layers (0–40 cm). In the subsurface soils (40–110 cm) variables such as clay content and pH were more important. For HA, the Kf values determined for the plough and subsurface soil layers were better correlated with clay content and pH. Also in the subsurface soils, the variation in organic carbon content was not correlated with the variation of Kf values. Thus calculated Koc‐f‐values misrepresent the adsorptive capacity of these soils towards the compounds studied.  相似文献   

14.
The microencapsulation of alachlor and metolachlor in the polymers cellulose acetate butyrate, ethyl cellulose, poly(methyl methacrylate), and poly(alpha-methylstyrene) with different emulsifiers is described. The controlled-release properties of these formulations were measured under greenhouse conditions on barnyardgrass, crowfootgrass, smallflower morningglory, and Palmer amaranth. The emulsifiers had little effect on the activity of the herbicides. The herbicidal activities of the poly(methyl methacrylate) and poly(alpha-methylstyrene) formulations were consistently lower on all weed species when compared to the activities of the cellulose acetate butyrate, ethyl cellulose, and commercial formulations. The ethyl cellulose formulation of alachlor exhibited controlled-release properties. The results with metolachlor were similar to those with alachlor except that none of the metolachlor formulations exhibited efficacy superior to that of the commercial formulation or controlled release properties.  相似文献   

15.
The agricultural use of pesticides leads to diffuse pollution whereby the various contaminants of the soil infiltrate into the groundwater reaching lakes and drinking water aquifers. Due to the extensive application of these chemicals, their leaching presents a high environmental risk. Since the adsorption coefficient (K) characterizes the soil / water partitioning [1] and is also representative for leaching, the first step in understanding of the environmental fate of a pollutant is to study its adsorption properties. Weak binding to the soil constituents (low K) leads to groundwater pollution, while a strong binding (high K) results in surface water pollution through the erosion of the soil. Acetochlor is a widely used herbicide all over the world. Similar to other organic pollutants, the environmental fate of this chemical is strongly related to its adsorption properties. Static adsorption equilibrium measurements were carried out at 25°C on different types of Hungarian soils (chernozem, brown forest and sandy soil) characterized by varying amounts of organic matter and pH values. Acetochlor solutions were prepared in the presence of nitrate and phosphate ions (0.1 mol/L sodium nitrate and 0.1 mol/L phosphate uffer, pH=7) which are constituents of fertilizers occurring in high concentrations in the environment. In order to appreciate their effect, adsorption studies were also performed in pure aqueous medium. The equilibrated liquid was analyzed after centrifugation by two different methods (Total Organic Carbon measurement, High Performance Liquid Chromatography). Isotherms obtained under different conditions, as well as on various soils, exhibit a similar shape, thus indicating a two-step adsorption process. The plots cannot be interpreted according to the classes of isotherms suggested by Giles (H-, L- and C-type, [2]). The adsorption coefficients were estimated from the initial slope of the curves. These values were determined not only by the type of the soil, but also by the composition of the aqueous media. Due to the low value of the adsorption coefficients, the acetochlor is a rather mobile pollutant of the soil posing a potential danger to the aquatic environment. The organic matter adsorption coefficients (Kom) [3] were also calculated and they were approximately identical for soils of high organic matter. For the chernozem and brown forest soils, the values of the K and Kom parameters are increasing in the order from water < phosphate buffer < sodium nitrate. For soils of low organic content, the similarity of the Kom values cannot be expected (due to the hyperbolic nature of the equation) as the data really indicate it for the adsorption behavior of the sandy soil. Here, the organic matter plays a less important role and the adsorption is controlled by the solute / inorganic substance interactions. This conclusion is nicely proved by the adsorption of the acetochlor on quartz resulting thereby in a similar plot being obtained for the soils. According to the hypothesis presented here, the first step of the isotherms is controlled by the solute / surface interactions while the solute / adsorbed solute interactions are operating in the second step of the isotherm. The role of the organic matter in this region of the isotherm is probably negligible. The comparison of the adsorption coefficients leads to the conclusion that the presence of nitrate and phosphate ions enhances the adsorption of acetochlor on the soils containing a high percentage of organic matter. As these ions are present in the environment due to the extensive use of fertilizers, they may increase the acetochlor pollution of water by erosion. This conclusion corroborates those earlier observations that reported frequent acetochlor contamination of the surface waters [4–5]. As the organic matter content of the soils plays an important role in the acetochlor adsorption, humic substances must have a strong influence on the transport of this compound. Experiments to obtain adsorption isotherms of further pesticides and the development of a quantitative model are in progress.  相似文献   

16.

Purpose

The purposes of this study were to understand the sorption?Cdesorption characteristics of propachlor in three types of soils with added solid organic matters and the effect of solid organic matters on propachlor mobilization in soil microstructures.

Materials and methods

Three soil types, Eutric gleysols (EG), Hap udic cambisols (HUC), and Haplic alisol (HA), along with the lakebed sludge (SL) and pig manure compost (PMC), were used in the study. The sorption and desorption experiments were carried out using the standard batch equilibration method. Soil column leaching was performed with soil samples packed into PVC columns. Soil thin-layer chromatography was performed using soils and water mixture spread on a 0.5?C0.7-mm thick layer over 20?×?10-cm glass plates.

Results and discussion

Propachlor was shown to be more mobile in EG and HUC than in HA. Application of PMC and SL to soils affected the propachlor mobilization in the soils. Using batch experiment, soil column, and soil thin-layer chromatography, we showed that addition of SL and PMC increased the sorption and decreased desorption of propachlor in the soils. Addition of PMC and SL reduced the total concentration of propachlor in the soil leachate and migration of propachlor in the soil profiles. Physicochemical properties of the three soils were analyzed and showed that the content of organic carbon (in percentage) was higher in Haplic alisol than in Eutric gleysols and Hap udic cambisols.

Conclusion

The soil organic matter played critical roles in modifying the absorption and mobility of organic chemicals (e.g., herbicide and contaminants) in soil ecosystem.  相似文献   

17.
A simple and rapid method based on microwave-assisted extraction (MAE) coupled to gas chromatographic analysis was developed for the analysis of triazine (atrazine, cyanazine, metribuzine, simazine and deethylatrazine, and deisopropylatrazine) and chloroacetanilide (acetochlor, alachlor, and metolachlor) herbicide residues in soils. Soil samples are processed by MAE for 5 min at 80 degrees C in the presence of acetonitrile (20 mL/sample). Mean recovery values of most solutes are >80% in the 10 to 500 microg/kg fortification range with respective RSDs (relative standard deviations) < 20%. The limits of quantification (LOQ) and limits of detection (LOD) are 10 and 1 to 5 microg/kg, respectively. The method was validated with two types of soils containing 1.5 and 3.0% organic matter content, respectively; no statistically significant differences were found between solute recovery values from the two types of soils. The solute mean recovery values from freshly spiked (24 h aging) and spiked samples stored refrigerated for one week before processed were also not statistically different. Residue levels determined in field weathered soils were higher when soils were processed by MAE than with a comparison method based on flask-shaking of soil suspensions overnight. Extracts were analyzed by a gas chromatographic system equipped either with a thermionic (GC-NPD) or a mass spectrometric detector (GC-MS).  相似文献   

18.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

19.
Metolachlor (2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds in a variety of crops. The S enantiomer, S-metolachlor, is the most effective form for weed control. Although the degradation of metolachlor in soils is thought to occur primarily by microbial activity, little is known about the microorganisms that carry out this process and the mechanisms by which this occurs. This study examined a silty-clay soil (a Luvisol) from Spain, with 10 and 2 year histories of metolachlor and S-metolachlor applications, respectively, for microorganisms that had the ability to degrade this herbicide. Tis paper reports the isolation and characterization of pure cultures of Candida xestobii and Bacillus simplex that have the ability to use metolachlor as a sole source of carbon for growth. Species assignment was confirmed by morphological and biochemical criteria and by sequence analysis of 18S and 16S rRNA, respectively. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses indicated that C. xestobii degraded 60% of the added metolachlor after 4 days of growth and converted up to 25% of the compound into CO(2) after 10 days. In contrast, B. simplex biodegraded 30% of metolachlor following 5 days of growth in minimal medium. In contrast, moreover, the yeast degraded other acetanilide compounds and 80% of acetochlor (2-chloro-N-ethoxymethyl-6'-ethylaceto-o-toluidide) and alachlor (2-chloro-2',6'-diethyl-N-methoxymethylacetanilide) were degraded after 15 and 41 h of growth, respectively. The results of these studies indicate that microorganisms comprising two main branches of the tree of life have acquired the ability to degrade the same novel chlorinated herbicide that has been recently added to the biosphere.  相似文献   

20.
Atrazine and metolachlor are commonly detected in surface water bodies in southern Louisiana. These herbicides are frequently applied in combination to corn, and atrazine to sugarcane, in this region. A study was conducted on the runoff of atrazine and metolachlor from 0.21 ha plots planted to corn on Commerce silt loam, a Mississippi River alluvial soil. The study, carried out over a three-year period characterized by rainfall close to the 30-year average, provided data on persistence in the surface soil (top 2.5 cm layer) and in the runoff active zone of the soil, as measured by decrease in runoff concentrations with time after application. Regression equations were developed that allow an estimate of the runoff extraction coefficients for each herbicide. Atrazine showed soil half-lives in the range 10.5-17.3 days, and metolachlor exhibited half-lives from 15.8-28.0 days. Concentrations in successive runoff events declined much faster than those in the surface soil layer: Atrazine runoff concentrations decreased over successive runoff events with a half-life from 0.6 to 5.7 days, and metolachlor in runoff was characterized by half-lives of 0.6-6.4 days. That is, half-lives of the two herbicides in the runoff-active zone were one-tenth to one-half as long as the respective half-lives in the surface soil layer. Within years, the half-lives of these herbicides in the runoff active zone varied from two-thirds longer for metolachlor in 1996 to one-fifth longer for atrazine in 1995. The equations relating runoff concentrations of atrazine and metolachlor to soil concentrations contain extraction coefficients of 0.009. Losses in runoff for atrazine were 5.2-10.8% of applied, and for metolachlor they were 3.7-8.0%; atrazine losses in runoff were 20-40% higher than those for metolachlor. These relatively high percent of application losses indicate the importance of practices that reduce runoff of these chemicals from alluvial soils of southern Louisiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号