首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that oscillation of the dietary CP concentration, which may improve N retention of finishing beef steers, would reduce production of manure odor compounds and total N inputs while yielding comparable performance. Charolais-sired steers (n = 144; 303 +/- 5 kg of initial BW) were used in a completely randomized block design (6 pens/treatment). The steers were fed to 567 kg of BW on the following finishing diets, which were based on dry-rolled corn: 1) low (9.1% CP), 2) medium (11.8% CP), 3) high (14.9% CP), or 4) low and high oscillated on a 48-h interval for each feed (oscillating). Steers fed low tended (P = 0.08) to have less DMI (7.80 kg/d) than steers fed medium (8.60 kg/d) or oscillating (8.67 kg/d), but not less than steers fed high (8.12 kg/d). Daily N intake was greatest (P < 0.01) for steers fed high (189 g), intermediate for medium (160 g) and oscillating (164 g), and least for low (113 g). The ADG was lower (P < 0.01) for steers fed low (1.03 kg) than for those fed medium (1.45 kg), high (1.45 kg), or oscillating (1.43 kg). Similarly, steers fed low had a lower adjusted fat thickness (P < 0.01) and yield grade (P = 0.05) and tended (P = 0.10) to have less marbling than steers fed the other 3 diets. In slurries with feces, urine, soil, and water, incubated for 35 d, nonsoluble CP was similar among slurries from steers fed medium, high, or oscillating, but was less (P < 0.01) in slurries from steers fed low. However, throughout the incubation period, slurries from steers fed high or oscillating had greater (P < 0.01) concentrations of total aromatics and ammonia than those from steers fed low or medium. Also, the slurries from steers fed oscillating had greater (P < 0.01) concentrations of branched-chain VFA than manure slurries from steers fed any of the other diets. These data indicate that although there is no apparent alteration in the performance of finishing steers fed diets with oscillation of the dietary protein, there may be undesirable increases in the production of compounds associated with malodor.  相似文献   

2.
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal.  相似文献   

3.
As cattle mature, the dietary protein requirement, as a percentage of the diet, decreases. Thus, decreasing the dietary CP concentration during the latter part of the finishing period might decrease feed costs and N losses to the environment. Three hundred eighteen medium-framed crossbred steers (315 +/- 5 kg) fed 90% (DM basis) concentrate, steam-flaked, corn-based diets were used to evaluate the effect of phase-feeding of CP on performance and carcass characteristics, serum urea N concentrations, and manure characteristics. Steers were blocked by BW and assigned randomly to 36 feedlot pens (8 to 10 steers per pen). After a 21-d step-up period, the following dietary treatments (DM basis) were assigned randomly to pens within a weight block: 1) 11.5% CP diet fed throughout; 2) 13% CP diet fed throughout; 3) switched from an 11.5 to a 10% CP diet when approximately 56 d remained in the feeding period; 4) switched from a 13 to an 11.5% CP diet when 56 d remained; 5) switched from a 13 to a 10% CP diet when 56 d remained; and 6) switched from a 13 to an 11.5% CP diet when 28 d remained. Blocks of cattle were slaughtered when approximately 60% of the cattle within the weight block were visually estimated to grade USDA Choice (average days on feed = 182). Nitrogen volatilization losses were estimated by the change in the N:P ratio of the diet and pen surface manure. Cattle switched from 13 to 10% CP diets with 56 d remaining on feed or from 13 to 11.5% CP with only 28 d remaining on feed had lower (P < 0.05) ADG, DMI, and G:F than steers fed a 13% CP diet throughout. Steers on the phase-feeding regimens had lower (P = 0.05) ADG and DMI during the last 56 d on feed than steers fed 13.0% CP diet throughout. Carcass characteristics were not affected by dietary regimen. Performance by cattle fed a constant 11.5% CP diet did not differ from those fed a 13% CP diet. Serum urea N concentrations increased (P < 0.05) with increasing dietary CP concentrations. Phase-feeding decreased estimated N excretion by 1.5 to 3.8 kg/steer and nitrogen volatilization losses by 3 to 5 kg/steer. The results suggest that modest changes in dietary CP concentration in the latter portion of the feeding period may have relatively small effects on overall beef cattle performance, but that decreasing dietary CP to 10% of DM would adversely affect performance of cattle fed high-concentrate, steam-flaked, corn-based diets.  相似文献   

4.
We hypothesized that oscillating dietary CP would improve N retention by increasing the uptake of endogenous urea N by portal drained viscera (PDV), compared with static dietary CP regimens. Chronic indwelling catheters were surgically implanted in the abdominal aorta, a mesenteric vein, a hepatic vein, and the portal vein of 18 growing Dorset x Suffolk wethers (44.6 +/- 3.6 kg of BW). Wethers had ad libitum access to the following diets in a completely randomized block design: 1) Low (9.9% CP), 2) Medium (12.5% CP), or 3) Low and High (14.2% CP) diets oscillated on a 48-h interval (Osc). Dry matter intake was greater (P = 0.04) for the Osc diet (1,313 g/d) than the Low diet (987 g/d) and was intermediate for the Medium diet (1,112 g/d). Nitrogen intake was not different between the wethers fed the Osc (25.4 g/d) and Medium diets (22.2 g/d), but was lower (P < 0.01) in wethers fed the Low diet (16.0 g/d). Wethers fed the Osc diet (6.7 g/d) retained more (P < 0.04) N than did those fed the Medium diet (4.0 g/d). Hepatic arterial blood flow was not different (P = 0.81) between wethers fed the Osc (31 L/h) or Medium diet (39 L/h) but was greater (P = 0.05) in wethers fed the Low diet (66 L/h). Net release of alpha-amino N by the PDV did not differ (P = 0.90) between the Low (37.8 mmol/h) and Medium diets (41.5 mmol/h) or between the Osc (53.0 mmol/h) and Medium diets (P = 0.29). Net PDV release of ammonia N was less (P = 0.05) for the Low diet than for the Medium diet, and this was accompanied by a similar decrease (P = 0.04) in hepatic ammonia N uptake. Urea N concentrations tended to be (P = 0.06) less in arterial, portal, and hepatic blood in wethers fed the Low diet compared with those fed the Medium diet. Wethers fed the Osc diet tended (P = 0.06) to have a greater PDV uptake of urea N than did those fed the Medium diet, but there was no difference between the Osc and Medium diets (P = 0.72) in hepatic urea N release. Net PDV uptake of glutamine tended to be greater (P < 0.07) in wethers fed the Low diet (6.7 mmol/h) than those fed the Medium diet (2.7 mmol/h). These data indicate that oscillating dietary protein may improve N retention by increasing endogenous urea N uptake by the gastrointestinal tract.  相似文献   

5.
Four ruminally and duodenally cannulated beef steers (492 +/- 30 kg) were used in a 4 x 4 Latin square design to evaluate the effect of undegradable intake protein (UIP) supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay. The steers were offered chopped (10.2 cm in length) grass hay (6.0% CP) ad libitum and 1 of 4 supplements. Supplemental treatments (1,040 g of DM daily), offered daily at 0800, were control (no supplement) or low, medium, or high levels of UIP (the supplements provided 8.3, 203.8, and 422.2 g of UIP/ d, respectively). The supplements were formulated to provide similar amounts of degradable intake protein (22%) and energy (1.77 Mcal of NE(m)/kg). Blood samples were taken at -2, -0.5, 1, 2, 4, 8, 12, and 24 h after supplementation on d 1 (intensive sampling) and at -0.5 h before supplementation on d 2, 3, 4, and 5 (daily sampling) of each collection period. Contrasts comparing control vs. low, medium, and high; low vs. medium and high; and medium vs. high levels of UIP were conducted. Apparent and true ruminal OM and N digestion increased (P < 0.03) in steers fed supplemental protein compared with controls, but there were no differences (P > 0.26) among supplemental protein treatments. There were no differences (P > 0.11) among treatments for NDF or ADF digestion, or total ruminal VFA or microbial protein synthesis. Ruminal pH was not different (P = 0.32) between control and protein-supplemented treatments; however, ruminal pH was greater (P = 0.02) for supplementation with medium and high compared with low UIP. Daily plasma insulin concentrations were increased (P = 0.004) in protein-supplemented steers compared with controls and were reduced (P = 0.003) in steers fed low UIP compared with steers fed greater levels of UIP. Intensive and daily plasma urea N concentrations were increased (P < 0.01) in protein-supplemented steers compared with controls and increased (P < 0.02) for intensive and daily sampling, respectively, in steers supplemented with medium and high UIP compared with low UIP. Supplemental protein increased apparent and true ruminal OM and N digestion, and medium and high levels of UIP increased ruminal pH compared with the low level. An increasing level of UIP increases urea N and baseline plasma insulin concentrations in steers fed low-quality hay.  相似文献   

6.
We hypothesized that feeding steers ground high-moisture ensiled corn (HMC) in lieu of dry-rolled corn (DRC) would reduce the amount of starch being excreted in the manure and the associated odorous compound production. One hundred forty-eight crossbred steers (363 +/- 33 kg of BW) were fed a DRC-or HMC-based diet in a feeding trial, and 8 Charolais-sired steers (447 +/- 22 kg of BW) were used in a nutrient balance study. Steers fed HMC tended to have a slightly lower DMI (P = 0.09), ADG (P = 0.06), and yield grade, but G:F, final HCW, and quality grade did not differ (P > or = 0.23) between treatments. Compared with feeding DRC, feeding HMC decreased (P = 0.02) starch intake from 5,407 to 4,846 g/d, decreased (P < 0.01) fecal excretion of starch from 448 to 292 g/d, and increased (P = 0.03) starch digestibility from 91.7 to 94.1%. Nitrogen intake was greater (P < 0.01) for steers fed DRC than HMC in both studies, but N retention did not differ (P = 0.55). Heat production and energy retention did not differ between the 2 treatments (P > or = 0.55). In manure slurries incubated for 35 d with soil and water, total VFA concentration was lower (P < 0.01) in manure from steers fed HMC (1,625 micromol/g of DM) compared with steers fed DRC (3,041 micromol/g of DM). Lower initial (d 0) starch concentrations and greater initial pH was also observed in the slurries from the HMC manure. By d 3 of slurry incubation, there was an increase (P < 0.01) in free glucose and l-lactic acid in the DRC slurries but not in the HMC slurries. During manure incubation, alcohol and VFA content increased (P < 0.01) and pH declined, but to a lesser extent (P < 0.01) in the HMC slurries. However, branched-chain VFA increased more (P < 0.01) in the HMC slurries than in the DRC slurries. These data suggest that feeding HMC instead of DRC decreased fecal starch and production of some potentially odorous compounds in a finishing cattle system but had little impact on animal productivity.  相似文献   

7.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

8.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

9.
The effect of altering supplementation frequency on host N balance and key N transactions in the ruminal ecosystem were monitored. Four ruminally fistulated beef steers (BW = 513 kg; SEM = 6.5) were used in a 2 x 2 crossover design with two periods and two supplementation frequency treatments. Supplementation frequencies were 2 and 7 d/wk. Steers were fed tallgrass prairie hay (73.1% NDF, 5.3% CP) ad libitum. Supplement (42% CP; DM basis) was fed at 0.36% BW/d to steers supplemented 7 d/wk. Steers supplemented 2 d/wk received the same amount of supplement per week, but it was equally split among the two supplementation events. Steers supplemented 7 d/wk had higher forage (P < 0.02) and total digestible OM intake (P < 0.06), total N intake, fecal N excretion, and N retention. Although both supplementation frequencies were characterized by positive N balance, the decrease in N retention in the steers supplemented 2 d/wk was due to higher (P < 0.01) urinary N loss. Ruminal fluid was sampled at 0, 2, 4, 6, 12, 24, 48, and 72 h after supplementation beginning on a day when both treatments were supplemented. Frequency x hour interactions (P < 0.02) were observed for ruminal N metabolism criteria. Counts of peptide- and AA-fermenting bacteria peaked at 2 h and returned to nadir by 12 h for steers supplemented 7 d/wk. Steers supplemented 2 d/wk peaked at 6 h with a greater population and returned to nadir at 48 h. Ruminal ammonia concentrations followed a similar trend. Specific activity of ammonia production was lower (P < or = 0.05) immediately after supplementation for steers supplemented 2 d/wk, but by 12 h was the same as for 7 d/wk steers. Ruminal peptides and free AA peaked at 2 h for steers supplemented 2 d/wk and were generally higher (P < or = 0.05) during the first 6 h compared with steers supplemented 7 d/wk. Total VFA concentration was not different (P = 0.35) due to supplementation frequency. Frequency x hour interactions (P < 0.01) were observed for all molar proportions of VFA. The molar proportion of acetate and acetate:propionate ratio were lower (P < 0.01) and the molar proportions of propionate and butyrate were higher for steers supplemented 2 d/wk from 4 h to 24 h. In conclusion, forage use and N balance improved with supplementation 7 d/wk, but supplementation 2 d/wk was associated with some desirable shifts in select ruminal events that may contribute to moderating potential negative impacts of supplementing infrequently.  相似文献   

10.
Twelve steers (332 kg) were used in three simultaneous 4 x 3 incomplete Latin squares to evaluate effects of beet molasses (BEET), cane molasses (CANE), or concentrated separator by-product (CSB) as base ingredients in cooked molasses blocks on intake and digestion of prairie hay and ruminal characteristics. All steers had ad libitum access to prairie hay (5.9% CP and 69.4% NDF; DM basis). The four experimental treatments included a control (no supplement) and three cooked molasses blocks, based on BEET, CANE, or CSB, fed daily at .125% of BW (.42 kg/d as-fed, .13 kg/d CP). Forage OM, NDF, and N intakes; digestible OM, NDF, and N intakes; and total tract OM and N digestibilities (percentage of intake) were greater (P < .05) for steers fed cooked molasses blocks than for control steers. Total tract OM digestibility was greater (P < or = .06) for steers fed BEET blocks (54.0%) than for those fed CSB (52.1%) or CANE blocks (52.2%). Digestion of NDF was greatest (P < .05) for steers fed BEET blocks (51.9%) and tended to be greater (P < .07) for steers fed CANE (49.3%) or CSB blocks (49.3%) than for control steers (46.9%). Ruminal ammonia concentrations were greater (P < .05) for steers fed cooked molasses blocks (.89 mM) than for control steers (.21 mM); this was primarily due to increases to 4.6 mM at 2 h postfeeding for steers fed blocks. Concentrations of total VFA in ruminal fluid were greater (P < .05) for steers fed BEET (92.7 mM) and CSB (88.1 mM) blocks than for control steers (80.3 mM), whereas concentrations for steers fed CANE blocks were intermediate (85.4 mM). Steers supplemented with cooked molasses blocks had greater molar percentages of butyrate than did control steers, particularly shortly after feeding. In summary, supplementation with cooked molasses blocks increased forage intake and digestion. The three base ingredients elicited similar responses, although steers fed BEET had slightly greater OM and NDF digestibilities than those fed CANE or CSB.  相似文献   

11.
Nitrogen retention by lambs fed oscillating dietary protein concentrations   总被引:1,自引:0,他引:1  
Nitrogen excreted by beef cattle can be retained in manure or lost by volatilization to the atmosphere or by runoff and percolation into surface or ground water. Increasing the retention of dietary N should decrease environmental losses. To this end, the effects of oscillating concentrations of dietary CP on nutrient retention were determined using lambs fed a 90% concentrate diet. Ten St. Croix lambs (average BW = 27 kg) were used in two 5x5 Latin square experiments. Dietary treatments were as follows: 1) 10% CP, 2) 12.5% CP, 3) 15% CP, 4) 10% and 15% CP diets oscillated at 24-h intervals, and 5) 10% and 15% CP diets oscillated at 48-h intervals. Supplemental N was provided by cottonseed meal in Trial 1 and by a 50:50 (N basis) blend of cottonseed meal and urea in Trial 2. Each period of the Latin square lasted 35 d, with excreta collection the final 8 d. Nitrogen retention increased linearly (P<.01) with increasing N intake in both trials (.77, 1.33, and 1.89 g/d for 10, 12.5, and 15% CP, respectively, in Trial 1; .94, 1.78, and 2.19 g/d for 10, 12.5, and 15% CP, respectively, in Trial 2). Compared with continuously feeding the 12.5% CP diet, oscillating the 10 and 15% CP diets on a 24-h basis did not affect N retention (P>.10) in either trial (1.62 and 1.56 g/d for Trials 1 and 2, respectively). Oscillating dietary CP at 48-h intervals did not affect N retention in Trial 2 (1.82 g/d) but increased (P<.05) N retention by 38% in Trial 1 (1.87 g/d). Phosphorus, K, and Na retention and excretion were not affected by dietary treatments in Trial 1. In Trial 2, P retention increased (linear, P<.05) with increasing dietary CP and was greater (P<.05) in lambs on the 48-h oscillation treatment than in lambs fed the 12.5% CP diet. These results suggest that oscillating the dietary CP concentrations might potentially increase the utilization of N by ruminants fed high-concentrate diets.  相似文献   

12.
In Exp. 1, 36 individually penned steers (initial BW = 294 +/- 3.8 kg) were used to determine effects of dietary CP percentage and programming gain on performance and carcass characteristics. Steers were fed to achieve a predicted gain of 1.13 kg/d for the first 84 kg of gain and 1.36 kg/d for the next 124 kg of gain and were offered feed for ad libitum consumption for the final 58 kg of gain before slaughter. In these three phases of growth, steers were fed diets, sequentially, with the following CP percentages: HHH (16, 13.5, and 12.5%), LHH (9, 13.5, and 13%), or LLL (9, 9, and 9%). When predicted gain was 1.13 kg/d, ADG was greater (P < 0.01) for steers in the HHH (1.09 kg/d) vs LHH and LLL (0.83 kg/d) systems. When predicted gain was 1.36 kg/d, ADG and gain efficiency were greatest (P < 0.01) for steers in the LHH system. Overall ADG and gain efficiency were greater (P < 0.01) for steers in the HHH (1.46 kg/d, 0.194) and LHH systems (1.38 kg/d, 0.190), compared with steers in the LLL (1.21 kg/d and 0.166) system. Carcass fat thickness was lower for steers in the LHH (0.74 cm) system than for steers in the LLL system (1.09 cm). In Exp. 2, 18 individually penned steers (initial BW = 225 +/- 5.8 kg) were either offered a 13% CP diet for ad libitum intake (AL) throughout the 134-d experiment or fed a high- (16% CP; PI-HH) or low- (10% CP; PI-LH) CP diet and fed to achieve a predicted gain of 1.13 kg/d for the first 85 d of the experiment. Steers in the PI-HH and PI-LH feeding regimens were then offered a 13% CP diet for ad libitum consumption from d 86 to 134. Fractional protein accretion rate was greater (P < 0.01) for steers in the PI-HH and PI-LH feeding regimens than for steers in the AL regimen at d 92, 106, and 120. Fractional breakdown and synthesis rates were not affected (P = 0.63) by feeding regimen. Increased ADG and gain efficiency of steers during compensatory growth periods may in part be due to greater fractional accretion rates of skeletal muscle protein.  相似文献   

13.
Ninety-six Hereford x Angus steers (mean initial BW = 295 kg) were used in two growth experiments conducted at moderate and high ambient temperatures (AT), 48 steers per AT. Within each AT, calves were assigned to six dietary treatments consisting of a basal diet (approximately 60% corn and 20% grass hay) supplemented with either 0, 2.5, or 5% fat and with either soybean meal (SBM) or Menhaden fish meal (FM) included at levels such that a ratio of 16.3 kcal of NEm per kilogram of CP was maintained. Blood and ruminal fluid were collected 40 d before slaughter. During the final 28 d of the moderate AT experiment, apparent digestibility of dietary components was measured in four individually fed steers from each dietary treatment. Steer ADG was not affected by fat, and DMI and efficiency of gain were not affected (P > .10) by treatment. Average daily gain was lower for steers fed FM than for those fed SBM at moderate AT but higher at high AT (CP source x AT interaction; P < .05). Ruminal ratio of acetate to propionate declined linearly with increasing fat at moderate AT but was not affected by fat at high AT (fat x AT interaction trend; P = .08). Plasma urea N concentration increased linearly (P < .05) with increasing fat and was higher (P < .05) in steers kept at high than in those kept at moderate AT. Although apparent digestibility was not altered in steers fed FM, DM and NDF (P < .05) and ADF (P = .07) digestibility decreased with increasing fat in steers fed SBM (CP source x fat interaction).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

15.
Four experiments were conducted to evaluate three crude protein (CP) sources (urea, U; soybean meal, SBM; corn gluten meal, CGM) in diets based on corn silage (high energy) or grass hay (low energy). In Exp. 1 and 2, growing steers were fed all combinations of energy and protein source at 10.5 or 12% CP. Steers fed high energy diets or 12% CP had improved (P less than .05) daily gains and feed:gain over 84 d. Protein source had no effect (P greater than .05) on performance except that steers fed U consumed more (P less than .05) feed than those fed CGM. Steers were fed experimental diets to a common weight and switched to an 85% concentrate diet for finishing. During finishing, steers fed low energy diets in the growing period consumed more (P less than .05) feed and had increased (P less than .05) feed:gain compared with those fed high energy diets. Growing lambs were fed the same diets as steers. At 10.5% CP, lambs fed high energy diets had higher (P less than .05) digestibilities of dry matter (DM), organic matter (OM), nitrogen (N) and fiber components, and retained more (P less than .05) N. For lambs on 12% CP, high energy diets had higher (P less than .05) DM and OM digestibilities and lower (P less than .05) N digestibilities. At 12% CP, energy level had no effect (P greater than .05) on N retained. Protein source had no effect (P greater than .05) on N retention. There appeared to be no advantage in supplementing with ruminally undegradable proteins, i.e. CGM, in these experiments.  相似文献   

16.
One-hundred ninety-two crossbred steers (initial BW = 351 +/- 11 kg) were used to determine the effects of removing alfalfa hay (AH) from dry-rolled corn-based diets containing wet corn gluten feed (WCGF) on animal performance and nutrient (N and OM) mass balance in open feedlot pens. Steers were stratified by weight and assigned randomly to 24 pens (2 x 3 factorial) and fed for 132 d from June to October 2002. Experimental diets contained either 0 or 35% WCGF and 0, 3.75, or 7.5% AH, and were formulated to be isonitrogenous. For efficiency of gain, an interaction occurred (P = 0.09) between AH and WCGF. Feed efficiencies of cattle fed 35% WCGF were improved 4.4% (P = 0.10) compared with efficiencies of cattle fed no WCGF at 0% AH; there was a marked improvement in ADG for cattle fed WCGF compared with no WCGF in diets with 0% AH. Within 35% WCGF diets, efficiency decreased as AH inclusion increased (P = 0.06). Efficiency was equal across AH levels when 0% WCGF was fed; however, ADG was decreased when AH was removed. Interactions between AH and WCGF were not detected for other performance or carcass criteria; therefore, main effects of AH and WCGF are discussed. Daily intake, ADG, and HCW increased linearly (P < 0.05) as dietary AH level increased. Feeding 35% WCGF also resulted in greater DMI (P < 0.01) and a tendency for greater ADG and HCW (P < or = 0.10) compared with steers fed no WCGF. Interactions between AH and WCGF were not observed for feedlot N mass balance. As level of AH increased across diets, N intake, N retention, and N excretion increased (P < 0.05). Steers fed 35% WCGF consumed and excreted more N (P < 0.01) than those fed no WCGF. More manure DM (P = 0.11), OM, and N (P < 0.01) were removed from pens housing steers fed 35% WCGF as well as greater OM and N recovery in finished compost. More N (kilogram/steer) was also lost to volatilization as a result of greater N excretion when WCGF was fed. Expressed as a percentage of N excretion, loss of N from pens housing steers fed 0 and 35% WCGF was not different, averaging nearly 80%. These data suggest that AH has less value when dry-rolled corn-based diets contain 35% WCGF and can be decreased from conventional levels. Furthermore, loss of N from open feedlot pens is high during the summer months, and feeding WCGF may not reduce N losses during these times of year.  相似文献   

17.
Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics.  相似文献   

18.
Two experiments were conducted to determine the effects of supplementing ruminally degradable intake protein (DIP) or ruminally undegradable intake protein (UIP) on N balance (Exp. 1; n = 6 wethers; initial BW = 48.7 +/- 4.6 kg) and site and extent of digestion (Exp. 2; n = 5 wethers; initial BW = 36.9 +/- 3.1 kg) in whiteface wethers consuming (as-fed basis) 69% blue grama and 31% love grass hay (mixture = 7.5% CP, 73.0% NDF, 36.0% ADF [DM basis]). Treatments were 1) no supplement (Control), 2) a supplement (219 g/d, as-fed basis) low in UIP (70 g/d of CP; 24.8 g/d of UIP), and 3) a supplement (219 g/d, as-fed basis) high in UIP (70 g/d of CP; 37.1 g/d of UIP). Both experiments were replicated 3 x 3 Latin square designs, with identical feeding and supplementation. Wethers had ad libitum access to the forage mixture and fresh water, and received supplement once daily. In Exp.1, forage intake (percentage of BW) was greatest (P = 0.04) for control, but total DMI (g/d) was greatest (P = 0.05) for lambs consuming supplement. Apparent total-tract OM digestibility was numerically greater (P = 0.11) for supplemented wethers than for controls, whereas total-tract ADF digestibility tended (P = 0.08) to be greater for control wethers. Lambs fed supplements consumed and retained more (P < or = 0.01) N (% of N intake) compared with controls, but no difference (P = 0.22) was observed between low and high UIP treatments. Similar to Exp. 1, forage intake (percentage of BW) tended (P = 0.06) to be greater for control than for supplemented wethers in Exp. 2. Ruminal NDF digestibility was 16.3% greater (P = 0.02) for supplemented wethers than for controls. Postruminal NDF and N digestibilities were greatest (P < or = 0.03) for controls, but apparent OM digestibility did not differ among treatments at all sites. Duodenal N flow was greatest (P = 0.05) for high UIP and least for control wethers. Nonmicrobial N flow was greater (P = 0.02) for high UIP compared with low UIP or controls. Control wethers had greater (P = 0.05) microbial efficiency. Ruminal ammonia concentration tended (P = 0.08) to be greatest for wethers fed low UIP and least for controls, with high-UIP wethers having intermediate ammonia concentrations. Results from these experiments suggest that in lambs fed low-quality forage there was no difference in apparent total-tract digestion or N balance (percentage of N intake) between lambs fed supplements that had the same CP but differed in the proportion of UIP and DIP; however, supplementing protein (regardless of UIP:DIP ratio) to wethers consuming low-quality forage increased N balance.  相似文献   

19.
Minimal quantities of ruminally degradable protein from supplements may improve supplement use efficiency of ruminants grazing dormant forages. In Exp. 1, N retention, ruminal NH(3), serum urea N, and NDF digestibility were evaluated for 12 ruminally cannulated cows (Bos spp.) in an incomplete Latin Square design with 3 periods of 42 d each. Cows were fed weeping lovegrass [Eragrostis curvula (Schrad.) Nees] hay (4.1% CP, 75% NDF, OM basis) at 1.3 % BW/d and offered 1 of 3 sources of CP [urea, cottonseed (Gossypium spp.) meal (CSM); or 50% blood meal and 50% feather meal combination (BFM)] fed to supply 0, 40, 80, or 160 g/d of CP. Beginning on d 22 of supplementation, ruminal contents and serum samples were collected at -2, 0, 3, 6, 9, 12, 18, 24, 30, 36, and 48 h relative to the morning offering of hay. On Day 24, feces and urine were collected for 72 h. In Exp. 2, 4 ruminally cannulated steers were used in a replicated 4 by 4 Latin Square to evaluate use of supplements differing in quantity and ruminal CP degradability. Steers were fed 6.8 kg/d chopped sudangrass [Sorghum bicolor (L.) Moench nothosubsp. drummondii (Steud.) de Wet ex Davidse] hay (3.7% CP, 74% NDF on OM basis) and supplemented with 56 g/d of a salt mineral mix (CON); CON + 28 g/d blood meal + 28 g/d feather meal (BFM); CON + 98 g/d CSM (LCS); or CON + 392 g/d CSM (HCS). Treatments provided 0, 40, 40, or 160 g/d of CP for CON, BFM, LCS, and HCS respectively. In Exp. 1, N use and total tract NDF digestibility were not affected by protein sources or amounts (P ≥ 0.18). Ruminal NH(3) concentrations exhibited a quadratic response over time for UREA (P < 0.05) and was greater with increasing inclusion of urea (P < 0.05); whereas BFM or CSM did not differ (P > 0.05) by amount or across time. In Exp. 2, supplementation had a tendency (P = 0.09) to increase DM disappearance. Supplementation also increased (P < 0.01) serum glucose concentrations; however, no difference (P ≥ 0.28) was found between supplements. Serum urea N and ruminal NH(3) concentrations were increased (P ≤ 0.01) in steers fed HCS. Feeding low quantities of a high-RUP supplement maintained rumen function without negatively affecting DM or NDF digestibility of a low-quality forage diet.  相似文献   

20.
This study examined how different methods of applying a fibrolytic enzyme or ammonia affect the nutritive value of Bermudagrass hay and the performance of beef cattle. Fifty Angus x Brangus crossbred steers (mean initial BW 244 +/- 26 kg) were individually fed for ad libitum intake of a 5-wk regrowth of a mixture of Florakirk and Tifton 44 Bermudagrass [Cynodon dactylon (L.) Pers] hay for 84 d with a concentrate supplement (77% soybean hull pellets, 23% cottonseed meal (DM basis) fed at 1% of BW daily. The Bermudagrass was conserved as hay without treatment (control), with NH(3) (30 g/kg of DM), or with a fibrolytic enzyme (16.5 g/t, air-dry basis) that was applied immediately after cutting (Ec), at baling (Eb), or at feeding. Chromic oxide was dosed to steers for 10 consecutive days, and fecal Cr concentrations from the last 5 d were used to estimate apparent total tract digestibility. In situ ruminal DM degradability was measured by incubating ground (4-mm) hay samples in duplicate in each of 2 ruminally cannulated cows having ad libitum access to Bermudagrass hay and 500 g/d of soybean meal. Unlike the enzyme treatment, ammoniation increased (P < 0.001) the CP concentration and reduced (P < 0.001) NDF, hemicellulose, and lignin concentrations of hay. Total DMI was greater (P < 0.05) for steers fed hays treated with Ec or NH(3) than for those fed control hays. All additive treatments increased (P < 0.05) DM digestibility, and NH(3), Ec, and Eb treatments also increased (P < 0.01) NDF digestibility. The initial and final BW, ADG, BCS, G:F, and hip height of the steers were not affected (P > 0.05) by treatment. The wash loss fractions in hays treated with Ec and Eb were lower than that in the control hay, but the potentially degradable fraction, total degradable fraction, and the effective degradability were increased (P < 0.01) by NH(3) treatment. Application at cutting was the most promising method of enzyme treatment, and this treatment was almost as effective as ammonia for enhancing forage quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号