首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichinella spp. larvae were collected from domestic and wild-life animals in association with 15 human trichinellosis outbreaks registered between 1999-2002 in Bulgaria. Furthermore, Trichinella spp. isolates were obtained from 62 naturally infected wild animals and of a rat. All isolates were subjected to speciation by both multiplex PCR and cross-breeding experiments. Epidemiological and clinical data were collected and analysed using standard protocols for epidemiological surveillance and control of outbreaks. Only two species were identified-Trichinella britovi and Trichinella spiralis. Results obtained by molecular typing fully matched those of cross-breeding. More specifically, parasite isolates obtained upon 15 epidemic outbreaks revealed the predominance of T. britovi (n = 10) when compared to T. spiralis (n = 5). With regard to host origin, the predominant species detected among wild boar was T. britovi (n = 4), and T. spiralis was identified in one wild boar sample only. Among the isolates obtained from domestic pig products, T. britovi was found in five cases and T. spiralis in four cases, respectively. In the naturally infected wild animals not related to epidemics, only T. britovi was demonstrated. The present results provide a strong indication that both T. britovi and T. spiralis operate within domestic and sylvatic cycles in Bulgaria. Geographically, the distribution of T. britovi appears to include Central, Southern, Eastern and Western parts of the country, and wildlife animals from the Mid Balkan Mountains and Mid Sredna Gora Mountains, T. spiralis was found in Western and Southwestern Bulgaria, only.  相似文献   

2.
Infection of Trichinella spp. is widespread among wildlife in Slovakia and the red fox (Vulpes vulpes) is the main reservoir of Trichinella britovi. Trichinella spiralis has been rarely documented in sylvatic and domestic animals of this country. During routine examination of domestic pigs at the slaughter, Trichinella larvae were detected by artificial digestion in a domestic pig of a large-scale breeding farm in Eastern Slovakia. The parasite has been identified by molecular (PCR) and biochemical (allozymes) analyses and by the morphology of the nurse cell as the non-encapsulated species Trichinella pseudospiralis infecting both mammals and birds. The epidemiological investigation carried out at the farm level revealed the presence of the same parasite species in other three pigs of 192 examined (2.1%), in 3 of 14 (21.4%) examined synanthropic rats (Rattus norvegicus) and in a domestic cat. The farm was characterized by inadequate sanitary conditions, insufficient nutrition, cannibalism and the presence of rat population. A different profile has been observed at the phosphoglucomutase locus in T. pseudospiralis isolates from Slovakia in comparison with the T. pseudospiralis reference isolate from the Palearctic region. This is the first documented focus of T. pseudospiralis from Central Europe. The detection in domestic pigs of a non-encapsulated parasite infecting both mammals and birds stresses the need to avoid the use of trichinelloscopy to detect this infection at the slaughterhouse.  相似文献   

3.
The countries of southeastern Europe including the Balkan region and bordering countries - Albania, Bulgaria, Bosnia and Herzegovina, Croatia, Greece, Hungary, Macedonia, Romania, Serbia and Montenegro, Slovenia, and the European part of Turkey - occupy a very important strategic position and represent a land bridge between Europe and Asia. In the majority of southeastern European countries, cases of trichinellosis among the human and animal populations were described in the late 19th or early 20th centuries. Trichinella infections among wildlife were also described in the aforementioned countries. Today, the prevalence of trichinellosis is different between the Balkans and bordering countries. A high prevalence of trichinellosis in domestic animals and humans has been reported in Bulgaria, Serbia and Montenegro, Romania and Croatia. A moderate prevalence was found in Bosnia and Herzegovina. In Hungary, human trichinellosis has not been present for a long period of time. However, sporadic cases were recorded in swine over the last 2 years. Trichinellosis has not been found among domestic animals and humans in Greece and Macedonia in recent years while in Turkey and Slovenia human trichinellosis is sporadic. The re-emergence of trichinellosis is connected with the changes in the social and political systems in Bulgaria and Romania. In Serbia and Montenegro as well in Croatia, however, a re-emergence of trichinellosis was due not only to political and social changes but also to wars that took place in these countries during the last years of the 20th century. Social, economic and political factors responsible for the re-emergence of trichinellosis in southeast European countries are discussed in this communication.  相似文献   

4.
Epidemiology of trichinellosis in Asia and the Pacific Rim   总被引:4,自引:0,他引:4  
The epidemiology of trichinellosis, species of Trichinella present and the food and eating habits of people affected in Asia and the Pacific Rim are reviewed with emphasis on Japan, China and Thailand. Trichinella seems to be prevalent throughout this region although outbreaks of trichinellosis have not been reported in some areas. Major outbreaks of the disease have been reported primarily in China and Thailand. This is the result of three factors: (1) China and Thailand are highly endemic areas for this parasite; (2) the two countries are well-organized and there is a public health system that enables precise reporting of disease outbreaks and (3) culinary habits provide many opportunities to eat undercooked meats. Trichinella found in Asia and the Pacific Rim includes both encapsulated species (Trichinella spiralis, Trichinella britovi, Trichinella nativa) and noncapsulated species (Trichinella pseudospiralis, Trichinella papuae). T. britovi, isolated in Japan, is a different genotype from the European strain. Therefore, the Japanese strain of T. britovi is designated Trichinella T9. Human trichinellosis caused by T. pseudospiralis has occurred in New Zealand and Thailand. Tasmania has had animal cases of T. pseudospiralis infection and animals with T. papuae infection have been found in Papua New Guinea. Economic losses due to Trichinella infection are not negligible in China, where there have been more than 500 outbreaks of human trichinellosis, affecting more than 20,000 people and causing more than 200 deaths. In Thailand, over the past 27 years, 120 outbreaks were reported involving nearly 6700 patients and 97 deaths. Japan has had fewer outbreaks and some sporadic cases have been attributed to imported infection.  相似文献   

5.
The red fox (Vulpes vulpes) is considered one of the main reservoir of Trichinella spp. in Europe. As limited information on Trichinella infection in wildlife of Hungary is available, 2116 red foxes, representing more than 3% of the estimated fox population of the country, were screened to detect Trichinella larvae by a digestion method. Trichinella larvae from the 35 positive foxes were identified by a multiplex PCR as Trichinella britovi (30 isolates, 85.7%), Trichinella spiralis (4 isolates, 11.4%), and Trichinella pseudospiralis (1 isolate, 2.9%). The true mean intensity of T. britovi, T. spiralis and T. pseudospiralis larvae in lower forelimb muscles was 23.6, 3.5 and 13.5larvae/g, respectively. T. spiralis was detected only in the southern and eastern regions. The non-encapsulated T. pseudospiralis was recorded for the first time in Hungary. Although the overall true prevalence of Trichinella infection in foxes was only 1.8% (95% confidence interval, CI=1.5-2.1%), the spatial analysis reveals different risk regions. In the north-eastern counties bordering Slovakia and Ukraine (21% of the Hungarian territory), the true prevalence of Trichinella infection is significantly higher than that observed in other regions (6.0%, CI=4.8-7.1%). In the southern counties bordering Croatia, Serbia and Romania (41% of the Hungarian territory), the true prevalence of Trichinella infection is moderate (1.4%, CI=1.0-1.8%). In the north-western and central counties (38% of Hungarian territory), the prevalence of Trichinella infection is significantly lower (0.2%, CI=0.1-0.4%) than that of the other regions. Based on the statistical analysis and the evaluation of epidemiological data, none of the counties can be considered free of Trichinella infection. In the past decade, Trichinella infection has been detected only in few backyard pigs, and only few wild boar-related autochthonous infections in humans were described. Nevertheless, these results highlight the need of the maintenance of a strict monitoring and control programmes on Trichinella infection in farmed and hunted animals of Hungary.  相似文献   

6.
Trichinellosis is a cosmopolitan zoonotic disease affecting a wide variety of animals, including man. Non-encapsulated and encapsulated species diverge with respect to their developmental strategies. Little is known at the molecular level about parasite-derived mediators responsible for host muscle cell transformation occurring during trichinellosis. In this context, host-parasite relationships in Trichinella-infected animals could be related to different host-immune and cell mediators, e.g. nitric oxide (NO). Here, we investigate the stimulatory/inhibitory role of L1 antigens from four encapsulated (T. spiralis, T. britovi, T. nelsoni and T. nativa) and one non-encapsulated (T. pseudospiralis) Trichinella species on NO production from rat macrophages in vitro. Our results demonstrate that encapsulated and non-encapsulated Trichinella species differ in their capacity to stimulate the secretion of NO from host macrophages. Biological significance of these differences should be further assessed in the available experimental models.  相似文献   

7.
Nematodes of the genus Trichinella are maintained in nature by sylvatic or domestic cycles. The sylvatic cycle is widespread on all continents, from frigid to torrid zones, and it is maintained by cannibalism and scavenging behavior of carnivores. Trichinella is primarily a parasite of carnivorous mammals, although one non-encapsulated species, Trichinella pseudospiralis, has also been detected in birds. The anaerobic metabolism of larvae in nurse cells allows their survival in extremely decayed meat. Encapsulated larvae in the decomposing carcass function similarly to the species-dispersing population of eggs or larvae of other nematodes, suggesting that the natural cycle of Trichinella includes a free-living stage when the parasite is no longer protected by the homeothermy of the host. Consequently, environmental temperature and humidity play an important role in the transmission of Trichinella among wildlife. Of the 10 recognized genotypes of Trichinella, only Trichinella spiralis is transmitted and maintained in a domestic cycle, although it can be present also in wildlife. All other genotypes (Trichinella nativa, Trichinella britovi, T. pseudospiralis, Trichinella murrelli, Trichinella nelsoni and Trichinella papuae, Trichinella T6, T8, and T9) are transmitted and maintained only in a sylvatic cycle. This generalization does not preclude sylvatic species of Trichinella from invading the domestic habitat, and T. spiralis may return to this habitat when humans fail in the management of wildlife and domestic animals. However, the presence of sylvatic genotypes of Trichinella in the domestic habitat represents a "dead-end" for the sylvatic cycle. Synanthropic animals (rats, foxes, mustelids, cats, dogs, etc.) contribute to the flow of sylvatic Trichinella genotypes from wildlife to domestic animals and of T. spiralis from domestic to sylvatic animals. Furthermore, human behavior not only influences the transmission patterns of Trichinella genotypes in the domestic habitat, but also it can contribute to the transmission and spread of this infection among wildlife, for example by improper hunting practices.  相似文献   

8.
Trichinellosis is a foodborne disease caused by the consumption of raw meat and raw meat-derived products from swine, horse and some game animals infected with nematode worms of the genus Trichinella. Between June 2006 and February 2011, 16 million domestic pigs and 0.22 million wild boars (Sus scrofa) were tested for Trichinella sp. in Hungary. Trichinella infection was not found in any pigs slaughtered for public consumption. Nevertheless, Trichinella spiralis was detected in four backyard pigs when trace back was done following a family outbreak. Trichinella infection was demonstrated in 17 wild boars (0.0077%). Larvae from wild boars were identified as Trichinella britovi (64.7%), T. spiralis (29.4%) and Trichinella pseudospiralis (5.9%). Although the prevalence of Trichinella sp. infection in wild boars and domestic pigs is very low, the spatial analysis reveals that the level of risk differs by region in Hungary. Most of the T. britovi infected wild boars (63.6%) were shot in the north-eastern mountain area of Hungary; whereas domestic pigs and wild boars infected with T. spiralis were detected only in the southern counties bordering Croatia and Romania. In the north-western and central counties, the prevalence of Trichinella infection seems to be negligible.  相似文献   

9.
The study of Trichinella isolates from wildlife in Germany revealed the presence of Trichinella spiralis and Trichinella britovi in wild boars and foxes. T spiralis was detected in meat products imported from Spain, which is one of the two endemic areas of domestic trichinellosis in the European Union: It was also detected in meat from a grizzly bear marketed in Alaska, and Trichinella nativa was detected in a polar bear from the Berlin Zoo. These results stress the importance of examining for Trichinella live animals and meat products imported to Germany from both EU and non-EU countries. Furthermore, carnivores from Arctic regions that are born in the wild and placed in zoos can represent a risk for the introduction of the freeze-resistant species of Trichinella in a new region if, once the animal dies, the carcass is not properly destroyed.  相似文献   

10.
概述了旋毛形线虫属种分类研究的现状及虫体杂交试验、同工酶酶谱分析、分子生物学及分子遗传学试验等旋毛虫分类方法的研究进展,指出目前国际上已将毛形属分为8个隔离种(即T.spiralis,T1;T.nativa,T2;T.britovi,T3;T.pseudospiralis ,T4;T.murrelli,T5;T.nelsoni,T7;T.papuae,T10:Lzimbabwensis,T11)和3个分类地位尚未确定的基因型(即T6、T8和T9)。  相似文献   

11.
We assessed a serological method for detecting Trichinella infection in horses, specifically, an ELISA using three antigens to detect anti-Trichinella IgG (i.e. a synthetic tyvelose glycan-BSA (stg-BSA) antigen, an excretory/secretory (ES) antigen, and a crude worm extract (CWE) antigen). Serum samples were collected from 2502 horses (433 live horses from Romania and 2069 horses slaughtered in Italy and originating from Italy, Poland, Romania, and Serbia). Serum samples were also taken from horses experimentally infected with different doses of T. spiralis and T. murrelli larvae, as controls. The cut-off value of ELISA was determined on serum samples from 330 horses from Trichinella-free regions of Italy, which were also examined by artificial digestion of preferential-muscle samples. In the experimentally infected horses, the stg-BSA and ES antigens were less sensitive than the CWE antigen. Trichinella spiralis showed a higher immunogenicity than T. murrelli, and the IgG immunoresponse was dose-dependent. The kinetics of anti-Trichinella IgG were similar among all experimentally infected horses. No circulating antibodies were detected 4-5 months after experimental infection, although these horses still harbored infective larvae. Depending on the antigen used, for 4-7 of the 330 horses from Trichinella-free areas, the optical density (OD) of the serum sample was higher than the cut-off value, yet these samples were negative when subjected to Western Blot. Similar results were obtained for the 1739 horses slaughtered in Italy (originating from Italy, Poland, Romania, and Serbia) and the 433 live Romanian horses. Of the 4 horses with muscle larvae, only one was positive by ELISA and Western Blot. Because the anti-Trichinella IgG remain circulating for only a short period of time, whereas the larvae remain infective for longer periods, serology cannot be used for either diagnosing Trichinella infection in horses or estimating the prevalence of infection. Artificial digestion of at least 5 g of preferential-muscle tissue continues to be the method of choice at the slaughterhouse for preventing equine-borne trichinellosis in humans.  相似文献   

12.
Trichinellosis caused by nematodes of Trichinella spp. is a zoonotic foodborne disease. Three Trichinella species of the parasite including Trichinella spiralis, Trichinella papuae and Trichinella pseudospiralis, have been etiologic agents of human trichinellosis in Thailand. Definite diagnosis of this helminthiasis is based on a finding of the Trichinella larva (e) in a muscle biopsy. The parasite species or genotype can be determined using molecular methods, e.g., polymerase chain reaction (PCR). This study has utilized real-time fluorescence resonance energy transfer PCR (real-time FRET PCR) and a melting curve analysis for the differential diagnosis of trichinellosis. Three common Trichinella species in Thailand were studied using one set of primers and fluorophore-labeled hybridization probes specific for the small subunit of the mitochondrial ribosomal RNA gene. Using fewer than 35 cycles as the cut-off for positivity and using different melting temperatures (T(m)), this assay detected T. spiralis, T. papuae and T. pseudospiralis in muscle tissue and found the mean T(m) ± SD values to be 51.79 ± 0.06, 66.09 ± 0.46 and 51.46 ± 0.09, respectively. The analytical sensitivity of the technique enabled the detection of a single Trichinella larva of each species, and the detection limit for the target DNA sequence was 16 copies of positive control plasmid. A test of the technique's analytical specificity showed no fluorescence signal for a panel of 19 non-Trichinella parasites or for human and mouse genomic DNA. Due to the sensitivity and specificity of the detection of these Trichinella species, as well as the fast and high-throughput nature of these tools, this method has application potential in differentiating non-encapsulated larvae of T. papuae from T. spiralis and T. pseudospiralis in tissues of infected humans and animals.  相似文献   

13.
The systematics of the genus Trichinella with a key to species   总被引:9,自引:0,他引:9  
The authors review the major biological, biochemical, and molecular characters that are used to distinguish the seven Trichinella species (T. spiralis, T. nativa, T. britovi, T. pseudospiralis, T. murrelli, T. nelsoni, T. papuae) and three genotypes whose taxonomic status is yet uncertain (T-6, T-8, T-9). A comparison of host specificity, morphology, reproductive abilities, nurse cell development and freeze resistance is presented, along with useful biochemical and molecular markers. Finally, this information is used to construct a diagnostic key for the species. A phylogenetic classification of the species is needed.  相似文献   

14.
In recent years, studies on Trichinella have shown that the host range is wider than previously believed and new Trichinella species and genotypes have been described. Three classes of vertebrates are known to act as hosts, mammals, birds and reptiles, and infected vertebrates have been detected on all continents but Antarctica. Mammals represent the most important hosts and all Trichinella species are able to develop in this vertebrate class. Natural infections with Trichinella have been described in more than 150 mammalian species belonging to 12 orders (i.e., Marsupialia, Insectivora, Edentata, Chiroptera, Lagomorpha, Rodentia, Cetacea, Carnivora, Perissodactyla, Artiodactyla, Tylopoda and Primates). The epidemiology of the infection greatly varies by species relative to characteristics, such as diet, life span, distribution, behaviour, and relationships with humans. The non-encapsulated species Trichinella pseudospiralis, detected in both mammals (14 species) and birds (13 species), shows a cosmopolitan distribution with three distinguishable populations in the Palearctic, Nearctic and Australian regions. Two additional non-encapsulated species, Trichinella papuae, detected in wild pigs and saltwater crocodiles of Papua New Guinea, and Trichinella zimbabwensis, detected in farmed Nile crocodiles of Zimbabwe, can complete their life cycle in both mammals and reptiles. To the best of our knowledge, T. papuae and T. zimbabwensis are the only two parasites known to complete their entire life cycle independently of whether the host is warm-blooded or cold-blooded. This suggests that these two Trichinella species are capable of activating different physiological mechanisms, according to the specific vertebrate class hosting them.  相似文献   

15.
Trichinella sp. infection has been documented in both humans and animals in most Mediterranean countries, yet in the past 60 years no infections have been reported on the Mediterranean islands. We describe the first outbreak of Trichinella sp. infection to have been reported on the island of Sardinia. The outbreak occurred in two villages in 2005 and involved 11 persons who had eaten raw sausages made from the same free-ranging sow. All 11 persons developed signs and symptoms of trichinellosis and seroconverted within 48 days of consuming the infected meat. The etiological agent was Trichinella britovi. Sardinia, like all Mediterranean islands, had been considered to be Trichinella-free. The present report, together with a recent report of T. britovi infection in animals on the nearby island of Corsica (France), raises questions as to the validity of the concept of Trichinella-free areas or regions.  相似文献   

16.
Epidemiology of trichinellosis in Mexico, Central and South America   总被引:6,自引:0,他引:6  
Trichinella species are widely distributed throughout the world and are found in a large number of carnivorous animals, humans and incidental hosts. The data presented in this review show that Trichinella infection has been reported in both humans and animals in Mexico, Argentina and Chile since the end of the 19th century, and more recently in Bolivia. This parasitic infection is still a public health problem in countries such as Argentina and Chile. Although efforts have focused on the control and prevention of trichinellosis in these countries, there were still human cases and outbreaks of trichinellosis reported. Diagnosis of infection in animals such as pigs still includes, in many endemic areas, the use of trichinoscopy. In Argentina, however, artificial digestion has been recently introduced in slaughterhouses to detect Trichinella infection in pigs. In some endemic areas in Mexico, the use of serological assays for human trichinellosis and pig infections have resulted in improved detection. Most of the outbreaks of human trichinellosis in Mexico, Argentina and Chile have occurred as a result of the consumption of undercooked pork or pork products from animals raised under poor hygienic conditions and which are clandestinely slaughtered. In several studies, rats, dogs and cats have been found to be infected with Trichinella and may be considered a risk for transmission of the infection to pigs or other animals intended for human consumption. Another potential source of transmission of Trichinella to humans is horsemeat; however, information related to horse trichinellosis in Latin-American countries is scarce. In most cases the etiological agent of human trichinellosis in Central and South America has been reported to be Trichinella spiralis; however, only in a few cases has the parasite species been properly identified. Based on the reports available, it is clear that there is a need to carry out better controlled epidemiological studies to determine the true prevalence of the infection in this region of the world. Also, more sensitive methods of diagnosis and improvements in conditions for pig production as well as better sanitary inspection systems, are needed for controlling and preventing transmission of trichinellosis in these countries.  相似文献   

17.
为了研究PCR检测感染小鼠血液中旋毛虫DNA的敏感性,应用旋毛虫1.6 kb重复序列为扩增靶序列对旋毛虫(T1)、乡土旋毛虫(T2)、布氏旋毛虫(T3)、伪旋毛虫(T4)和南方旋毛虫(T7)肌幼虫DNA进行PCR扩增,并检测小鼠感染20、100、300条T1肌幼虫后不同时间的外周血.结果表明,T1、T4和T7肌幼虫可扩增出特异性目的条带(510 bp),而T2和T3无扩增产物;1、0.04和0.02条T1、T4和T7肌幼虫均能扩增到清晰的目的条带(510 bp).20条幼虫感染小鼠后5 d~6 d,PCR阳性率均为7.69%;100条幼虫感染小鼠后5 d~12 d可检出旋毛虫DNA,其中感染后5 d~7 d的阳性率分别为30.77%、38.46%及30.77%;300条幼虫感染小鼠后5 d~15 d可检出旋毛虫DNA,感染后7 d的阳性率为61.54%,感染后6 d与8 d~10 d的阳性率均为53.85%. 3组旋毛虫感染小鼠PCR阳性率间的差异有统计学意义(p<0.01),PCR阳性率随感染剂量的增加而升高(p<0.01),100条与300条感染小鼠感染后不同时间的PCR阳性率与检测时间有相关性(p<0.01).以上实验结果表明PCR检测感染小鼠血液中旋毛虫DNA的敏感性与感染程度和检测时间有关,对感染早期旋毛虫抗体阴性宿主有一定诊断价值.  相似文献   

18.
The main source of trichinellosis in Romania is insufficiently cooked pork infected with Trichinella spiralis. Timis, the largest Romanian county, is located in the western part of the country where pork and traditional food prepared from pork are extensively consumed. The objective of the present study was to conduct a retrospective investigation of the incidence of human trichinellosis in Timis County over a period of 16 years (1990–2005). The medical records of 521 patients were used as the source of data. Patients were hospitalized at “Victor Babes” Hospital of Infectious Diseases from Timisoara during the period 1990–2005. The highest number of cases was recorded in 1994 (16.90%) and most of the patients were in the age group of 20–29 (23.22%). Males and females were almost equally affected by trichinellosis. The clinical pattern was mainly characterised by myalgia (72.55%) and edema (54.12%). Laboratory investigations included mainly elevated eosinophil and leucocyte values. In 52.02% of the patients, the hospitalization period ranged between 8 and 14 days. Most of the patients were from urban areas, but often the source of infection was found in rural areas. Hospitalization of the affected patients required considerable health care resources. The decreasing incidence of trichinellosis in Romania over the last decade has been due to sanitary education programmes for both swine breeders and consumers.  相似文献   

19.
In 1995, a new species of Trichinella (Trichinella zimbabwensis) was discovered in farmed Nile crocodiles (Crocodylus niloticus) in Zimbabwe, where the mode of transmission was the consumption of the meat of slaughtered crocodiles, used as feed. To determine whether T. zimbabwensis affects poikilotherm vertebrates in the wild, monitor lizards (Varanus niloticus) and Nile crocodiles were collected in Zimbabwe and Mozambique. In 5 (17.6%) of the 28 monitor lizards from Zimbabwe, T. zimbabwensis larvae were identified. For the wild Nile crocodiles from Mozambique, species-level identification was not possible, yet immunohistochemical analysis revealed that 8 (20%) of the 40 animals harboured non-encapsulated Trichinella sp. larvae, which probably belonged to T. zimbabwensis. This is the first report of T. zimbabwensis in wild reptiles, and the findings are consistent with reports that vertebrates with scavenger and cannibalistic behaviour are the most important hosts of Trichinella spp. The wide distribution of monitor lizards and crocodiles in Africa and the development of national crocodile breeding programs in many African countries should be taken into consideration when evaluating the risk of transmission of this parasite to mammals, including humans.  相似文献   

20.
We determined the prevalence and mean intensity of Trichinella sp. infection in coyotes from six counties in Oklahoma and one in northern Texas. Tongues from 77 coyotes were examined using histology and artificial tissue digestion. Histological examination showed a prevalence of 3.9% (3 of 77) whereas the prevalence was 6.5% (5 of 77) based on artificial digestion of 5.0 g of muscle from coyote tongues. One sample was positive for Trichinella sp. on histology but negative by artificial digestion. Combining data from both diagnostic techniques showed that six of 77 (7.8%) coyotes were infected with Trichinella spp. The mean intensity of Trichinella sp. larvae ranged from 0.2 to 66.2 with an average of 16.0 larvae per gram (LPG) of tongue. Genotyping results demonstrated that the coyotes were infected with Trichinella murrelli. This is the first report of T. murrelli infection in coyotes in Oklahoma. T. murrelli had previously been isolated from coyotes in Texas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号